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Abstract:We prove that every one parameter family of area preserving maps un-
folding a homoclinic tangency has a sequence of parameter intervals, approaching
to the bifurcation parameter, where the dynamics exhibits wild hyperbolic sets ac-
cumulated by elliptic isles. This is a parametric conservative analogue of a famous
theorem of Newhouse on the abundance of wild hyperbolic sets.

1. Introduction

This paper is about the dynamics of area-preserving surface diffeomorphisms.
We assume the reader to be familiar with hyperbolic theory concepts such as
’hyperbolic periodic orbit’, and ’hyperbolic basic set’ of a diffeomorphism, as well
as the bifurcation theory concepts of ’homoclinic’ and ’heteroclinic tangencies’.
A tangency between stable and unstable leaves of a hyperbolic set Λ is said to
be a homoclinic tangency of Λ. A hyperbolic basic set is said to be wild if it
has homoclinic tangencies which are persistent, in the sense that they can not be
avoided with small perturbations of the underlying diffeomorphism. The concept
of wild hyperbolic set was introduced by Newhouse [13] to disprove the density
of Ω-stable diffeomorphisms on the sphere S2. Later, in [14], he showed that, for
dissipative dynamics, this phenomenon implies the co-existence of infinitely many
sinks. Finally, in [15], he established the abundance of infinitely many sinks around
a wild hyperbolic set. For surface dissipative diffeomorphisms, this phenomenon
appears at the unfolding of every homoclinic tangency. A parametric version of
this theorem appeared a couple of years later through the work of Robinson [17].

The techniques used in [15] and [17] do not apply to the conservative case. In [4]
we have proved a conservative analogue to Newhouse theorem on the abundance
of wild hyperbolic sets. Here we prove a parametric version for that theorem,
which is the conservative analogue of Robinson’s theorem. This result depends
crucially on an asymptotic formula for the splitting angle of the Henón mapping
separatrices, which was obtained by V. Gelfreich in [7].

This paper was essentially written some six years ago to be part of a larger
article on Newhouse phenomenon for higher dimensional symplectic dynamics. As
this broader project didn’t come trough, with the consent of the other co-authors,
I have decided to come forward with this contribution on the two dimensional
dynamics. The arguments here rely heavily on a previous work [3], which the
reader may find helpful to read in parallel.

2. Statement of results

Let M2 denote a two dimensional symplectic manifold, i.e., an orientable surface
together with some area form ω. A symplectic, or area-preserving, map is any
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diffeomorphism f : M2 → M2 which preserves the area form ω. We denote
by Diff r (M2) , respectively Diff r

ω (M2) , the group of class Cr diffeomorphisms,
respectively of class Cr symplectic maps f : M2 →M2.

We assume the reader is familiar with hyperbolic theory concepts, namely those
of hyperbolic periodic orbit, homoclinic orbit, hyperbolic invariant set, hyper-
bolic basic set, stable and unstable manifolds. As usual, W s(P ) = W s(P, f)
and W u(P ) = W u(P, f) will respectively denote the stable and unstable man-
ifolds of a point P , for a map f . A similar notation W s(Λ) = W s(Λ, f) and
W u(Λ) = W u(Λ, f) is used to denote, respectively, the stable and unstable sets
of a given a hyperbolic set Λ, for a map f . See [18] for a good introduction on
hyperbolic theory.

Given a hyperbolic f -invariant set Λ, and two points x, y ∈ Λ , an intersection
point in W s(x, f)∩W u(y, f)−Λ is called a homoclinic point of Λ. This homoclinic
point is called a homoclinic tangency point if the corresponding intersection is not
transversal.

Let Λ be a basic set for a map f . Recall that the analytic continuation of Λ
is the maximal invariant set in a neighbourhood U of Λ, which is known to be
another hyperbolic basic set, conjugated to Λ, for all maps in some neighbourhood
U of f in Diff r (M2). Following Newhouse, we say that Λ is a wild basic set over
an open set U ⊆ Diff r (M2), containing the map f , if for all maps g ∈ U ,

(1) the analytic continuation Λg is a hyperbolic basic set conjugated to Λ, and
(2) there is at least one orbit of homoclinic tangencies of Λg.

We shall refer to the open set U as a Newhouse region for the wild hyperbolic set
Λ. The proof of the following proposition is quite standard. See [16], or [2] for a
conservative argument.

Proposition 1. Let Λ be a wild hyperbolic set over an open set of maps U ⊆
Diff r

ω (M2) with r ≥ 4. Then

(1) Given any periodic point P ∈ Λ, there is a dense subset D ⊆ U such that for
every g ∈ D, the periodic point Pg has an orbit of homoclinic tangencies.

(2) There is a residual subset R ⊆ U , i.e., a countable intersection of open
subsets dense in U , such that for every g ∈ R, the basic set Λg is contained
in the closure of all generic elliptic periodic points of g.

A periodic point P , with period n , of f ∈ Diff r
ω (M2), with r ≥ 4, is said to be

a generic elliptic point if both eigenvalues λ and λ−1 of Dfn
P sit in the unit circle

without resonances of order ≤ 3, that is |λ| = 1 with λ2 6= 1 and λ3 6= 1 , and
the first coefficient of fn ’s Birkhoff normal form at point P is nonzero. Under
the non-resonance conditions above the Birkhoff normal form theorem says that
after some smooth symplectic change of coordinates, mapping point P to origin,
the diffeomorphism fn takes the form

fn(r cos θ, r sin θ) =
(
r cos(θ + α+ β r2), r sin(θ + α+ β r2)

)
+O(r4)

where λ = ei α , and β is a symplectic invariant of fn at the fixed point P , the so
called Birkhoff normal form first coefficient. If β 6= 0 and r ≥ 5, Moser theorem
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applies saying there is an invariant set Σ , with full Lebesgue density at P , which
is a union of invariant curves. In each of these curves the map fn is conjugated to
an irrational rotation of the circle. This structure around P is usually described
in the literature as an ”elliptic isle”.

A class Cr function (µ, x) 7→ fµ(x) defined on I×M2, with values in M2, where
I is an interval of real numbers, and such that fµ ∈ Diff r (M2) for all µ ∈ I, is
called a class Cr one-parameter family of diffeomorphisms. If fµ ∈ Diff r

ω (M2) for
all µ ∈ I, we say that {fµ}µ is one-parameter family of symplectic maps.

We say that a family fµ unfolds generically an orbit of homoclinic quadratic
tangencies at (µ0, Q0) ∈ I×M2, associated with some hyperbolic periodic point P
if, denoting by Pµ the analytic continuation of P for the map fµ,

(1) W s(P, fµ0) and W u(P, fµ0) have a quadratic tangency at Q0.
(2) If ` is any smooth curve transversal to W s(P, fµ0) and W u(P, fµ0) at Q0,

then the local intersections of W s(Pµ, fµ) and W u(Pµ, fµ) with ` cross each
other with relative non zero velocity at (µ0, Q0).

Let fµ be a one-parameter family of maps in Diff r (M2). Take a parameter
interval ∆ ⊆ R, and let {Λµ}µ∈∆ be a continuous family of basic sets. This
means for each µ ∈ ∆, Λµ is a hyperbolic basic set of fµ, and, furthermore,
the correspondence µ 7→ Λµ is continuous with respect to Hausdorff distance. It
follows that all basic sets Λµ are conjugated to each other. We say that Λµ are
wild basic sets over ∆ if for all µ ∈ ∆, there is at least one orbit of homoclinic
quadratic tangencies of Λµ, which unfolds generically with µ. We shall also say,
with the same meaning, that ∆ is a Newhouse interval for the basic sets Λµ. More
strongly, we will say that the basic sets Λµ are Cr-stably-wild basic sets over ∆ if
they are wild basic sets over ∆ for all class Cr one-parameter families uniformly
close to fµ. Uniform proximity of one-parameter families refers to the following
distance. The topology of the group Diff r (M2) is clearly metrizable. Taking any
metric dCr inducing the topology of Diff r (M2), we define the following distance
between one-parameter families of maps in Diff r (M2).

d ( {fµ}µ, {gµ}µ ) = sup
µ∈I

dCr(fµ, gµ) .

The parametric version of proposition 1 is obtained in a similar way.

Proposition 2. Let Λ be a wild hyperbolic set over an interval ∆, for a one-
parameter family of maps fµ ∈ Diff r

ω (M2), where r ≥ 4. Then

(1) Given any periodic point P ∈ Λ, there is a dense subset D ⊆ ∆ such
that for every µ ∈ D, the periodic point Pµ has an orbit of homoclinic
tangencies.

(2) There is a residual subset R ⊆ ∆, i.e., a countable intersection of open
subsets dense in ∆, such that for every µ ∈ R, the basic set Λµ is contained
in the closure of all generic elliptic periodic points of fµ.
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The conservative Henón is the family of area preserving maps Ha : R2 → R2

defined by

(1) Ha(x, y) = (y,−x+ a− y2).

Note that at a = −1 the Hénon map has a parabolic fixed point at x = y = −1
which breaks into two fixed points, a saddle Os =

(
−1−

√
1 + a , −1−

√
1 + a

)
and an elliptic point Oe =

(
−1 +

√
1 + a , −1 +

√
1 + a

)
, for a > −1. It has been

proved in [7] that for all a > −1 sufficiently close to the bifurcation parameter a =
−1 the saddle fixed point Os has a transversal homoclinic orbit. This transversality
implies the existence of a hyperbolic set for all values of a just after the bifurcation
moment. We examine the structure of this set, following the lines of [3] and using
asymptotics for the homoclinic angle from [7]. Namely, we prove that for all
a > −1 close to the bifurcation moment, the Hénon map has a C2-stably-wild
binary horseshoe which includes the saddle point Os. This theorem is the main
result of the paper.

Theorem A. The Hénon map family (1) has a sequence of Newhouse intervals
∆k associated with C2-stably-wild horseshoes containing the saddle fixed point Os.
The sequence ∆k converges to the bifurcation parameter a = −1 as k → +∞.

Theorem B. Let fµ be a class Cr one-parameter family of symplectic maps
in Diff r

ω (M2) (r ≥ 6). Let O be a periodic hyperbolic orbit, and Γ an orbit of
quadratic homoclinic tangencies of f0, which unfolds generically at µ = 0. Take
any small neighborhood U of O∪Γ. Then there is a sequence of Newhouse intervals
∆k converging to µ = 0. Each Newhouse interval ∆k is associated with a C2-stably-
wild hyperbolic basic set Λk such that O ⊆ Λk ⊆ U .

Theorem B follows from theorem A. As explained in section 4 of [4], the argu-
ment uses a standard technique for renormalizing the dynamics at the unfolding of
a homoclinic tangency, the Hénon map showing up in the limit process. The con-
servative two dimensional case of this renormalization process is done in [9], based
on Shil’nikov co-ordinates. For simplicity, in [4] we have assumed all maps to be
of class C∞, but class Cr with r ≥ 6 is enough. If fµ is a class Cr one-parameter
family of maps unfolding a homoclinic tangency, the renormalized maps converge
to the Hénon map family in the Cr−4 topology, as shown in [9]. Letting r ≥ 6,
this guarantees at least C2 convergence to the Hénon family, which ensures that
the C2-stably wild basic sets of the Hénon map still persist in the renormalized
dynamics at the homoclinic tangency unfolding.

Corollary. Under the same assumptions there is a non meager set of parame-
ters R, i.e., a set which is not a countable union of nowhere dense subsets of R,
having the homoclinic bifurcation parameter µ = 0 as an accumulation point, such
that for every µ ∈ R, the closure of fµ’s generic elliptic periodic points contains a
wild basic set Λk including the periodic orbit O.

This corollary follows from proposition 2 and theorem B.
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Let us now precise the construction of the wild set for the Hénon map. Stable-
wildness comes from a large ’thickness’ condition. The notion of thickness of a
hyperbolic basic set Λ, of a two-dimensional C2-diffeomorphism, denoted by τ(Λ),
was introduced by Newhouse who proved the following:

Theorem (Newhouse). Let Λ be a hyperbolic basic set of a diffeomorphism
f ∈ Diff 2 (M2). Assume τ(Λ) = τ s(Λ) τu(Λ) > 1 and that some periodic point
P ∈ Λ has an orbit Γ of quadratic homoclinic tangencies. Finally, let fµ be a one-
parameter family of maps in Diff 2 (M2) with f0 = f , that unfolds generically the
orbit of homoclinic tangencies Γ. Then there are parameter intervals over which
Λ is a C2-stably-wild basic set.

Next we describe the mechanism introduced in [13] to prove the existence of
C2-stably-wild hyperbolic sets. Let Λ be a hyperbolic basic set such that at some
point H there is a tangency between stable and unstable leaves of Λ. Consider the
Cantor like foliations F s = W s

loc(Λ) and Fu = W u
loc(Λ) and iterate them, respec-

tively backward and forward, until they meet at H. Extend C1− smoothly these
iterated foliations to a neighborhood of H. Then there is a C1 curve ` through H
consisting of tangencies between these extended foliations. Consider the Cantor
sets Ks and Ku formed by the points where the first backward iterations of F s,
respectively forward iteration of Fu, intersect the curve `. By definition of `, Λ
has a ”homoclinic” tangency at each point in Ks ∩Ku. With this construction,
persistent homoclinic tangencies of Λ is equivalent to persistent intersections be-
tween the Cantor sets Ku and Ks. The device used to guarantee the ”persistent
intersections” is the concept of thickness τ(K) of a one-dimensional Cantor set
K, i.e. lying inside some curve `, which we will define bellow. Let us call gap
of K to every connected component of the complement I − K where I is the
interval spanned by K, i.e. the smallest closed connected subset of ` containing
K. Roughly, the thickness of a Cantor set measures the relative size of its gaps,
large thickness corresponding to small gaps. The following intersection criterion
holds:

Gap lemma. Let Ks, Ku be two Cantor sets in the same open curve ` such
that the intervals spanned by Ks and Ku do intersect, but nor Ks is contained
inside a gap of Ku, neither Ku is contained inside a gap of Ks. If

(2) τ(Ks) τ(Ku) > 1

then both Cantor sets intersect, Ks ∩Ku 6= ∅.

Of course (2) is a stable condition only if we have the continuity of thickness,
and, in fact, it was proved in [15] that for dynamically defined Cantor sets, as
Ks and Ku in the previous context, their thicknesses depend continuously on the
map, for the C2− topology. Later in [10] the new concepts of left thickness, τL(K),
and right thickness, τR(K), of a Cantor set K were introduced together with the
remark that the hypothesis (2) in the gap lemma could be replaced by the weaker
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condition

(3) τL(Ks) τR(Ku) > 1 and τR(Ks) τL(Ku) > 1 .

The usual definition of thickness, or lateral thicknesses, is strictly geometric and
can be applied to any compact set lying on a curve. Of course, to have continuity
we must restrict to dynamically defined Cantor sets. Here, as in [3], we will
adopt a more dynamical definition of thickness, which only applies to dynamically
defined Cantor sets. This slightly different definition is not equivalent to the usual
geometric one. Nevertheless the same results, the continuity of thicknesses and the
gap lemma still hold. Finally, and because this will be enough for our purposes,
we will restrict the scope of definitions to binary Cantor sets and horse-shoes,
although they can be easily generalized to arbitrary combinatorics.

Let us call binary Cantor set to any pair (K,ψ) such that K is a Cantor subset
of an open curve I, ψ : I0 ∪ I1 → I is a C1 expanding map defined on the
union, I0 ∪ I1, of two subintervals of I, and such that the restriction of ψ to
K =

⋂
n≥0 ψ

−n (I0 ∪ I1) is topologically conjugated to the Bernoulli shift σ :

{0, 1}N→{0, 1}N . Of course we may assume that I is the interval spanned by K,
and that for each i = 0, 1 , Ii is the interval spanned by K∩Ii . Then {I0, I1} is a
Markov partition for (K,ψ). The gaps of (K,ψ) are ordered in the following way.
Let us call covering intervals of order n to the intervals spanned by the Cantor
set components

K(a0, · · · , an) =
n⋂

i=0

ψ−i(K ∩ Iai
) ,

where (a0, · · · , an) ∈ {0, 1}n+1 . Then I0 and I1 are the covering intervals of
order zero. U0 = I − (I0 ∪ I1) is said to be the gap of order 0 . In general the
components of the complement in I of the union of all covering intervals of order
≤ n , which are not gaps of order ≤ n− 1 , are called gaps of order n . It is easy
to check that every gap is obtained by this procedure and, therefore, has some
definite order.

The definitions bellow, of left and right thickness, require the curve I to be
oriented. Given a gap U of K , we denote by LU , respectively RU , the unique
covering interval with the same order of U that is left, resp. right, adjacent to
U . The greatest lower bounds

τL(K,ψ) = inf

{
|LU |
|U |

: U is a gap of K

}
τR(K,ψ) = inf

{
|RU |
|U |

: U is a gap of K

}
τ(K,ψ) = min{τL(K,ψ) , τR(K,ψ)}

are respectively called the left thickness, the right thickness, and the thickness of
(K,ψ) . |U | denotes the length of an interval U ⊆ I. These three thicknesses
are continuous functions of (K,ψ) over the space of all C1+α binary Cantor sets
(α > 0 ) with its natural C1+α topology. It was remarked in [10] that the lateral
thicknesses may be discontinuous for non binary Cantor sets. However with our
”dynamical” definition the lateral thicknesses are always continuous. The same
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argument, as for usual thickness, applies, see for instance [16]. To prove that
the Gap lemma, with condition (3) replacing (2), still holds just follow the proof
in [10], arguing that one could obtain pairs of linked gaps with ever higher order,
instead of ever smaller lengths. The conclusion is then the same because as we
consider gaps with strictly increasing order their lengths converge to zero.

Let us say that the binary Cantor set (K,ψ) is positive when the restriction of
ψ to each interval Ii ( i = 0, 1 ) preserves orientation. In order to estimate lateral
thicknesses notice that, by the (orientation preserving) self-similarity property
of positive binary Cantor sets, the ratio |LU | / |U |, respectively |RU | / |U |, is, up
to a distortion factor, equal to τ̃L(K,ψ) := |I0| / |U0|, respectively τ̃R(K,ψ) :=
|I1| / |U0|. We shall refer to τ̃L(K,ψ) and τ̃R(K,ψ) as top scale thicknesses of
(K,ψ). For affine Cantor sets, where the distortion factor is one, we have τ̃L = τL
and τ̃R = τR. In general, if distortion is small then top scale thicknesses τ̃L and
τ̃R are good approximations of τL and τR, respectively. Lateral thicknesses are
useless for non-positive binary Cantor sets, because in this case both left and right
thicknesses equal the usual thickness.

We call binary horse shoe to any pair (Λ, T ) such that T :S0 ∪ S1→R2 is a one
to one local diffeomorphism of class C2 , where S0 and S1 are disjoint compact
rectangles (up to diffeomorphism), and such that Λ =

⋂
n∈Z T

−n(S0 ∪ S1) is a
hyperbolic basic set conjugated to the Bernoulli shift σ : {0, 1}Z →{0, 1}Z . For
each i = 0, 1 there is a unique fixed point Pi ∈ Si and we assume {S0, S1} to
form a Markov partition bounded by pieces of stable and unstable manifolds of
the fixed points P0 and P1 . When both fixed points have positive eigenvalues we
will say that (Λ, T ) is a positive binary horse shoe.

Let F s = W s
loc(Λ) ∩ (S0 ∪ S1) and Fu = W u

loc(Λ) ∩ (T (S0) ∪ T (S1)) . These
sets may be seen as Cantor like foliations where the leaves are just the connected
components of the sets F s and Fu. They both extend to C1− foliations over
S0 ∪ S1 , respectively over T (S0) ∪ T (S1) . The two foliations are transverse to
each other. Pick the leaves Is

∗ in F s and Iu
∗ in Fu containing the fixed point P0.

Then the Cantor sets Λs = Λ ∩ Iu
∗ and Λu = Λ ∩ Is

∗ can be identified with the
foliation F s, respectively Fu, via projections πs :F s→Λs and πu :Fu→Λu whose
fibers are precisely the leaves of the respective Cantor like foliations. The maps
ψs :Λs→Λs, ψs = πs ◦ T , and ψu :Λu→Λu , ψu = πu ◦ T−1, describe the action of
T , respectively T−1 , on the foliation Fu , respectively F s . Moreover ψu and ψs

extend as C1 expanding maps to Is
∗ ∩T (S0) ∪ Is

∗ ∩T (S1) , and Iu
∗ ∩S0 ∪ Iu

∗ ∩S1 ,
respectively.

Given a positive binary horse shoe (Λ, T ) we orient the invariant local sepa-
ratrices of P0, Is

∗ and Iu
∗ , so that orbits flow in the positive direction. These

orientations in Is
∗ and Iu

∗ induce orientations in all leaves of F s and Fu, and also
induce transverse orientations to these foliations. Remark that if we had chosen
the other fixed point P1 then and all these orientations would be reversed. Finally,
notice that (Λs, ψs) and (Λu, ψu) are positive binary Cantor sets. We define the
left-right thickness of (Λ, T ) as

τLR (Λ, T ) = min {τL(Λs, ψs) τR(Λu, ψu), τL(Λu, ψu) τR(Λs, ψs)} .
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Once again, if we fix orientations with respect to the second fixed point P1 then the
left and right thicknesses of both Cantor sets (Λs, ψs) and (Λu, ψu) are exchanged,
but the left-right thickness of (Λ, T ) stays unchanged. We define the top scale
left-right thickness of (Λ, T ) to be

τ̃LR (Λ, T ) = min {τ̃L(Λs, ψs) τ̃R(Λu, ψu), τ̃L(Λu, ψu) τ̃R(Λs, ψs)} .

As before, when the stable and unstable distortions of (Λ, T ) are both small then
τ̃LR(Λ, T ) approximates well τLR(Λ, T ).

From standard distortion estimates, see [15, 16], it can proved that this thickness
depends continuously on (Λ, T ) , in the C2 topology. We can now prove the
following key

Proposition 3. Let fµ : M2 → M2 be a one-parameter family of class C2-
symplectic maps and (Λµ, Tµ) a family of positive binary horse shoe maps defined
on the union of two smooth rectangles S0(µ) ∪ S1(µ) ⊆M2 as

Tµ(x) =

{
fµ(x) if x ∈ S0(µ)
(fµ)N(x) if x ∈ S1(µ)

, N ≥ 1

Suppose that, at µ = 0, τLR (Λ0, T0) > 1 and the invariant manifolds of a fixed
point O = fµ(O) ∈ Λµ unfold generically an orbit of quadratic homoclinic tangen-
cies. Then there is a sequence of parameter intervals ∆k, accumulating at µ = 0,
such that Λµ is C2-stably-wild over each ∆k.

Proof. We orient the stable and unstable branches of W s(O)−O and W u(O)−O
so that orbits flow in the positive direction. Let us say that a homoclinic tangency
of O is positive if both the orientations, on the stable and unstable branches, agree
at the point of tangency.

Assume first that the homoclinic tangency of O, which by hypothesis unfolds
generically at µ = 0, is a positive one. Let, as before, H denote one homoclinic
point in this orbit of tangencies, and let ` be the curve, through H, of tangencies
between the C1 extensions of the backward and forward iterations of the foliations
F s and Fu, respectively. Again, let Ks and Ku be the Cantor sets formed by the
points where the first backward and forward iteration of F s and Fu, respectively,
intersect the curve `. By hypothesis, the condition (3) is fulfilled for the Cantor
sets Λs and Λu. But locally Ks and Ku are the images, by the holonomies along
the stable and unstable foliations, of the Cantor sets Λs and Λu, respectively.
Both holonomies take the point O to H. Consider now the components Λs

n =
Λs(0, · · · , 0) and Λu

n = Λu(0, · · · , 0), of order n , in the binary Cantor sets Λs and
Λu, respectively. These are small neighbourhoods of O, respectively in Λs and Λu.
They are both binary Cantor sets which obviously satisfy τL (Λt

n) ≥ τL (Λt) and
τR (Λt

n) ≥ τR (Λt), for both t = s, u . Thus these small Cantor sets also satisfy
condition (3).

For each n , let Ks
n and Ku

n be the full images, by the holonomies, of the Cantor
sets Λs

n and Λu
n. These images are also binary Cantor sets. To estimate their

thicknesses remark that these holonomies are maps of class C1 and, therefore,
they are almost linear, with very small distortion, near O. Since the map ϕµ

preserves orientation the iterations of the foliations F s and Fu around H inherit
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the orientations from F s and Fu, and since the tangency at H is positive, their
transversal orientations agree along the curve `. But this means that the holonomy
maps transforming Λs

n onto Ks
n, and Λu

n onto Ku
n , preserve orientation. Therefore,

taking n large enough, the open condition (3) will still be satisfied by the Cantor
sets Ks

n and Ku
n . This means that for some parameter interval ∆ with 0 ∈ ∂∆, and

for all µ ∈ ∆, both intervals spanned by Ks
n and Ku

n have a boundary point interior
to the other and, furthermore, the Cantor sets Ks

n and Ku
n fulfil condition (3).

Since these are open conditions, for all maps C2 close to some ϕµ, with µ ∈ ∆, we
may apply the Gap lemma to show that the horse-shoe corresponding to Λµ has
some ”homoclinic” tangency due to an intersection in Ks ∩Ku. Therefore Λµ is
C2-stably-wild over ∆.

This completes the proof in case the homoclinic tangency H is positive. If
not, arguing as in theorem 1 of section 3.1 in [16], one can easily prove that the
bifurcation parameter µ = 0 is accumulated by two alternating sequences µ+

k and
µ−k where positive and negative quadratic homoclinic tangencies are unfolded near
H. Applying the previous case to parameters µ+

k , there is a sequence of small
intervals ∆k, with µ+

k ∈ ∂∆k, such that Λµ is C2-stably-wild over ∆k. �

Theorem A follows by applying this abstract proposition to basic set families
whose existence is stated in the next lemma.

Lemma A. For each n ≥ 4 there is a continuous family of hyperbolic basic sets
Λn = Λn(a) for the Hénon map (1), defined in a small parameter interval ∆n,
such that

(1) the sequence of intervals ∆n converges to a = −1,
(2) the union of all intervals ∆n covers ]− 1,−1/2],
(3) each basic set Λn contains the fixed point Os,
(4) lim

n→+∞
τLR(Λn) = +∞.

Next we make a rough sketch of the basic set construction and give the heuristics
behind the thickness asymptotics.

The Hénon maps is reversible with respect to the canonical involution I(x, y) =
(y, x) . Recall that a symplectic diffeomorphism f :M2→M2 is called reversible
if there is a smooth map I :M2 →M2 such that I ◦ I = IdM2 and I∗ω = −ω
(where ω denotes the area form in M2), which conjugates f with its inverse,
f ◦ I = I ◦ f−1 . The map I is called an involution. A set which is invariant by f
and I is called a symmetric f -invariant set. A periodic orbit is called symmetric
if, as a set, it is a symmetric invariant set. In particular symmetric fixed points
are common fixed points of f and I.

At a = −1 the Hénon family goes through a ”saddle-centre” bifurcation where
a pair of symmetric fixed points is created: a saddle Os and an elliptic point
Oe. It was proved in [1] that for a > −1 the unstable manifold of the sad-
dle Os has a transversal intersection, at some point Ω, with the symmetry line
Fix(I) = {(x, y) : x = y}. By reversibility, the stable manifold also intersects
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this symmetry line at Ω. The transversality of these intersections with Fix(I) im-
plies that the symmetric homoclinic point Ω depends analytically in the parameter
a > −1, but this is not enough to guarantee the transversality of the intersection
between the invariant manifolds at Ω. It follows from [6] that the splitting angle
at this intersection must be an exponentially small function of a+ 1, as a→ −1.
The transversality was established in [7] where the authors give an asymptotic ex-
pression for the Lazutkin splitting invariant at Ω. See section 7 for the definition
of Lazutkin invariant.

From this transversal homoclinic intersection at Ω we can argue, as in the clas-
sical Birkhoff’s theorem, that for each a > −1 the saddle Os is accumulated by
two sequences of symmetric periodic points Qn and Q′

n with even period 2n. The
points Qn and Q′

n, as well as their n−th iterates, sit in the symmetry line x = y ,
respectively close to Os and Ω. Both periodic points are hyperbolic. The eigenval-
ues of Qn are both positive, while those of Q′

n are negative. For n large enough it
is clear that the stable and unstable manifolds of Qn, and Q′

n, intersect transver-
sally the unstable and stable manifolds of Os, respectively. Let Sn be the square
bounded by the local invariant manifolds of Os and Qn; let Sn

0 be the rectangle
formed by points in Sn whose first iteration stays inside Sn; and finally let Sn

1

be the rectangle of points in Sn which return to Sn after 2n iterations. For each
(x0, y0) ∈ Sn

0 ∪ Sn
1 denote by {(xi, yi)} the forward orbit of the Hénon map with

this initial state and define the map Tn :Sn
0 ∪ Sn

1 →Sn setting

Tn(x0, y0) =

{
(x1, y1) if (x0, y0) ∈ Sn

0

(x2n, y2n) if (x0, y0) ∈ Sn
1

.

Remark that Sn
0 contains the fixed point Os while Sn

1 contains the periodic point
Qn. These two rectangles are bounded by the invariant manifolds of Os and Qn

and together they form a Markov partition for the binary horse-shoe

Λn =
⋂
k∈Z

(Tn)−k(Sn
0 ∪ Sn

1 ) .

See figure 1. Since both eigenvalues of Os and Qn are positive, (Λn, Tn) is a positive
binary horse-shoe.

We now want to estimate the left-right thickness of Λn. Notice that as n tends
to infinity each branch of the map Tn becomes more ”linear” while its distortion
tends to zero. Consider the vertical rectangles Sn, Sn

0 and Sn
1 and let wn, wn

0 and
wn

1 be their respective widths, measured along the unstable direction. Let δ be
the logarithm of the (larger) eigenvalue of the saddle Os and denote by λn the
larger eigenvalue of Qn. If n is large enough λ−1

n = o(δ), and since Tn becomes
almost linear in each branch, wn

0 ∼ wn e−δ and wn
1 ∼ wn λ−1

n . Therefore we get
the following asymptotics on the left and right stable thickness of Λn:

τL(Λs
n) ∼ wn

0

wn − wn
0 − wn

1

=
1

eδ − 1− λ−1
n

= O(δ−1)

τR(Λs
n) ∼ wn

1

wn − wn
0 − wn

1

=
λ−1

n

1− e−δ − λ−1
n

= O(δ−1λ−1
n )
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Figure 1. The binary horse shoe T4 :Λ4→Λ4 for δ ≈ 1.09

Since by reversibility the unstable thicknesses have the same values we also get an
asymptotic expression for left-right thickness of Λn:

(4) τLR (Λn, Tn) ∼ O(δ−2λ−1
n )

Thus, as n → ∞ the map Tn, becomes more linear with smaller distortion but,
along with this, the left-right thickness decreases to zero. So we need to compro-
mise choosing carefully the number of iterations n , which has to be large if we
want small distortion, but not too large if we also want to keep left-right thickness
large. Denoting by θ = θδ the splitting angle at the symmetric homoclinic point Ω
we choose n so that e2 δ n θ ∼ δ−3/2, which, one can easily check to be the asymp-
totic value of λn. Thus, replacing λn by δ−3/2 in (4) we obtain τLR (Λn, Tn) ∼ δ−1/2

which tends to infinity as a → −1, or δ → 0. Of course now we have to prove
that for this particular value of n (depending on a, or δ) the symmetric periodic
saddle Qn, and the corresponding horse-shoe Λn, already exist. Moreover we need
to show that the distortion of (Λn, Tn) tends to zero when a→ −1.

Let us now outline the real proof of lemma A. The construction of Λn is carried
out in Birkhoff co-ordinates. We re-scale the Hénon maps, for a > −1, in order
to make the distance between the fixed points Os and Oe constant. This is done
in the first part of section 4. Define δ to be the logarithm of the eigenvalue at
Os. Parameterising the rescaled mappings in δ, we obtain a family of maps close
to the identity, Fδ = IdR2 + δ F0 + O(δ2) , where F0 is a quadratic Hamiltonian
vector field with two fixed points: a saddle Os and an elliptic point Oe. At this
point we follow closely the construction in [3] for maps near the identity. The
main assumption, of theorem 1 there, is a bounding condition on the intersection
geometry between the stable and unstable separatrices of the saddle point Os. In
our setting, this condition comes essentially from the asymptotics in [7] for the
Lazutkin invariant at Ω, but the analytic dependence of Birkhoff co-ordinates on
the parameter is also necessary. For that purpose, in section 3, we show that for
analytic families of symplectic maps near the identity, as above, co-ordinates exist,
depending analytically in δ > 0, reducing each map Fδ to its Birkhoff normal form
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over a fixed size neighbourhood ofOs. Then in the second part of section 4, working
in Birkhoff co-ordinates we translate the asymptotics on the splitting angle in [7]
into a condition on the C2 geometry of the unfolding of the separatrices at δ = 0.
As we said above, this condition is the main assumption of theorem 1 in [3]. The
rest of the construction follows closely that work. Distortion estimates, needed to
estimate thickness, follow from theorem 2 there. Unfortunately the construction
of Λn is not a logical consequence of results there. Some adaptations must be
done. In section 5 we provide some technical details on these adjustments. To
finish, we just give a short description, a kind of road map to help the reader going
through section 5 and [3].

In section 5 we associate an integer n = n(δ), called the half return time, to each
δ > 0, such that e2 δ n θ ∼ δ−3/2. For this value of n, the periodic point Qn will be
exponentially close to Os = (0, 0). More precisely Qn ∼

(
δ3/4

√
θδ , δ

3/4
√
θδ

)
. Since

the scale of Λn(δ) shrinks, as δ → 0, we perform one last rescaling which brings
Qn close to (1, 1) and Sn close to a unit size square [0, 1]2. Because the second
derivatives of Tn, which are needed to estimate distortion, are scale-dependent this
”normalisation” is required in Theorem 2 of [3]. Then in these final co-ordinates
we compute estimates for derivatives of Tn :

(1) in the first branch S0,

DTn =

(
eδ 0
0 e−δ

)
+O(δ3/2 θδ) ,

and all the second derivatives of Tn on this branch are of exponentially
small order O(δ3/2 θδ) . Similar bounds hold for T−1

n on Tn(S0).

(2) in the second branch S1,

DTn =

(
−δ−3/2 −1

1 0

)
+

(
O(δ−1) o(1)
o(1) o(1)

)
,

and the second derivatives of Tn on this branch are all uniformly bounded,
except for the second derivative, in the variable x , of the first component
of Tn, which is unbounded of order O(δ−5/2) . Again, similar bounds hold
for T−1

n on Tn(S1).

From these asymptotics the construction of Λn follows easily. It is clear that the
left-right thickness of Λn has, up to a distortion factor, order δ−1/2. Applying
theorem 2 in [3] we obtain, from 1. and 2. above, that distortion is small of order
O(δ1/2). This shows that distortion factors are close to 1 . The half return time

n(δ) is asymptotically equivalent to − log(δ3/2 θ)
2 δ

, and tends to +∞, as δ → 0. Thus,
when a→ −1, we have δ → 0, and so τLR (Λn, Tn) → +∞.

Finally, lemma bellow is proved in section 6.

Lemma B. There is a sequence of values of a accumulating at a = (−1)+ for
which the saddle point Os of the Hénon map has an orbit of quadratic homoclinic
tangencies which unfolds generically with parameter a.
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Lemmas A and B, in view of proposition 3, imply Theorem A.

3. Analytic Birkhoff co-ordinates

For area preserving maps we have Siegel-Moser’s theorem on the convergence of
the Birkhoff normal form around a hyperbolic fixed point. See [19]. This theorem
says that given an analytic area preserving map F : U ⊆ R2 → R2 , defined in a
neighbourhood U of (0, 0) , with a hyperbolic fixed saddle sitting at the origin,
F (x, y) = (λx+ · · · , λ−1 y + · · · ) , where |λ| 6= 1 , then there is an analytic
change of co-ordinates ζF (x, y) = (x+ · · · , y + · · · ) , defined in a neighbourhood
of (0, 0) , and there is an analytic function αF (ω) = log(λ) + · · · , of one variable
ω , defined in another neighbourhood of 0 such that for all (x, y) close to (0, 0) ,

(5) (F ◦ ζF ) (x, y) = ζF
(
eαF (x y) x , e−αF (x y) y

)
.

The map LF : R2→R2 , LF (x, y) =
(
eαF (x y) x , e−αF (x y) y

)
, is called ”a Birkhoff

normal form” for F .
Following Birkhoff, the maps ζF (x, y) and αF (ω) , ω = x y , in this theorem

are found as formal power series

(6) ζF (x, y) =

(
x+

∑
n+m≥2

an m(F ) xn ym , y +
∑

n+m≥2

bn m(F ) xn ym

)

(7) exp (αF (ω)) = λ+
∞∑

n=1

c2 n(F ) ωn

which solve the conjugacy relation (5). The uniqueness of the formal solutions (6)
and (7) of equation (5) is obtained by adding the following ”normalising” condition
for the formal solution (6)

(8) an+1 n(F ) = bn n+1(F ) = 0 for all n ≥ 1 .

These coefficients are obtained by recursive relations which involve the coefficients
of F ’s Taylor series. Therefore each ak m(F ) , bk m(F ) , or c2 m(F ) is a polynomial
in F ’s Taylor coefficients. This proves, taking the weak topology (of point wise
convergence of coefficients) in the space of formal series, that the formal solutions
ζF (x, y) and αF (ω) depend continuously on F .

Unfortunately the formal transformation ζF (x, y) does not, formally speaking,
preserve area. (7) is not the appropriate normalising condition. The reason to
consider this condition is because the convergence proof is much easier in this
case. Anyway the normal form thus obtained (although not unique) is, formally,
a reversible area preserving map.

We now outline Siegel-Moser’s convergence proof in order to justify why the
maps ζF and αF depend continuously, and even analytically, on F .

Let U be an open neighbourhood of the origin in C2 and consider the set of
systems S = S(U) formed by all holomorphic maps F ∈ H(U,C2) of the form
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F (x, y) = (λx + · · · , λ−1 y + · · · ) , for some λ ∈ C with |λ| 6= 1 , and endow S
with the topology of H(U,C2) 1.

Some definitions are required. Let t(x, y) =
∑∞

n=0 αn k x
n yk and s(x, y) =∑∞

n=0 βn k x
n yk be formal power series in the variables x and y . We say that

s(x, y) dominates t(x, y) , and write t(x, y) ≺ s(x, y) , if for all n, k ∈ N |αn k| ≤
βn k . The relation ≺ partially orders the set R+(x, y) of all formal series with non
negative coefficients, which we will call positive formal series. A similar definition
is given for formal power series in one single variable.

Let F0 ∈ S be given. Choose c > 0 large so that the closed polydisc ∆c−1 =
D(0, c−1)×D(0, c−1) is contained inside the domain U . Take a neighbourhood U
of F0 in S such that all maps F ∈ U are uniformly bounded on ∆c−1 by some
constant M > 0 . Then the Taylor coefficients of all F ∈ U are bounded by the
sequence {M cn} and we may assume, taking a larger c , that M = 1 .

Consider now the positive, convergent, formal series

Gc(x, y) =
c (x+ y)2

1− c (x+ y)
=

∞∑
n=2

cn−1 (x+ y)n .

Then the components of the second order Taylor remainder, of any F ∈ U , are
both dominated by Gc(x, y) .

Write ζF (x, y) = (ϕF (x, y), ψF (x, y)) and λF (ω) = exp{αF (ω)} . Then a pos-
itive formal series WF (ω) =

∑∞
n=1wn(F ) ωn , with zero constant term, is con-

structed form the data ϕF (x, y) , ψF (x, y) and λF (ω) satisfying the dominance
relations

ϕF (x, y)− x ≺ (x+ y)WF (x+ y)

ψF (x, y)− y ≺ (x+ y)WF (x+ y)

λF (x y)−1 − λ−1 ≺ WF (x+ y)

and the following ”dominance equation”

(9) ωWF (ω) ≺ c1
1− c2WF (ω)

Gc (ω (WF (ω) + 1) , ω (WF (ω) + 1) ) .

Proving this fact is of course the main step in Siegel-Moser’s theorem, but we will
skip its proof here. Moving on, equation (9) easily implies

(10) WF (ω) ≺ c3 ω (1 +WF )2

1− c2WF − 2 c ω (1 +WF )

where WF = WF (ω) and c1 , c2 and c3 are positive constants defined by open
conditions depending only on λ and c . Consider now the quadratic fixed point
equation in U

(11) U(ω) =
c3 ω (1 + U)2

1− c2 U − 2 c ω (1 + U)

which has two solutions, respectively satisfying U(0) = 1 and U(0) = 0 , both
being analytic in a neighbourhood of the origin. Let U(ω) be the second one,

1this is the space of holomorphic functions on the open set U with the natural topology of
uniform convergence on compact subsets of U .
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which defines a formal series around the origin with zero constant term, and having
a positive radius of convergence r > 0 . This radius r may be computed explicitly
from the values c , c1 , c2 and c3 .

The coefficients un of U(ω) =
∑

n=1 un ω
n may be recursively computed from (11).

Similarly, the coefficients wn(F ) of WF (ω) =
∑

n=1wn(F ) ωn can be recur-
sively estimated from (10). Comparing both sequences of coefficients, starting at
w0(F ) = 0 = u0 , it is proved inductively that wn(F ) ≤ un for all n ∈ N . The
cause of this fact is that the right hand side of (11), the same as in (10), expands
in a positive power series in the variables ω and U .

Therefore WF (ω) ≺ U(ω) , for all F ∈ U , which proves that the family of
formal series {ζF (x, y)}F∈U converges uniformly in (F, x, y) ∈ U ×D(0, r/2)2 .
Analogously the family {λF (ω)−1}F∈U converges uniformly in (F, ω) ∈ U×D(0, r) .

Given a family {Fh : h ∈ Ω} of maps in U , which is holomorphic in (h, x, y) ∈
Ω×U , the coefficients ak m(h) := ak m(Fh) , bk m(h) := bk m(Fh) , and c2 m(h) :=
c2 m(Fh) are polynomials in Fh Taylors’ coefficients at (x, y) = (0, 0) , and so
depend analytically in h . Therefore, the partial sums of the formal power series (6)
and (7), with F = Fh , are holomorphic functions in (h, x, y) ∈ Ω×C2 and
in (h, ω) ∈ Ω×C , respectively. Thus the mappings (h, x, y) 7→ ζFh

(x, y) and
(h, ω) 7→ αFh

(ω) , which are uniform limits of their partial sums over the domains
Ω×D(0, r/2)2 and Ω×D(0, r) , respectively, are also holomorphic in these domains.

Thus the proof in [19] shows that

Theorem 1 (Siegel-Moser). Given F0 ∈ S(U) there is some r > 0 , and an open
set U ⊆ S(U) containing F0 such that:

(1) for every F ∈ U the formal series ζF (x, y) and αF (ω) , given in (6)
and (7), which are uniquely determined by (5) and the normalising condi-
tion (8), converge uniformly to holomorphic functions defined on D(0, r/2)2

and D(0, r) , respectively,
(2) both the transformations ζ :U→H(D(0, r/2)2,C2) , F 7→ ζF , and α :U→

H(D(0, r),C) , F 7→ αF are continuous.
(3) given a holomorphic function F : Ω×U → C2 , F (h, x, y) = Fh(x, y) ,

defining a family of mappings Fh ∈ U ⊆ S(U) in the complex parameter
h ∈ Ω ⊆ C , the functions ζ(h; x, y) := ζFh

(x, y) and α(h; ω) := αFh
(ω)

are holomorphic respectively in the domains Ω×D(0, r/2)2 and Ω×D(0, r) .

Remark 1. Although ζF (x, y) is not area preserving, for all |x| , |y| < r/2 ,

detDζF (x, 0) = 1 = detDζF (0, y) .

In order to simplify the notation we will omit the subscript F in ζF . Since
there is a ”symmetry” in these two relations it is enough to prove the first one.
Differentiating relation (5) w.r.t. x and y at the point (x, 0) one obtains the
following relations

DFζ(x,0) · ζx(x, 0) = λ ζx(λx, 0)

DFζ(x,0) · ζy(x, 0) = λx2 α′(0) ζx(λx, 0) + λ−1 ζy(λx, 0) .
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Therefore
ω (ζx(λx, 0) , ζy(λx, 0) ) = ω (ζx(x, 0) , ζy(x, 0) ) ,

and this relation holds for any power of λ . Taking negative powers λ−n with
n→ +∞ we obtain

detDζ(x,0) = ω (ζx(x, 0) , ζy(x, 0) ) = ω (ζx(0, 0) , ζy(0, 0) ) = 1 .

Remark 2. Given F ∈ S then for all n ∈ Z− {0}
ζF n(x, y) = ζF (x, y) and αF n(ω) = nαF (ω) .

In particular all these formal series converge on the same domain.

Remark 3. Given a Hamiltonian vector field X with flow φt ∈ S ( t 6= 0 ), define
ζX := ζφ1 and αX := αφ1 . Then for all t ∈ R− {0} ,

ζφt(x, y) = ζX(x, y) and αφt(ω) = t αX(ω) .

Remark 4. Given F ∈ S reversible w.r.t. the canonical involution I(x, y) =
(y, x) , i.e. F ◦ I = I ◦F−1 , then ζF ◦ I = I ◦ ζF . In particular the time reversing
symmetries of F and LF are conjugated by ζF .

Remarks 2 and 3 are quite obvious. Let us prove 4 which follows from the
uniqueness condition (8). Since

F−1 ◦ (I ◦ ζF ◦ I) = F−1 ◦ I ◦ ζF ◦ I = I ◦ F ◦ ζF ◦ I = I ◦ ζF ◦ LF ◦ I
= I ◦ ζF ◦ I ◦ (LF )−1 = (I ◦ ζF ◦ I) ◦ LF−1

and I ◦ ζF ◦ I trivially fulfils condition (8), by remark 2 I ◦ ζF ◦ I = ζF−1 = ζF .
Therefore ζF ◦ I = I ◦ ζF .

Remark 5. Given any α ∈ H(D(0, r),C) , defining Wr = {(x, y) ∈ C2 : |x y| < r } ,
the normal form

L(x, y) =
(
eα(x y) x , e−α(x y) y

)
,

defines a global holomorphic diffeomorphism of Wr onto Wr , with inverse

L−1(x, y) =
(
e−α(x y) x , eα(x y) y

)
.

Thus, if U and r > 0 are as in theorem 1, then the maps Ln :U →H(Wr,C2) ,
F 7→ LF n = (LF )n , n ∈ Z , are continuous.

Remark 6. Let α and L be as in remark 5. The region

e−α(x y) <

∣∣∣∣xy
∣∣∣∣ < eα(x y)

is a fundamental domain for the restriction of L to the invariant set W ∗
r =

{(x, y) ∈ C2 : 0 < |x y| < r } . Assuming that |α(ω)| < A for all |ω| < r it

follows that every L orbit in Wr goes through the polydisc D
(
0,
√
r eA

)2

.

Remark 7. Given r > 0 and U as in theorem 1, there is some r1 such that
for each F ∈ U we can extend ζF holomorphically to the domain Wr1 . Let
r1 < r2 e−A/4 where |αF (ω)| < A for all |ω| < r . Then by remark 6, all LF

orbits in Wr1 must go through the domain D (0, r/2)2 , where ζF (x, y) is defined.
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Thus given (x, y) ∈ Wr1 , we can take some n ∈ Z such that (LF )−n(x, y) ∈
D (0, r/2)2 , and define

ζ̃F (x, y) :=
(
F n ◦ ζF ◦ (LF )−n

)
(x, y) .

By virtue of (5), ζ̃F (x, y) is well defined and holomorphic in Wr1 . The transfor-

mation ζ̃ :U→H(Wr1 ,C2) , F 7→ ζ̃F is easily seen to be continuous.

Consider an analytic family Fδ of area preserving maps. Suppose all maps Fδ

have holomorphic extensions to some open set U ⊆ C2 containing the origin and
the family Fδ is a perturbation of the identity,

(12) Fδ = IdR2 + ε F1 +O(ε2) ,

where ε = ε(δ) satisfies

(13) lim
δ→0

ε(δ)/δ = c > 0 .

The variation direction is that of the Hamiltonian vector field F1 , which also
extends holomorphically to the same open set U ⊆ C2 . Assume that the origin
is a diagonalized hyperbolic fixed point,

(14) Fδ(x, y) =
(
λδ x+ · · · , λ−1

δ y + · · ·
)
,

where λδ = 1 + a ε+O(ε2) , with a 6= 0 , and

(15) F1(x, y) = ( a x+ · · · , −a y + · · · ) ,
the dots meaning terms in xi yj of order i + j ≥ 2 . Each map Fδ is, therefore,
in the class S(U) . Finally assume that the flow φt of the vector field F1 extends
to holomorphic maps φt :U→C2 for any real time t .

For each δ 6= 0 we define the formal series

ζ(δ, x, y) = ζδ(x, y) := ζFδ
(x, y)(16)

α(δ, ω) = αδ(ω) := αFδ
(ω) .

For δ = 0 let us set

ζ(0, x, y) = ζ0(x, y) := ζF1(x, y)(17)

α(0, ω) = α0(ω) := 0 .

where F1 = (∂Fδ/∂δ)δ=0 .
In [6] E. Fontich and C. Simó proved that for some small δ0 the series ζδ(x, y)

and αδ(ω) converge, uniformly in δ ∈ [−δ0, δ0]−{0} , over some fixed open domain
around the origin. They went through the argument in [19] and checked that the
coefficients an m(δ) , bn m(δ) and cn(δ) can be uniformly bounded in δ . Next
proposition is direct corollary of theorem 1 which generalises proposition 3.1 in[6].

Proposition 4. Given a family Fδ as above, there are constants r > 0 and
δ0 > 0 such that:

(1) for all |δ| < δ0 the formal series ζδ(x, y) and αδ(ω) converge uniformly
to holomorphic functions defined on D(0, r/2)2 and D(0, r) , respectively.

(2) the maps ζ : [−δ0, δ0]→H(D(0, r/2)2,C2) , δ 7→ ζδ , and α : [−δ0, δ0]→
H(D(0, r),C) , δ 7→ αδ are continuous.
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(3) ζ(δ, x, y) = ζδ(x, y) and α(δ, ω) = αδ(ω) are real analytic functions, re-
spectively in the real domains { (δ, x, y) : 0 < |δ| < δ0 , |x| , |y| < r/2 }
and { (δ, ω) : 0 < |δ| < δ0 , |ω| < r } .

(4) uniformly in ω ∈ D(0, r) ,

αF1(ω) = lim
δ→0

αδ(ω)

ε(δ)
.

To prove this proposition we need a simple lemma. Given t > 0 denote by [t/ε]
the integer part of t/ε(δ) . Let, as before, φt :U→C2 be the (real time) flow of
the Hamiltonian vector field F1(x, y) . For each compact set K ⊆ U we consider
the following semi norm

‖f‖K = max { ‖f(x, y)‖ : (x, y) ∈ K } .
Then,

Lemma 1. the following limit holds in H (U,C2) , for any t > 0 :

lim
δ→0

(Fδ)
[t/ε(δ)] = φt

Proof. Since

Fδ = IdC2 + ε F1 + ε2 F2 and

φε = IdC2 + ε F1 +O(ε2) ,

there is some constant C > 0 , depending on K , such that ‖DFδ‖K ≤ 1 + C ε
and ‖Fδ − φε‖K ≤ C ε2 . Thus

‖F n
δ − φn ε‖K ≤

∥∥Fδ F
n−1
δ − Fδ φ

(n−1) ε
∥∥

K
+
∥∥Fδ φ

(n−1) ε − φε φ(n−1) ε
∥∥

K

≤ (1 + C ε)
∥∥F n−1

δ − φ(n−1) ε
∥∥

K
+ C ε2 ,

and so by induction

‖F n
δ − φn ε‖K ≤ C ε2

(1 + C ε)n − 1

C ε
= ε ((1 + C ε)n − 1) .

Finally taking n = [t/ε] we get∥∥F n
δ − φt

∥∥
K

≤ ‖F n
δ − φn ε‖K +

∥∥φn ε − φt
∥∥

K

≤ ε eC t +
∥∥IdC2 − φt−n ε

∥∥
K

which converges to zero, as δ → 0 , since ε = ε(δ) → 0 and |t− n ε| ≤ ε . �

Proof. of proposition 4
The time one map φ1 of F1 is in the class S(U) . For this map φ1 take r > 0

and U according to theorem 1. By lemma 1, there is δ0 > 0 such that for all
δ ∈ [−δ0, δ0] , (Fδ)

[1/ε] ∈ U . Given |δ′| < δ0 let us prove the continuity of ζ and
α at δ = δ′ . Suppose first that δ′ 6= 0 and fix n = [1/ε(δ′)] . Of course for all δ
near δ′ , (Fδ)

n is in U . By item 2. of theorem 1, ζ and α are continuous on U
and by remark 2, ζδ = ζ(Fδ)n and αδ = n−1 α(Fδ)n . Thus the continuity of δ 7→ ζδ
and δ 7→ αδ at δ = δ′ follows. Notice we also obtain the analyticity of ζ(δ, x, y)
and α(δ, ω) , at δ = δ′ , from item 3. of theorem 1.
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On the other hand, again by remark 2,

ζδ(x, y) := ζFδ
(x, y) = ζ(Fδ)[1/ε](x, y) → ζφ1 =: ζ0 ,

αδ(x, y) := αFδ
(x, y) =

α(Fδ)[1/ε](x, y)

[1/ε]
→ 0 ,

which proves the continuity at δ = 0 .
By lemma 1 and the continuity of α :U→H(D(0, r),C) , we have

[1/ε] αδ := α(Fδ)[1/ε] → αφ1 =: αF1 ,

as δ → 0 , and therefore

lim
δ→0

αδ

ε(δ)
= lim

δ→0

1

[1/ε] ε(δ)
[1/ε] αδ = αF1 .

�

4. Splitting of separatrices

In [7] the authors call conservative Hénon family to the following family of maps
F̃ε :R2→R2

(18) F̃ε(x, y) =
(
x+ ε

(
y + ε (x− x2)

)
, y + ε (x− x2)

)
.

The relation with our model (1) is given by the following rescaling affine mappings
τε :R2→R2 ,

τε(x, y) =

(
1

2
+
y + 1

ε2
,
y − x

ε3

)
.

One can easily verify that for each ε ∈ R , setting a = −1− ε4/4,

τε
(
y, a− x− y2

)
= (F̃ε ◦ τε) (x, y) .

The mappings F̃ε are of course reversible for the correspondent involution Iε =
τε ◦ I ◦ τ−1

ε , which one computes to be Iε(x, y) = (x− ε y,−y) . We can write (18)
in the form F̃ε = IdR2 + ε F̃1 + ε2 F̃2 , where F̃1(x, y) = (y, x− x2) and F̃2(x, y) =
(x− x2, 0) , which shows that F̃ε is a perturbation of the identity in the direction
of the Hamiltonian vector field F̃1 . Notice that the origin corresponds to the
saddle Os for all maps F̃ε ,

F̃ε(x, y) =
(
(1 + ε2)x+ ε y + · · · , ε x+ y + · · ·

)
.

Denoting by e± δ the eigenvalues of this saddle we have

(19) 2 + ε2 = traceD(F̃ε)(0,0) = eδ + e−δ ,

with the following asymptotic relation at δ = 0 ,

(20) ε = δ − δ3

24
+O(δ5) .
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Computing the eigenvectors of F̃ε’s linear part we construct the following ”lin-
earising matrix”,

(21) Mε =
1

2 4
√

4 + ε2

(
ε+

√
4 + ε2 −ε+

√
4 + ε2

2 −2

)
,

normalised to have determinant equal to −1 , which diagonalizes D(F̃ε)(0,0) and
transforms, by conjugacy, the family of involutions Iδ back to the canonical invo-
lution I(x, y) = (y, x) . Defining Fδ = M−1

ε ◦ F̃ε ◦Mε , where ε = ε(δ) is implicitly
defined by (19), we have Fδ = IdR2 + ε F1 +O(ε2) , with

(22) F1(x, y) =

(
x−

√
2

4
(x+ y)2 , −y +

√
2

4
(x+ y)2

)
,

and

Fδ(x, y) =
(
eδ x+ · · · , e−δ y + · · ·

)
.

The map I(x, y) = (y, x) being now the time reversing involution for all Fδ .
The family Fδ is again a perturbation of the identity, now in the direction of the
Hamiltonian vector field F1 .

∗
The vector fields F̃1 and F1 have homoclinic loops associated with the saddles

sitting at the origin, described by the critical level equations of the correspondent
Hamiltonians,

H̃1 =
y2

2
− x2

2
+
x3

3
= 0 , and

H1 =
(x− y)2

4
− (x+ y)2

4
+

(x+ y)3

6
√

2
= 0 .

These curves intersect the symmetry lines, of the correspondent involutions I0 and
I , at the symmetric homoclinic points Ω̃ = (3/2, 0) and Ω = (3

√
2/4, 3

√
2/4) ,

respectively. Let us now compute the corresponding homoclinic lengths, λ(Ω̃) and
λ(Ω). See section 7 for the definition of homoclinic length. It is straightforward
checking that the function γ̃ :R→R2 , γ̃(t) = (x(t), y(t)) , where

(23) x(t) =
3

2

(
1− (1− t)2

(1 + t)2

)
and y(t) = x(t)

(1− t)2

(1 + t)2
,

linearises the unstable curve of the saddle at the origin of F̃1. By symmetry,
I0 ◦ γ̃ also linearises the stable curve. Thus, since γ̃(1) = I0(γ̃(1)) = (3/2, 0) , the
homoclinic length of F̃1’s loop is λ(Ω̃) = 6

√
2 , which is the the square root of

the area of the parallelogram spanned by the vectors γ̃′(0) and (I0 ◦ γ̃)′(0) . See
definition 39 and the remarks that follow it. The loop of F1 has exactly the same
homoclinic length, λ(Ω) = 6

√
2, since F̃1 and F1 are conjugated by the an area

preserving linear map with determinant −1 .

∗
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Finally we will analyse the rescaled Hénon family Fδ at the symmetric homo-
clinic point Ωδ . Let (x, y) = ζδ(x, y) be the Birkhoff co-ordinates, as in proposi-
tion 4 applied to the family Fδ . These co-ordinate transformations ζδ take each
mapping Fδ to the Birkhoff normal form

(24) Lδ(x, y) =
(
eαδ(x y) x , e−αδ(x y) y

)
.

Then by remark 7, there is some r > 0 such that the co-ordinates (x, y) = ζδ(x, y)
extend analytically to the domain Wr where Lδ acts as a global diffeomorphism,
see remark 5. The mappings ζδ(x, y) , and all their derivatives, are equiconti-
nuous on the domain Wr , depending continuously in δ ∈ [−δ0, δ0] (analytically
in δ ∈ [−δ0, δ0]− {0} ).

Since all maps Fδ are reversible w.r.t. the canonical involution I we have, by
remark 4, that ζδ ◦ I = I ◦ ζδ for all small δ . Thus, if (w(δ), 0) ∈ Wr is such that
ζδ(w(δ), 0) = Ωδ then

ζδ(0, w(δ)) = ζδ ◦ I(w(δ), 0) = I ◦ ζδ(w(δ), 0) = I(Ωδ) = Ωδ .

Observing that γu(x) = ζδ(x, 0) and γs(y) = ζδ(0, y) linearise the invariant mani-
folds of the saddle at the origin of Fδ we see that w(δ) is precisely the homoclinic
length of Ωδ . Thus w(0) = λ(Ω0) = 6

√
2 , and w(δ) converges to this number

as δ → 0 .
We are now going to define, using Birkhoff co-ordinates (x, y) , a new system

of co-ordinates (t, E) , in a neighbourhood of the homoclinic points Ωδ , in which
the mapping Fδ is described by the following shift translation

(25) σδ : (t, E) 7→ (t+ δ, E) ,

where the unstable curve is described by the axis {E = 0} , and the stable one is
the graph of a periodic function E = gδ(t) .

We begin by taking a small, but fixed size, neighbourhood U of the point Ω0

which is covered by all images ζδ(Wr) and where we have well defined inverse
branches (x, y) = (ζδ)

−1(x, y) depending continuously, with all their derivatives,
on δ . Define then (t, E) = ηδ(x, y) , in such a neighbourhood, by setting

E = Eδ(x, y) = x y

t = tδ(x, y) = ( δ/αδ(x y) ) log (x/w(δ) ) ,

with (x, y) = (ζδ)
−1(x, y) . Clearly these new co-ordinates are defined for all

small δ in a fixed neighbourhood U of Ω0 and depend, with their derivatives,
continuously on δ . One can trivially verify that these co-ordinates conjugate Fδ

with the shift σδ in (25). In other words for all small δ , given (x, y) ∈ U such
that Fδ(x, y) ∈ U ,

ηδ ◦ Fδ(x, y) = ηδ(x, y) + (δ, 0) .

From the definition one has ηδ(Ωδ) = (0, 0) . By remark 1 one computes easily

(26) detDηδ (Ωδ) = 1 .

It is also clear that the line {E = 0} corresponds to the x− axis, which in turn
represents the the unstable manifold. Since the stable manifold must be invariant
under the shift σδ , in co-ordinates (t, E) , it has to be the graph of a periodic
function E = gδ(t) with period δ . Of course gδ(0) = 0 because (t, E) = (0, 0) are
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the co-ordinates of the homoclinic point Ωδ . At δ = 0 both invariant manifolds
merge in the homoclinic loop of F1 and we have g0(t) ≡ 0 .

Consider the function γ :R→R2 defined by

γ(t) = M0 · γ̃(et) ,

where M0 is the matrix (21) with ε = 0 and γ̃ was defined in (23). Then γ(t) is
the homoclinic solution of the vector field F1 which satisfies the initial condition
γ(0) = Ω0 . This homoclinic solution γ(t) extends to complex time with poles
at the numbers t = i π + 2nπ i , n ∈ Z . Therefore γ(t) is holomorphic in the
horizontal complex strip |Imt| ≤ r = 3 π/4 < π . It then follows from [6] that the
Fourier coefficients of gδ(t) ,

cn(δ) =
1

δ

∫ δ

0

gδ(t) e
i 2 π n t/δ dt (n ∈ Z) ,

have the following uniform upper bounds

(27) |cn(δ)| ≤ C exp

{
−2π r |n|

δ

}
= C exp

{
−3π2 |n|

2 δ

}
where the constant C > 0 is independent of δ and n ∈ Z .

In [7] the authors have proved that there is some constant θ0 > 0 (which
numerically is known to be large, θ0 ≈ 2.474·106) such that the Lazutkin invariant
of Fδ at Ωδ has the following asymptotic behaviour

(28) θ(Ωδ) =
64π e−2 π2/ε

9 ε7
(θ0 +O(ε)) .

It can easily be checked, using (20), that

e2 π2/ε

ε7
=
e2 π2/δ

δ7
(1 +O(δ)) ,

and therefore we can replace ε by δ in (28).
In the co-ordinates (t, E) = ηδ(x, y) the Lazutkin invariant is, up to some

factor of order 1 +O(δ) , minus the derivative (gδ)
′(0) . By (26), the co-ordinate

transformations (t, E) = ηδ(x, y) preserve the Lazutkin invariant at Ωδ . Thus
for all small δ > 0 ,

(29) (gδ)
′(0) =

64π e−2 π2/δ

9 δ7
(−1 +O(δ))

But from the Fourier series of gδ(t) , and the upper bounds (27),

(gδ)
′(0) =

2π i

δ
(c1(δ)− c−1(δ)) +

2π i

δ

∑
|n|≥2

n cn(δ)

=
2π i

δ
(c1(δ)− c−1(δ)) + O

(
e−3 π2/δ

)
and since the rest O

(
e−3 π2/δ

)
is exponentially small compared with the right

hand side in (29) we obtain that c1(δ) = c−1(δ) = i b1(δ) ∈ iR and for all small
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enough δ > 0 ,

(30) b1(δ) =
16 e−2 π2/δ

9 δ6
(−1 +O(δ)) .

Thus

(31) gδ(t) = b1(δ)

(
sin

(
2π t

δ

)
+ O

(
e−π2/δ

))
,

where the remainder is the sum of a Fourier series with all coefficients exponentially
small.

Clearly, the family of periodic functions gδ(t) has bounded C2− geometry in
sense of the following definition. This concept synthesises everything that will be
used in the next section.

Given a family of periodic smooth functions gδ(t) depending on a small pa-
rameter δ > 0 and satisfying the period condition gδ(t + δ) = gδ(t) , define for
i = 0, 1, 2,

Mi(δ) = max

{
δi

∣∣∣∣digδ

dti
(t)

∣∣∣∣ : t ∈ R
}
,(32)

m1(δ) = min

{
δ

∣∣∣∣dgδ

dt
(t)

∣∣∣∣ : gδ(t) = 0

}
and

m2(δ) = min

{
δ2

∣∣∣∣d2gδ

dt2
(t)

∣∣∣∣ :
dgδ

dt
(t) = 0

}
.

Definition 1. Let us say that gδ(t) has bounded C2− geometry if and only if there
is some constant C > 0 such that for all small enough δ > 0, C m1(δ) > M2(δ)
and C m2(δ) > M0(δ) .

Remark 8. It follows from definition 1 that all the functions of δ : M0 , M1 ,
M2 , m1 and m2 are asymptotically equivalent, in the sense that the quotient of
any pair is bounded from 0 and from ∞ . In particular we see that all them are
of exponentially small order.

The family of periodic functions gδ(t) will play the role of the Melnikov function
Mδ(t) in [3]. The quantities (32) here correspond exactly to the quantities defined
in (1) there. Notice that, in the quoted work, the ”flow time” t has been scaled so
that all Melnikov functions Mδ(t) have period one. This accounts for the factors
δi appearing in (32) but missing in (1) of [3].

5. Thick horse-shoes

The basic set construction is based on an abstract bounding distortion result
in [3]. There we define F to be the class of all (positive binary horse-shoe) maps
f : S0 ∪ S1 → R2 where: (1) S0 and S1 are compact subsets, diffeomorphic to
rectangles, with nonempty interior; (2) f is a map of class C2, in a neighborhood
of S0∪S1, mapping this compact set diffeomorphically onto its image f(S0)∪f(S1);
(3) the maximal invariant set Λ(f) =

⋂
n∈Z f

−n(S0 ∪ S1) is a hyperbolic basic set
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conjugated to the Bernoulli shift σ : {0, 1}Z → {0, 1}Z; (4) P = {S0, S1} is a
Markov partition for f : Λ(f) → Λ(f), in particular f has two fixed points,
P0 ∈ S0 and P1 ∈ S1, whose stable and unstable manifolds contain the boundaries
of S0 and S1; and, finally, (5) both fixed points P0 and P1 have positive eigenvalues.

Given two positive small numbers ε > 0 and γ > 0, we define there F(ε, γ) to
be the class of all maps f :S0 ∪ S1→R2, f ∈ F , such that:

(1) f preserves area;
(2) diam (S0 ∪ S1) = diam (f(S0) ∪ f(S1)) = 1 ;

(3) writing f(x, y) = (f1(x, y), f2(x, y)) and f−1(x, y) = (f̃1(x, y), f̃2(x, y)) we
have
(a)

∣∣∣∂f2

∂y

∣∣∣ < 1 <
∣∣∂f1

∂x

∣∣ ≤ 2/ε

(b)

∣∣∣∣∂f1

∂y

∣∣∣∣ , ∣∣∣∣∂f2

∂x

∣∣∣∣ ≤ ε (

∣∣∣∣∂f1

∂x

∣∣∣∣− 1)

(4) the second derivatives satisfy

(a)

∣∣∣∣∣ ∂2f̃1

∂x∂y

∣∣∣∣∣ ,
∣∣∣∣∣∂2f̃1

∂y2

∣∣∣∣∣ ,
∣∣∣∣∣∂2f̃2

∂x2

∣∣∣∣∣ ,
∣∣∣∣∣ ∂2f̃2

∂x∂y

∣∣∣∣∣ ≤ γ

(∣∣∣∣∣∂f̃2

∂y

∣∣∣∣∣− 1

)
(b)

∣∣∣∣ ∂2f1

∂x∂y

∣∣∣∣ , ∣∣∣∣∂2f1

∂y2

∣∣∣∣ , ∣∣∣∣∂2f2

∂x2

∣∣∣∣ , ∣∣∣∣ ∂2f2

∂x∂y

∣∣∣∣ ≤ γ

(∣∣∣∣∂f1

∂x

∣∣∣∣− 1

)
(c)

∣∣∣∣∣∂2f̃2

∂y2

∣∣∣∣∣ ,
∣∣∣∣∣∂2f̃1

∂x2

∣∣∣∣∣ ≤ γ

∣∣∣∣∣∂f̃2

∂y

∣∣∣∣∣
(∣∣∣∣∣∂f̃2

∂y

∣∣∣∣∣− 1

)
(d)

∣∣∣∣∂2f1

∂x2

∣∣∣∣ , ∣∣∣∣∂2f2

∂y2

∣∣∣∣ ≤ γ

∣∣∣∣∂f1

∂x

∣∣∣∣ (∣∣∣∣∂f1

∂x

∣∣∣∣− 1

)
.

(5) the variation of log
∣∣∂f1

∂x
(x, y)

∣∣ in each rectangle Si is less or equal than

γ (1− α−1
i ) , where αi = max(x,y)∈Si

∣∣∂f1

∂x
(x, y)

∣∣ .
(6) the gap sizes satisfy:

dist (S0, S1) ≥
ε

γ
and dist (f(S0), f(S1)) ≥

ε

γ
.

The normalising condition (2) avoids having all subsequent items referring to
the scale of the basic set. Then, with this notation, we prove in [3], c.f. theorem
2 there, that:

Theorem 2. For all small enough ε > 0 and γ > 0 , given f ∈ F(ε, γ) , the basic
set Λ(f) has dynamically defined Cantor sets (Λu, ψu) and (Λs, ψs) with small
distortion, bounded by D(ε, γ) = 20 γ + 2 ε . In particular

e−2 D(ε,γ) τ̃LR (Λ(f)) ≤ τLR (Λ(f)) ≤ e2 D(ε,γ) τ̃LR (Λ(f)) .

In the rest of this section we outline the basic set construction, in the class
F(ε, γ), and shall estimate the corresponding top scale τ̃LR-thickness, in order to
apply theorem above. All proofs will refer to [3] with the following notation adap-
tations. References to propositions, lemmas and formulas there will be written in
italic text mode. In all formulas of [3] one should either drop the variable µ , when
it appears as an argument, or take it to be µ = 1 , when it is a factor in some
expression. Here the eigenvalue is λ = eδ so that log λ should be replaced by δ
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in all expressions there. Of course λδ, µ(t) is to be understood as λδ(t) = eαδ(t) .
The filter N in our setting will be just the filter of all neighbourhoods of δ = 0 in
the parameter half line [0,+∞) . Many computations here will be reduced to half
due to the reversible character of the Henn map, which was not assumed of maps
fδ, µ there. A crucial quantity in [3] is θ = θδ defined in formula 4, and which
appears in ”almost all” derivative bounds given thereafter. To play this role we
define here

(33) θ = θδ = −(gδ)
′(0) > 0 ,

for which one has the upper and lower bounds given by (27) and (29) .

The half return time. We define here the half return time as

n(δ) = the integer part of
− log

(
θδ δ

3/2
)

2 δ
.

Clearly limδ→0 n(δ) = +∞ . From item 4. in proposition 4 we see that

Lemma 2. There are constants C > 0 and δ0 > 0 such that the following inequal-
ities hold for all 0 < δ < δ0 and all |t| < 2 ,

(1) C−1δ ≤ αδ(t) ≤ C δ ,
(2) |(αδ)

′(t)| ≤ C δ ,
(3) |(αδ)

′′(t)| ≤ C δ .

Using these facts we prove as in lemma 6.4 , that

Lemma 3. Writing n = n(δ) for all small enough δ > 0 ,

(1) e−2 n δ = δ3/2 θδ (1 +O(δ))
(2) n θδ = o(

√
θδ) ,

(3) e2 n (αδ(t)−δ) = 1 +O(
√
θδ) , for 0 ≤ t ≤ e−2 n αδ(t) .

The transition map. Consider the normal form Lδ , with the notation in (24),
associated with the map Fδ . Conformally rescaling Fδ , we can make w(δ) = 1 ,
or, in other words, we can make the homoclinic length of Ωδ to be constant
and equal to 1 . Therefore ζδ(1, 0) = Ωδ = ζδ(0, 1) , and for some small r > 0
both restriction maps ζ−δ = ζδ|Br(1,0) and ζ+

δ = ζδ|Br(0,1) are one to one onto
a neighbourhood of Ω0 . For each δ > 0 we define the transition map Gδ =
(ζ+

δ )−1 ◦ ζ−δ in a small but fixed neighbourhood of (1, 0) . Clearly these maps
satisfy Gδ(1, 0) = (0, 1) , the compatibility relation, Lδ ◦ Gδ = Gδ ◦ Lδ , and also
the reversibility equation

(34) Gδ ◦ I = I ◦ (Gδ)
−1 .

Denote the components of Gδ(x, y) by,

Gδ(x, y) = ( g1(δ, x, y) , g2(δ, x, y) ) .

Then by (34) one has

G−1
δ (x, y) = ( g2(δ, y, x) , g1(δ, y, x) ) ,
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Figure 2. Construction co-ordinates

and so all bounds on Gδ’s derivatives give, automatically, bounds on G−1
δ ’s deriva-

tives. One can easily prove that, at δ = 0 , g1(0, x, 0) = 0 and g2(0, x, 0) = x−1 .
Thus using the symplectic character of G0 along the homoclinic loop, see remark 1,
and also lemma 6.2,

Lemma 4. for all x ∈ [1/2, 3/2] , (g2)x(0, x, 0) = −x−2 = −1 + O(x − 1) and
(g1)y(0, x, 0) = x−2 = 1 +O(x− 1) .
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Lemma 5. for some constant C > 0 and all small enough δ > 0 the func-
tion g1(δ, x, 0) its first and second derivative w.r.t. x are respectively bounded by
C δ θδ , C θδ and C θδ/δ .

Moreover, relating the transition map Gδ with the periodic function gδ(t) ,
through the co-ordinate transformation ηδ , one proves easily that

Lemma 6. (g1)x(δ, 1, 0) = −θδ .

Rescaling the basic set. The map Tδ will be defined by two different branches
where it coincides with the maps Lδ and (Lδ)

n ◦Gδ ◦ (Lδ)
n . These two branches

are respectively defined on the very small rectangles

S0 =
{

(x, y) : |x| < e−(n+1/2) δ and |y| < e−(n−1/2) δ
}
, and

S1 =
{

(x, y) :
∣∣x− e−n δ

∣∣ < 2 δ3/2 e−n δ and |y| < e−(n−1/2) δ
}
.

The domain S0 ∪ S1 has diameter of order e−n δ ∼
√
δ3/2 θδ . In order to scale

this domain up to the unit square we introduce the scaling maps, Φδ :R2→R2

Φδ(x, y) =
(
en αδ(xy) x , en αδ(xy) y

)
,

where n = n(δ) is the half return time. The product of Φδ’s components,
e2 n αδ(xy)x y , is a function of the product x y . Therefore the inverse map Φ−1

δ :
R2→R2 , is given by

Φ−1
δ (x, y) =

(
e−n αδ(tδ(xy))x , e−n αδ(tδ(xy))y

)
where tδ(s) is defined implicitly by tδ(0) = 0 and

e2 n αδ(tδ(s)) tδ(s) = s for all |s| < 2 .

We scale Tδ setting T̃δ = Φδ◦Tδ◦Φ−1
δ . This map has the following two branches

L̃δ = Φδ ◦Lδ ◦Φ−1
δ and G̃δ = Φδ ◦Ln

δ ◦Gδ ◦Ln
δ ◦Φ−1

δ . To compute the first define

α̃(s) = α̃δ(s) := αδ ◦ tδ (s) .

Then it is easily checked that

L̃δ(x, y) =
(
eα̃δ(x y) x , e−α̃δ(x y) y

)
.

A simple computation gives for all δ , G̃δ(1, 0) = (0, 1) . It is obvious that the
scaling map Φδ commutes with the involution I . Therefore, using (34), we obtain
the reversibility of G̃δ : G̃δ ◦I = I ◦G̃−1

δ . To explicit G̃δ we introduce an auxiliary
function

p(x, y) = pδ(x, y) := g1

(
x, e−2 n α̃(xy)y

)
· g2

(
x, e−2 n α̃(xy)y

)
where α̃ = α̃δ , g1(·, ·) = g1(δ, ·, ·) , g2(·, ·) = g2(δ, ·, ·) , and n = n(δ) . Then, see
formula 11, we get

G̃δ(x, y) =
(
e2 n α◦p (x,y) g1

(
x, e−2 n α̃(xy)y

)
, g2

(
x, e−2 n α̃(xy)y

) )
.

We will consider the domains of the rescaled maps Gδ and G−1
δ to be, respectively,

the following rectangles

S̃1(δ) =
{
(x, y) : |x− 1| ≤ 2 δ3/2 and 0 ≤ y ≤ 1 + δ/2

}
,
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S̃ ′1(δ) =
{
(x, y) : 0 ≤ x ≤ 1 + δ/2 and |y − 1| ≤ 2 δ3/2

}
.

To estimate G̃δ ’s derivatives notice first that

Lemma 7. There are some constants C > 0 and δ0 > 0 such that for all 0 < δ < δ0
and s ∈ [0, 2] , |tδ(s)| , |t ′δ(s)| and |t ′′δ (s)| ≤ C δ3/2 θδ .

Proof. This proof depends on lemma 3 here. See lemma 7.1. �

Then, from these bounds and lemmas 2, 4 and 5, we can prove that

Lemma 8. There are constants C > 0 and δ0 > 0 such that for all (x, y) ∈ S̃1(δ)

1 |p(x, y)| ≤ C δ3/2 θδ ,

2

∣∣∣∣∂p∂x(x, y)

∣∣∣∣ ≤ C θδ ,

3

∣∣∣∣∂p∂y (x, y)

∣∣∣∣ ≤ C δ3/2 θδ ,

4

∣∣∣∣∂2p

∂x2
(x, y)

∣∣∣∣ ≤ C δ−1 θδ .

Proof. See lemma 7.2. �

Bounds on the derivatives of T̃δ . Consider the first branch L̃δ of T̃δ to be
defined on the rectangle S̃0(δ) = [0, 1− δ/2]×[1 + δ/2] , while L̃−1

δ is defined on

S̃ ′0(δ) = [0, 1 + δ/2]×[1− δ/2] . Then

Lemma 9. There is δ0 > 0 such that for 0 < δ < δ0 the Jacobian matrix of L̃δ

satisfies

DL̃δ =

(
eδ 0
0 e−δ

)
+O(δ3/2 θδ)

on S̃0(δ) and all the second derivatives of L̃δ are of exponentially small order
O(δ3/2 θδ) . Similar bounds hold for L̃−1

δ on S̃ ′0 .

Proof. See lemmas 8.1 and 8.2. �

On the other branch we have

Lemma 10. There is δ0 > 0 such that for 0 < δ < δ0 the Jacobian matrix of G̃δ

satisfies

DG̃δ =

(
−δ−3/2 −1

1 0

)
+

(
O(δ−1) o(1)
o(1) o(1)

)
on the domain S̃1, and the second derivatives of G̃δ are all uniformly bounded,

except for ∂2g1

∂x2 = O(δ−5/2) . Again, similar bounds hold for G̃−1
δ on S ′1 .
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Proof. This result follows from lemma 8. See lemmas 8.3 and 8.4 . In the proof
of lemma 8.3 the following estimate

∂g1

∂x
(δ, µ, 1, 0) = −µ θδ +O(µ2) ,

should be replaced by the explicit value given in lemma 6 here. �

Lemma 11. There are constants C > 2 and δ0 > 0 such that for all 0 < δ < δ0
the maps L̃δ and L̃−1

δ over S̃0 , the map G̃δ over S̃1 , and the map G̃−1
δ over

S̃ ′1 , fulfil conditions (3), (4) and (5) of class F
(
3 δ3/2/2, 3C δ1/2

)
definition.

Proof. This lemma follows from the previous ones 9 and 10. See the proof of
Lemma 8.5. �

Thick horse shoes.

Lemma 12. Besides (0, 0) ∈ S̃0, the map T̃δ has a second symmetric fixed point
with co-ordinates (x1, x1) ∈ S̃1 ∩ S̃ ′1 , where x1 = 1 +O(δ5/2) . Moreover, there is
a family of smooth functions γδ : [0, 1 + δ/2]→R such that γδ(x1 ) = x1 and for
all t ∈ [0, 1 + δ/2] ,

(1) −3

2
δ3/2 ≤ (γδ)

′(t) ≤ −2

3
δ3/2,

(2) |γδ(t)− 1| ≤ 7

4
δ3/2.

The graphs { (t, γδ(t)) : t ∈ [0, 1 + δ/2] } and { (γδ(t), t) : t ∈ [0, 1 + δ/2] } are
the local invariant manifolds of the fixed point (x1, x1) , respectively the unstable
and the stable one. In particular, these pieces of invariant manifolds are contained
in S̃ ′1 and S̃1, respectively.

Proof. See lemmas 8.6 and 8.7. Notice that the remainder O(δ5/2) of the ex-

pression for x1 can be obtained here, instead of O(µ log3/2 λ) there, replacing
∂g1

∂y
(δ, µ, 1, 0) = 1 + O(µ) by ∂g1

∂y
(δ, 1, 0) = 1 + O(δ) , which in turn follows from

∂g1

∂y
(0, 1, 0) = 1 . See lemma 4 here. �

Lemma 13. For all small enough δ > 0 the local invariant manifolds of the fixed
points (0, 0) and (x1, x1) are the boundary curves of a Markov Partition Pδ =
{S0(δ), S1(δ) } such that S0 ⊆ S̃0 , T̃δ(S0) ⊆ S̃ ′0 , S1 ⊆ S̃1 and T̃δ(S1) ⊆ S̃ ′1 .

Proof. See the proof of lemma 8.8 . �

Since both fixed points have positive eigenvalues we get that

Lemma 14. For all small enough δ > 0, the restriction T̃δ|S0∪S1 : S0 ∪ S1 → R2

is a positive binary horse-shoe map, i.e., T̃δ ∈ F .

Lemma 15. For all small enough δ > 0, dist(S0, S1) = dist(T̃ (S0), T̃ (S1)) = O(δ) .

Proof. This follows essentially from lemma 12. See the proof of lemma 8.9 . �

Thus, from lemmas 14 and 15, it follows that
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Corollary 5. There are constants C > 0 and δ0 > 0 such that for all 0 < δ < δ0,
T̃δ ∈ F

(
3 δ3/2/2, 3C δ1/2

)
.

In particular, by theorem 2, the T̃δ-invariant horse-shoe Λδ =
⋂∞

j=−∞(T̃δ)
−j
(
S̃0 ∪ S̃1

)
has stable and unstable distortion of order O(δ). It is also easy to compute that
the width of the rectangles S0(δ) , S1(δ) , and the gap between them are of or-
ders 1 , δ3/2 and δ , respectively. Therefore, the top scale left-right thickness of(
Λδ, T̃δ

)
is of order O(δ−1/2) .

Lemma 16. There is some δ0 > 0 such that for all 0 < δ < δ0,

(1) τ̃L (Λs
δ) , τ̃L (Λu

δ ) ≥
1

δ

(2) τ̃R (Λs
δ) , τ̃R (Λu

δ ) ≥
1

4

√
δ

In particular, τ̃LR (Λδ) ≥
1

4
√
δ

.

Proof. See the proof of lemma 8.10. �

Finally, combining theorem 2 with the lemma above we conclude that

lim
δ→0

τLR

(
Λδ, T̃δ

)
= +∞ .

6. Tangencies in the Hénon Map

In this section we will prove Lemma B, stated in section 2. The graph E = gδ(t)
describes a piece of the stable manifold in the co-ordinates (t, E) = ηδ(x, y) .
Translating this into Birkhoff co-ordinates (x, y) = ζ−1

δ (x, y) , the same arc of
stable manifold is characterised as the graph y = φ(δ, x) of a function φ(δ, x)
implicitly defined by

φ(δ, x) = gδ

(
δ

α(δ, x φ)
log x

)
/x(35)

= gδ ( log x− τ ) /x

where φ stands for φ(δ, x) , and from α(δ, 0) = log λδ = δ we can derive the
following expression for τ = τ(δ, x) ,

(36) τ(δ, x) = x log xφ(δ, x)α(δ, x φ)−1

∫ 1

0

dα

dω
(δ, s x φ) ds

We are going to consider the following domain for φ(δ, x) ,

Ξ =
{

(δ, x) : |δ| < δ0 and
√
|b1(δ)|/3 < x < 3/

√
|b1(δ)|

}
.

A simple application of implicit function theorem, computing derivatives of the
implicitly defined functions φ(δ, x) , and τ(δ, x) shows that
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Lemma 17. The unique functions φ(δ, x) and τ(δ, x) defined implicitly on Ξ by
the equations (35) and (36) have the following asymptotics over Ξ :

φ(δ, x) = O(
√
|b1(δ)|) τ(δ, x) = O(|b1(δ)|)

φx(δ, x) = O(δ−1) τx(δ, x) = O(δ−1
√
|b1(δ)|)

φxx(δ, x) = O(δ−2
√
|b1(δ)|

−1
) τxx(δ, x) = O(δ−2)

Figure 3. Symmetric homoclinic tangencies

Remark that for (δ, x) ∈ Ξ both points (x, φ(δ, x)) and (φ(δ, x), x) belong
to the open set Wr where Birkhoff co-ordinates can be extended. The graphs
{ (x, φ(δ, x)) : (δ, x) ∈ Ξ } , and { (φ(δ, x), x) : (δ, x) ∈ Ξ } , respectively represent,
in these co-ordinates, arcs of stable and unstable manifolds of the origin for the
map Fε ( ε = ε(δ) ) . The following proposition is a statement about existence of
quadratic homoclinic tangencies between these symmetric invariant manifolds.

Proposition 6. There are sequences δn and xn converging to zero and such that
for all n ∈ N , (δn, xn) ∈ Ξ and:

(1) limn→∞ e2 n δ |b1(δ)| = 1 , limn→∞ en δ xn = 1 ,
(2) φ(δn, xn) = xn ,
(3) φx(δn, xn) = 1 ,
(4) φxx(δn, xn) < 0 ,
(5) for some δ′n > δn and all δn < δ < δ′n , φδ(δ, xn) > 0 .

Proof of Lemma B. Take now δn and xn as in proposition 6. By item 2. of this
proposition, ζδn(xn, xn) are homoclinic points, which are non transversal by item
3. By item 4. these homoclinic tangencies are quadratic. If we would know that
φδ(δn, xn) > 0 then these tangencies would unfold generically. But since there
are transversal homoclinic orbits, the stable and unstable local manifolds of the
origin are accumulated on the right side by other arcs of the same manifolds.
Then, because the tangency at (xn, xn) is negative, δn is the limit of a decreasing
sequence of parameters where other homoclinic tangencies unfold near (xn, xn) .
Statement in item 5. implies these new tangencies unfold generically. �
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Proof of proposition 6. The graph y = φ(δ, x) oscillates from exponentially small
amplitudes at x = 1 to very large oscillations near x = 0 . We re-scale each
concave part in this graph, scaling its width, measured in the x− axis, to an
interval of size δ and scaling its height, measured in the y− axis, to an interval
of size one. Define

∆n =
{
δ : 1/2 < e2 n δ |b1(δ)| < 2

}
,

and

Ξn = { (δ, x) : δn ∈ ∆n and x ∈ [1− 3 δ/8 , 1− δ/8] } .

It is straightforward to check that for each n ≥ 1 ,

(δ, x) ∈ Ξn ⇒ (δ, e−n δ x) ∈ Ξ .

Therefore we may define for (δ, x) ∈ Ξn ,

φn(δ, x) = en δ φ(δ, e−n δ x)(37)

= e2 n δ gδ (log x− τn(δ, x)) .

where τn(δ, x) = τ(δ, e−n δ x) . From lemma 17 we get that

(1) τn(δ, x) = O(|b1(δ)|) ,
(2) (τn)x(δ, x) = O(δ−1 |b1(δ)|) and
(3) (τn)xx(δ, x) = O(δ−2 |b1(δ)|) .

Combining (31) with (37), and noticing that (37) is strictly positive and bounded
away from zero in its domain Ξn , one obtains easily for (δ, x) ∈ Ξn ,

φn(δ, x) = γn (1 + σn) sin

(
2π (1− x)

δ

)
,

where γn = −e2 n δ b1(δ) and where σn = σn(δ, x) , together with its derivatives
(σn)x and (σn)xx , are small functions of order O(δ) . By (30) the factor γn is
positive. Notice also that

(δ, x) ∈ Ξn ⇔ π

4
<

2π (1− x)

δ
<

3π

4
,

and the sin function is strictly positive and concave in the interval [π/4 , 3π/4] .
By definition of ∆n , as δ goes through ∆n the factor γn runs across the interval
[1/2, 2] . Therefore there is some parameter δ = δn for which γn is close to 1
and the graph y = φn(δn, x) is tangent to the diagonal y = x at some point
(x∗n, x

∗
n) near (1, 1) . Then, since φn is just a rescaling of φ , the sequences δn

and xn = e−n δ x∗n satisfy items 1., 2., 3. and 4. of proposition 6. But if we choose
δn to be the last parameter δ ∈ ∆n such that y = φn(δn, x) has some tangency
with y = x , then clearly (φn)δ(δ, xn) ≥ 0 for all δ ≥ δn which are sufficiently
close to δn . If (φn)δ(δn, xn) > 0 item 5. is obvious. If not, by analyticity of (φn)δ

its zeros are isolated and one must have (φn)δ(δ, xn) > 0 for all δ > δn which are
sufficiently close to δn . Thus item 5. follows anyway.

�
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7. Symplectic invariants

In this section we recall two symplectic invariants associated to homoclinic or-
bits. Given a fixed point P of a symplectic map ϕ :M2→M2 , with multipliers
0 < λ−1 < 1 < λ , assume two separatrices γs(P ) of W s(P ) , and γu(P ) of
W u(P ) intersect at some homoclinic point Q . Take vectors vs and vu , respec-
tively tangent to γs(P ) and γu(P ) at point P . Consider the (unique) ”linearis-
ing” maps γs :R→W s(P ) ⊆M2 and γu :R→W u(P ) ⊆M2 such that:

(1) γs(0) = P , and γu(0) = P ,
(2) (γs)

′(0) = vs , and (γu)
′(0) = vu ,

(3) ϕ(γs(t)) = γs(λ
−1 t) and ϕ(γu(t)) = γu(λ t)

There are positive real numbers Ts, Tu ∈ R+ such that Q = γs(Ts) = γu(Tu) .
The first invariant, Lazutkin invariant, is the ratio,

(38) θ(Q) =
ωp ( (γs)

′(Ts) , (γu)
′(Tu) )

ωp (vs, vu)
.

The second one might be known in the literature, but we call it the homoclinic
length of Q

(39) λ(Q) =
√
Ts · Tu · |ωP (vu, I(vu))| .

Both these numbers do not depend on the choice of the vectors vs and vu , they
both remain constant along the orbits, and they are easily seen to be invariant
under area preserving changes of co-ordinates.

Lazutkin invariant is used as a symplectic invariant measure of the splitting
angle at some transversal homoclinic point. θ(Q) = 0 means that the two sepa-
ratrices are tangent or coincide.

The homoclinic length is always positive. Suppose we take (area preserving)
Birkhoff co-ordinates taking the map ϕ to its normal form around P , so that
the co-ordinates of Q are (c, 0) and (0, c) . Then c is precisely the homoclinic
length of Q .

In the case of Hamiltonian vector fields with a homoclinic loop the length is
defined w.r.t. the induced flow maps φt , t 6= 0 . Is not difficult to see that
all points in the loop have the same length which is also the same for all flow
maps φt . Assume now that X is a Hamiltonian vector field in surface M2 which
is reversible w.r.t. some involution I , meaning that DIx · X(x) = −X(I(x)) .
Suppose we are given a symmetric fixed saddle P = I(P ) , X(P ) = 0 , with
multipliers −λ < 0 < λ , together with a homoclinic loop cutting the fixed point
set of I in some symmetric homoclinic point Q . In order to compute the length
of the homoclinic connection we take a nonzero vector vu ∈ TP (M2) tangent to
the unstable manifold at P and then find a solution γu :R+→M2 of the following
problem: For all t > 0 ,

(1) λ t (dγu/dt) = X(γu(t)) ,
(2) limt→0 γu(t) = P ,
(3) limt→0 t

−1 (dγu/dt) = vu ,

The curve γu linearises the unstable manifold of P and, by symmetry, γs = I ◦γu

linearises the stable manifold of P . Let T ∈ R+ be the time corresponding to
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the symmetric homoclinic point, γu(T ) = Q = (I ◦ γu)(T ) . Then the homoclinic

length of the connection is given by
√
T 2 · |ω(vu, I(vu))| .
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