
Elasticidade

Módulo 11

Das taxas vitais a λ

$$[l_x]$$
 $[m_x]$ Alterações

Qual a sensibilidade de λ a a_i ?

Qual a sensibilidade de λ a alterações em cada parâmetro demográfico ?

Objectivo: desenvolver instrumentos de medida desta sensibilidade

Implicações

Conservação

Quais as fases do CV em que é mais promissor investir para conservar ?

Exploração comercial

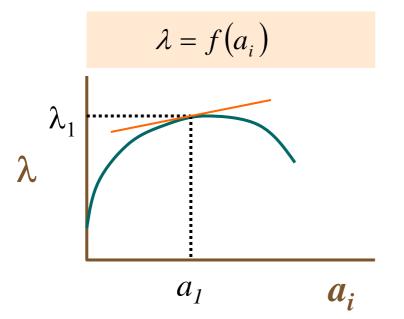
Quais as fases do CV em que a exploração afecta mais o crescimento da população ?

Variação

Para que parâmetros deve ser intensificado o esforço de amostragem e estimação ?

Controle de pestes, Ecologia Evolutiva, etc.

Variação de λ quando a_i varia


$$\lambda = f(l_1, l_2, ..., m_1, m_2, ...)$$

$$\lambda = f(a_i), \quad a_j \text{ constante } j \neq i$$

Sensibilidade de λ a a_i

Quantidade de variação em λ quando a_i varia

Significado gráfico e matemático da sensibilidade

Sensibilidade de λ a a_i

$$s_i = \frac{d\lambda}{da_i} \left| \begin{array}{c} a_1 \\ a_2 \end{array} \right|$$

% de variação

As variações absolutas nos parâmetros demográficos têm significado diferente

$$l_x \in [0, 1]; \quad m_x \in [0, +\infty[$$

% variação em a_i

% variação em λ

Elasticidade

Elasticidade

$$\begin{array}{ll} \frac{1}{a_i} \, \frac{\Delta a_i}{\Delta t} & \textit{Variação percentual em } a_i \\ \\ \frac{1}{\lambda} \, \frac{\Delta \lambda}{\Delta t} & \textit{Variação percentual em } \lambda \end{array}$$

Elasticidade

Variação % de λ relativamente à variação % de a_i

$$e_{i} = \frac{\frac{1}{\lambda} \frac{\Delta \lambda}{\Delta t}}{\frac{1}{a_{i}} \frac{\Delta a_{i}}{\Delta t}}$$

Elasticidade II

Os parâmetros demográficos e a taxa de incremento variam contínuamente

Quando $\Delta t \rightarrow 0$

$$e_i = \frac{1}{\lambda} \frac{d\lambda}{dt} / \frac{1}{a_i} \frac{da_i}{dt}$$

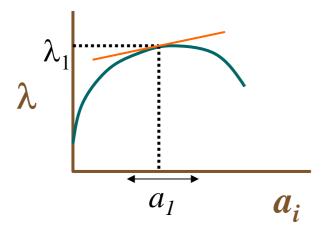
 S_{i}

$$e_i = \frac{a_i}{\lambda} \left| \frac{d\lambda}{da_i} \right|$$

Dois reparos

A sensibilidade pode ser usada para calcular o impacto sobre λ de tornar a_i=0 em a_i>0 (i.e. alterações evolutivas)

A definição
$$s_i = \frac{d\lambda}{da_i}$$


não impede estudo na vizinhança de a_i =0

O mesmo não se passa com a elasticidade

Como
$$e_i = \frac{a_i}{\lambda} \frac{d\lambda}{da_i}$$
 $a_i = 0$ implica $e_i = 0$

2. Tanto s_i como e_i são derivadas de λ no ponto a_1 . Dão <u>inclinação local</u> de $f(a_i)$

Se $f(a_i)$ não é linear, não se pode fazer extrapolações para grandes desvios a a_i

A experiencia indica que s_i e e_i são muito robustos, pelo menos *qualitativamente* — em geral prevêm correctamente a sequência ordenada dos a_i em termos

de elasticidade

Relação funcional entre λ e a_i

$$s_i = \frac{d\lambda}{da_i}$$
 $e_i = \frac{a_i}{\lambda} \frac{d\lambda}{da_i}$

O cálculo da sensibilidade e elasticidade pressupõem o conhecimento de $\lambda = f(a_i)$

LT, Eq Lotka GCV Matriz de projecção

$$\lambda = f(a_i)$$

Equação característica

Significado de s_i e e_i

Variação em ai

Absoluta

Percentual

Si

ei

Absoluta

Percentual

Variação em λ

(Após atingir nova DEE)

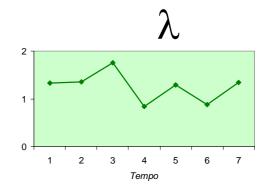
Consequências para λ de um aumento de 10% nas taxas demográficas

Taya		(1) Aumento absoluto		(2)	(3)	(1) x (2) Aumento absoluto	10 x (3) Aumento percentual
Taxa		(10%)	Novo valor	Sensibili	Elastic.	em λ	em λ
S_0	0.24	0.024	0.264	20.06	0.949	0.481	9.49%
S_1	0.242	0.024	0.266	1.08	0.051	0.026	0.51%
m_1	20	2	22	0.23	0.899	0.460	8.99%
m_2	24	2.4	26.4	0.01	0.052	0.024	0.52%

Resultados gerais

- Só taxas que integram loops do GCV contribuem p/ λ e, portanto, têm elasticidades superiores a zero.
- Taxas que intervêm em autoloops do GCV têm tendência p/ ter elasticidades elevadas.
- Loops mto longos tendem a dar menores contribuições p/ λ do que loops curtos. Os parâmetros envolvidos em loops longos, tendem a ter elasticidades menores.

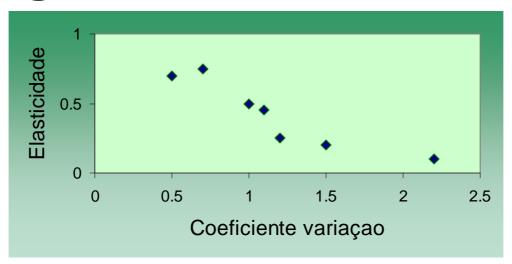
Complementos em bioconservção


Sensibilidades e elasticidades - instrumentos poderosos em bioconservação e gestão de populações.

mas, há que ter em atenção:

- Variabilidade natural das taxas vitais.
- Custos e logística envolvidos na manipulação das taxas demográficas.
- Impossibilidade de manipulação de algumas taxas demográficas.

Determinantes da variabilidade de λ


Quais são os parâmetros demográficos mais responsáveis pela variabilidade de λ ?

Serão os de major elasticidade?

Frequentemente não!

Variabilidade e elasticidade estão negativamente correlacionadas

Kroon, H. J Groenendael, J Ehrlén. 2000. Elasticities: a review of methods and model limitations. *Ecology* **81**(3):607-618.

Wisdom, MJ, LS Mills, and D Doak. 2000. Life stage simulation analysis: estimating vital-rate effects on population growth for conservation. *Ecology* **81**(3):628-641.