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We show that for stable dissipative Lotka-Volterra systems the dynamics
on the attractor are hamiltonian and we argue that complex dynamics can
occur.

1 Introduction

In his famous monograph “Lecons sur la Théorie Mathématique de la Lutte pour
la Vie” ([25]) Volterra introduced the system of differential equations

ybjzejxj+2ajkxjxk (j:l,...,n) (1)
k=1

as a model for the competition of n biological species. In this model, z; represents
the number of individuals of species j (so one assumes z; > 0), the a;;’s are the
interaction coefficients, and the €;’s are parameters that depend on the environment.
For example, £; > 0 means that species j is able to increase with food from the
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environment, while ¢; < 0 means that it cannot survive when left alone in the
environment. One can also have ¢; = 0 which means that the population stays
constant if the species does not interact.

The dynamics of general systems of type (1) are far from understood, although
special classes of Lotka-Volterra systems have been studied. We distinguish the
following classes of systems of type (1):

Definition 1.1. A Lotka-Volterra system with interaction matrix A = (a;;) is called
(i) COOPERATIVE (resp. COMPETITIVE) if a;; > 0 (resp. a;r < 0) for all j # k;

(i) CONSERVATIVE if there exists a diagonal matrix D > 0 such that AD is skew-
symmetric;

(iii) DISSIPATIVE if there exists a diagonal matrix D > 0 such that AD < 0;

Competitive systems and dissipative systems are mutually exclusive classes, ex-
cept for the trivial case where aj; = 0. General results concerning competitive or
cooperative systems were obtained by Smale [24] and Hirsch [9, 10] (for recent re-
sults see [26] and references therein). These systems typically have a global attractor
consisting of equilibria and connections between them (see e. g. [9] theorem 1.7).

Dissipative systems have been less studied than competitive systems, although
this class of systems goes back to the pioneer work of Volterra, who introduced
them as a natural generalization of predator-prey systems (see [25], chp. III). For
systems where predators and preys coexist there is empirical and numerical evidence
that periodic oscillations occur. In fact, as is well known, for any two dimensional
predator-prey system, the orbits are periodic. But for higher dimensional systems
the topology of orbits in phase space is much more complex, and understanding
this topology is a challenging problem. The following theorem, to be proved in this
paper, is perhaps the first result in this direction.

Theorem 1.2. Consider a Lotka-Volterra system (1) restricted to the flow invariant
set R = {(21,...,2,) ER™: 2; > 0,5 =1,...,n}, and assume that (i) the system
has a singular point, and (i1) is stably dissipative. Then there exists a global attractor
and the dynamics on the attractor are hamiltonian.

By “stably dissipative” we mean that the system is dissipative and every system
close to it is also dissipative. As we mentioned before, the notion of dissipative
system is due to Volterra. Stable dissipative systems where first studied by Red-
heffer et al. ([18, 19, 20, 21, 22]) under the name “stable admissible”. They gave
a beautiful description of the attractor (see section 4 below) which we will use to
prove theorem 1.2. The hypothesis on the existence of a singular point is equivalent
to the assumption that some orbit has a a- or w-limit point in R} .

One of Volterra’s main goals in introducing these equations was the “mechaniza-
tion” of biology, and he made quite an effort in trying to pursue this program. While
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seeking a variational principle for the system, he was successful in finding a hamil-
tonian formulation in the case where the interaction matrix is skew-symmetric, at
the expense of doubling the number of dimensions (see section 2 for details). Along
the way, a polemic with Levi-Civita arose, an account of which can be found in [8].
In this paper we shall give a different solution to the problem of putting system (1)
into a hamiltonian frame. In modern language, our approach is related to Volterra’s
approach by a reduction procedure. This hamiltonian frame is the basis for the
hamiltonian structure refered to in theorem 1.2.

Once the hamiltonian character of the dynamics is established, one would like to
understand (i) what type of attractors one can get and (ii) what kind of hamiltonian
dynamics one can have on the attractor. It will follow from our work that this
amounts to classify the dynamics of Lotka-Volterra systems with skew-symmetric
matrix whose associated graph is a forest. We do not know of such classification but
we shall argue that these dynamics can be rather complex.

In the simplest situation, the attractor will consist of the unique fixed point in
R’ and the dynamics will be trivial. It was already observed in [20] that there may
exist periodic orbits on (non-trivial) attractors. On the other hand, if the attractor
is an integrable Hamiltonian system then one can expect the orbits to be almost
periodic. We will show through a detailed study of a 4-dimensional chain of predator-
prey systems, that non-integrable hamiltonian system can indeed occur. Therefore,
typically, the dynamics of dissipative Lotka-Volterra systems are extremely complex.
This is related with a famous conjecture in the theory of Hamiltonian systems which
can be stated as follows.

Typically, dynamics on the common level sets of the hamiltonian and the
Casimirs are ergodic.

This paper is organized in two parts. In the first part we deal with general
systems and prove theorem 1.2. In the second part, we give a detail analysis of
a 4-dimensional predator-prey chain. This is an extremely interesting system for
which we show, among other properties, that

e the system is non-integrable in the sense of Arnol’d-Liouville;

e the dynamics of the system is equivalent to the dynamics of a homeomorphism
of a sphere;

e the system has families of periodic orbits whose stability is determined by an
associated Sturm-Liouville problem;

e one can find regions in the space of parameters where periodic orbits are
strongly hyperbolic;

We believe that both this system and higher dimension generalizations deserve fur-
ther study, and can help understanding the conjecture above.
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ParT I. GENERAL THEORY

2 Basic Notions

Here, we will recall some basic notions and facts concerning general Lotka-
Volterra systems which will be useful in the next sections. All of these notions
can be traced back to Volterra. For a more detailed account of general properties of
Lotka-Volterra systems we refer to the book by Hofbauer and Sigmund [7].

For fixed d; # 0, the transformation

yj:d—xj, (j=1,...,n) (2)

takes the Volterra system (1) with interaction matrix A, into a new Volterra system
with interaction matrix AD

y’jzejyj—l—deajkyjyk (j: 1,...,71). (3)
k=1

We can therefore think of (2) as a gauge symmetry of the system. A choice of
representative (aji) in a class of equivalence under gauge transformations will be
called a choice of gauge. Since will often take as phase space R, we consider only
gauge transformations with d; > 0 in order to preserve phase space. Note also that
the classes of Lotka-Volterra systems introduced in definition 1.1 above are all gauge
invariant.

Many properties of a Lotka-Volterra system can be expressed geometrically in
terms of its associated graph G(A,<). These is the labeled graph, where with each
species j we associate a vertex O labeled with ¢; and we draw an edge connecting
vertex j to vertex k whenever a;; # 0.

€5 €4 €8

T T T \
O O O O O O
1 £9 23 = &7 €9

Figure 1: Graph G(A4,¢) associated with a system of type (1).

For example, if two systems are gauge equivalent, they have the same unlabeled
graph (but not conversely). Also, conservative systems can be caracterized in terms
of its graph as it follows from the following proposition also due to Volterra (cf. [25],
chp. III §12):
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Proposition 2.1. A Lotka-Volterra system with interaction matric A = (a;i) is
conservative if, and only if, a;; =0,
@ #0 = azrag; <0 (] # k)7 (4)
and
iyiy iy =~ iy, = (1) i,y o iy iy, ()
for every finite sequence of integers (i1, ...,1s), with ¢, € {1,...,n} forr=1,...s.

In other words a system is conservative if, and only if, (i) the conditions aj; =0
and ajr # 0 = ag; # 0 are satisfied and (ii) for each closed path in the diagram with
a even (respectively odd) number of vertices the product of the coefficients when
we go around in one direction is equal to the product (resp. minus the product) of
the coefficients when we go around in the opposite direction. Hence, for example, a
system with associated graph as in fig. 1 is conservative if, and only if,

Gg7l78dgs = —Uegag7076,
(23034045052 = U25054043032,

and moreover the conditions a;; = 0 and aj; # 0 = ajpax; < 0 are satisfied.
The most trivial solutions of system (1) are, of course, the fixed points. The fixed

points q = (q1,...,¢s) in R} of system (1) are the solutions of the linear system
ke)
Sy apa =0  (j=1,...,n). (6)
k=1

The existence of a fixed point in R’ is related with the behavior of the orbits in R,
as it is clear from the following result (see [7], section 9.2).

Proposition 2.2. There exists a fived point q = (q1,...,qs) in R% of system (1)
if, and only if, RY} contains some a- or w-limit point.

Proof. In one direction the result is clear. On the other hand, assume that there
exists no fixed point in R’} so that for the affine operator L : R" — R" defined by

L(X)]‘ =&+ Zajkxk
k=1

one has 0 ¢ K = L(R). Then there exists a hyperplane H through the origin
disjoint from the convex set K, and one can choose ¢ = (¢y, ..., ¢,) € HL such that

c-y>0, Vy € K. (7)

Consider now the function V : R} — R given by

n

V(x) =) c;log(z)). (8)

=1



DYNAM. ON THE ATTRACTOR OF L-V EQS. 6

If x(t) is a solution of (1) in R’} then we compute

d SN ¥

ZV(x(t) = ZC’E =c- L(x(t)) > 0,
Jj=1
where we used (7). Hence, V' is a Liapounov function and there can be no w-limit
points since for these one must have V' = (. Similarly, to exclude a-limit points one

uses the Liapounov function —V. U

We have just seen that the limit behavior of the orbits is related to the existence
of fixed points. On the other hand, the following result shows that the average
behavior of the orbits is related to the values of the fixed points (see [4]).

Proposition 2.3. Suppose that x(t) is an orbit in R} of system (1) satisfying 0 <
m < x;(t) < M. Then there is a sequence {T}} such that Ty, — 400 and a fized
point q € RY such that

R
kgr{{looT_k/o x(t)dt = q. 9)

Moreover, if system (1) has a unique fized point q € RY} then

lim i/Tx(t)dt:q. (10)

T—+4co T

Proof. Since we have z;(t) < M, the function

is bounded, and there exists a sequence {T}} such that Ty — +oc and the limit

lim —1 b dt =
i t)dt 11
o Tk/o x(t) q (11)

exists. Since 0 < m < x;(t) it is clear that q € R%. Now, if we integrate (1) along
the orbit x(t) we obtain

L fog(a;(T)) - 1o (x‘(O)))—5‘+i/Tan:a‘ wp(t)dt (12)
Tkg]k glTy =&y Tk0k21jkk .

The left-hand side of this equation converges to zero. For the right-hand side we use
(11) to comput the limit so we conclude that

O=c;+ ) aps  (G=1,...,n),
k=1
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i. e., q is a fixed point.

Now if system (1) has a unique fixed point q € R” then the linear system (6)
has a isolated solution, so the matrix (a;;) must be non-degenerate. In this case, let
us consider any T' > 0 and integrate (1) along the orbit x(¢) from 0 to T":

1 (og(e,(T) ~ log(e,0) = 5 + % [ > agan(t)d (13)
0 k=1

Solving this equation for the averages we obtain

_/ t)dt = Zb]k ( (log(zx(T)) — log(zx(0))) —€k) :

where (b;x) is the inverse of (a;x). By letting T — 400, and using the fact that the
z(t) are bounded, we obtain

.1t .
Tgriloo T/O xj(t)dt = — ;b]‘kaSk = q;-
O

In the case where the interaction matrix (a;x) is not invertible it is not clear to
which fixed point q does the time average of the orbit converges.

3 Conservative Systems

In the case were system (1) is conservative Volterra was able to introduce a
hamiltonian structure for the system by doubling the number of variables. We
recall now Volterra’s construction, so we assume that system (1) is conservative
and a choice of gauge has been made so that the matrix (a;z) is skew-symmetric.
Volterra introduces new variables (); (which he calls quantity of life) through the
formula():

Qj:/o zj(T)dr (j=1,...,n) (14)

and rewrites system (1) as a second order o.d.e.:

Qj=¢Q;+ > apQ;iQx  (G=1,....n). (15)

k=1

Then he observes that the function H = >7_, (¢,Q; — Q,) is a first integral of the
system because, on account of skew-symmetry, one has
n
H=-> a;Q;Qr=0.

k=1

One might argue about the “definition” of the (};’s. The full justification of this procedure will
be given later in the section.
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Now, if one introduces another set of variables P; by the formula

n

szlong_%Zaijk (J=1...,n) (16)

k=1

(which are well defined when we restrict the original system to R ), then, in the
coordinates (Q;, P;), the function H is expressed as

n

H= Zngj - Ze(Pj+1§EZ=1 ajkQr) (17)
7=1

J=1

A simple computation shows that system (15) can be rewritten in the following
hamiltonian form

- oOH

P = 5q;

. o (=1,...,n). (18)
Qi = —ap;

We shall now reverse the all procedure and reformulate it in the language of
Poisson manifolds(). Recall that the modern approach to hamiltonian systems is
based on the following generalization of the notion of a Poisson bracket (see for
example [15]).

Definition 3.1. A P0OISSON BRACKET on a smooth manifold M is a bilinear opera-
tion {, } : C®(M)XxC>*(M) — C*(M) on the space of smooth functions satisfying
the following properties:

1) {f1, fa} = —{f2, f1} (skew-symmetry);
i) {fife, f} = filfe, fY +{f1, f}f2 (Leibnitz’s identity);
111) {fh {f27 fS}} + {f27 {f37 fl}} + {f37 {fh f2}} =0 (Jacobi’s ldentltY)7

A hamiltonian system on a Poisson manifold M is defined by a choice of a
function h € C*°(M), namely, the defining equations for the flow are

T = Xh(x)v (19)
where the hamiltonian vector field X}, is the vector field on M defined by

Xi(f)={fh},  VfeC (M)

One needs here the more general concept of Poisson manifold rather than symplectic manifold

since, as we shall see shortly, the Poisson bracket associated with the original system is, in general,
degenerate.
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For system (18) M = R?" and the Poisson bracket in question is, of course, the
classical Poisson bracket associated with the standard symplectic structure wy =

S dQ; A dP;:
N~ (0 0fr 0f, Ofr
{flva}S_Z(apj 0Q, OP; 3@;‘) ' o

J=1

When we take the function H given by (17) as the hamiltonian function, it is clear
that system (18) takes the canonical form

&; = {x;, H}s, (t=1,...,2n).

The key remark to reverse Volterra’s procedure is the following: system (18) has
n, time-dependent (if £; # 0), first integrals given by the formulas

n

1 .
I]‘(Q]‘,P]‘,t):P]‘—§;a]‘ka—€]‘t (j:l,...,n). (21)
In fact, one checks easily that

oI;

- I,,H},=0.

8t —I_{ 7 }

Moreover, the first integrals I; satisfy the following commutatio relation
Ly Ik}s = agi. (22)

A standard result (see [15]) in the theory of hamiltonian systems says that a family
of r-independent, Poisson commuting integrals, allows one to reduce the dimension
of the system by 2r. Hence, if the n integrals I; had vanishing Poisson bracket, we
would be able to reduce the dimension of the system by 2n, and the equations would
be integrable by quadratures. Condition (22) of course does not give such a complete
integrability, but it is enough to guarantee that the corresponding hamiltonian vector
fields commute

(X1, X1,] =0, (j,k=1,...,n). (23)

This allow us to perform a standard (non-hamiltonian) symmetry reduction and
reduce the dimension of the system by n.

Theorem 3.2. The map ¥ : (Q;, P;) — x; defined by
o= e(PtsEizian@s)  y(Q, P) ¢ R?"

is a Poisson map from R*" with the canonical Poisson bracket (20) to R’} with
bracket

06 0% 9000, o)

{fi, 2} =) ajpvjay (——___

]‘Z; Y 8$j Oz, 3$]‘ Oz
If (q1,- .- qn) € RY is a fized point of (1), this map reduces the enlarged system (18)
to the Volterra system (1).
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Proof. One readily verifies that (24) satisfies the conditions of the definition 3.1. It
is also a routine calculation to check that the map ¥ : (Q;, P;) — x; satisfies

{fO\Ilng\Il}s:{f7g}O\Il7 vagecoo(RT—ll—)

If there is an equilibrium and we let
h=> (vj—gjloga;), (25)
7=1

we check that H = ho ¥, and that system (1) can be written in the form

tj=AHz;,h} (j=1,...,n).
Hence ¥ reduces the enlarged system (18) to the Volterra system (1). O

We leave it to the reader to check that if one considers the action on R?" of the
(abelian) group of symmetries G generated by the hamiltonian vector fields Xy,
then the map ¥ : R?" — R? is exactly the quocient map R?" — R?"/G. Therefore
the reduction given in theorem 3.2 is in fact a symmetry reduction.

Remarks.

(i) In general, one cannot get way without some assumption of the type of (6) and
s0 it 1s not possible to give a hamiltonian formulation without introducing new
variables (if, for example, (a;;) =0 and c; > 0 then the origin is a source and
system (1) cannot be hamiltonian).

(11) In [16] the hamiltonian structure (24) is also introduced, along with other
hamiltonian formulations valid for particular classes of interaction matrices.
However, there is no reference to its relation to the Volterra hamiltonian for-
mulation.

When we combine these ideas with Volterra’s criteria for a system to be conser-
vative we obtain

Corollary 8.3. Assume system (1) has a fized point in R”}. If the matriz associated
with the system satisfies a;; =0,

a5k 75 0= U5kak; < 0 (26)
and the graph is a forest, then the system has a direct hamiltonian formulation.

Remark. If we do not allow the sign change in condition (5) then we obtain a
necessary and sufficient condition for the matriz to be symmetrizable. In this case,
the system is gradient with respect to the “metric” ds® = ij(djajkxjxk)dxjdxk.
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4 Dissipative Systems

We now turn to the study of dissipative systems. Since we want our results to
persist under small perturbation we introduce the following definition.

Definition 4.1. A PERTURBATION of a Lotka-Volterra system with interaction ma-
trix A is any Lotka-Volterra system with interaction matrix A such that

;=0 ajr =0.

A Lotka-Volterra system with interaction matrix A is called STABLY DISSIPATIVE if
every sufficiently small perturbation is dissipative:

35 >0 : max lar — d ] < § = A is dissipative.
3

Note that we only allow perturbations that have the same graph as the original
system. The notion of stably dissipative system is due to Redhefferet al. who in a
series of papers [18, 19, 20, 21, 22] have studied the asymptotic stability of this class
of systems. Also they use instead the name stably admissible. Since what they call
admissible is called by Volterra dissipative ([25], chp. III), we prefer the term stably
dissipative. For conditions for a matrix to be stably dissipative we refer to [19].

Let us start then with a stably dissipative Lotka-Volterra system having a fixed

point g = (g1, ..., ¢,) € RY:

Tj = €585 4 Yoy GkT;Th,
G=1,...,n). 27)
€5+ k=1 @kqr =0

The system is dissipative so we can choose a diagonal matrix D > 0 such that
AD < 0. For stably dissipative systems this choice can be improved ([21]):

Lemma 4.2. One can choose a positive matric D = diag (dy,...,d,) such that
AD <0 and the following condition holds

n
Z dka]‘kw,’w]‘ =0= a;;W; = 0, (j =1,.. .,n).
k=1

Proof. Given A = (a;;) such that the associated system is stably dissipative we
consider the perturbation A = (a;i) given by

ajp=aj  (GFR),  aj=(1-20)ag.
Also, choose D > 0 such that AD < 0. Since a;; <0 and

ke) ke) ke)
- 2
g dpajrw;w; = g dkajkijk+5§ djajjwj,
7=1

k=1 k=1
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we see that AD < 0 and

Z dka]‘kw,’w]‘ =0= a;;W; = 0, (j =1,.. .,n).

Jk=1
O
If D = diag (dy,...,dy,) is a matrix as in the previous lemma, we perform the
change of gauge x; — %xj so we can assume that A <0 and
J
Z ajpwiw; =0 = a;;w; =0,(j=1,...,n). (28)
Jk=1
Then we have a Liapounov function given by
V=> (;—glogu,). (29)
=1

In fact, we find that

n

V= Z ajr(r; —q;)(xr — qx) < 0.

7,k=1

By La Salle’s theorem[13], the solutions exist for all ¢ > 0 and the set V = 0 contains
an attractor. Therefore one would like to understand the set V = 0.

We shall now recall Redheffer’s beautiful description of the attractor in terms of
the reduced graph of the system. Notice that by (27), (28) and (29) solutions on the
set V=0 satisfy

@i =25 p—y Gk(Th — k),
(30)
a;i(z;—¢;) =0 (j=1,...,n).

Therefore, one has either a;; = 0 or a;; < 0, and in the later case we have z; = ¢;
on the attractor.

It will be convenient to modify slightly the notion of graph associated with the
system we introduced above. One now draws a black dot @ at vertex j if either
aj; < 0, or aj; = 0 and somehow we have shown that z; = ¢; on the attractor.
Otherwise, one draws an open circle O at vertex j. It is also convenient to put a
@ at vertex j if one can show that z; is constant on the attractor (an intermediate
stage between black dots and open circles).

We have ([20]):
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Lemma 4.3. The following propagation rules are valid:

(a) If there is a @ or & at vertex j and @ at all neighbors of j except one vertex
I, then we can put « @ at verter [;

(b) If there is a @ or & at vertex j, and a @ or & at all neighbors of j except
one verter [, then we can put o & at verter [;

(c) If there is O at verter j, and @ or & at all neighbors of j, then we can put
& at vertex j;

Proof. The proof is a straightforward application of (30).
O

One calls the reduced graph R(A) of the system, the graph obtained by repeated
use of the rules of reduction (a), (b) and (c). Fig. 2 gives an example of a graph
and its reduced graph obtained by successive application of these rules. For more
on the reduced graph we refer to [20]. Here we shall only need the following fact
which follows from the results in [21].

I

® — O

v

Figure 2: A graph G(A) and its reduced form R(A).

Proposition 4.4. Let K denote the subgraph of the reduced graph of a stably dis-
sipative Lotka-Volterra system formed by vertices with O or & and connections
between them. Then K is a forest, i.e., K = K1 J---J K, (disjoint) where each K;
18 a tree.

Proof. We have to rule out the existence of a closed path whose vertices are all of
type O or @. Assume we had such a closed path and label its vertices from 1 to m.
Then one has a;; = 0 for each 1 < j < m, so given two adjacent vertices j and % in
this closed closed path we must have

a;r + arj =0,

on account of the condition A < 0. In other words the reduced system whose graph
is the closed path is conservative. By proposition 2.1, this can happen if, and only
if

m
@12 Aml1mml = (—1) A1mAmml1 * 421,

Clearly, this condition cannot hold for all small perturbations. Hence the original
system would not be stably dissipative. O
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We are now in condition to prove theorem 1.2 which we state as follows:

Theorem 4.5. Consider a Lotka-Volterra system (1) restricted to the flow invariant
set R = {(21,...,2,) ER™: 2; > 0,5 =1,...,n}, and assume that (i) the system
has a singular point q € R}, and (ii) is stably dissipative. Then the dynamics on
the set V. =0 are hamiltonian. Moreover, they can be described by a Lotka- Volterra
system of dimension m < n.

Proof. Consider the system restricted to V = 0. We split the variables x; into two
groups labeled by sets J, and J,. In the first group {z,},es, we have all the z;’s
corresponding to vertices with open circles O or @ in R(A), while the second group
{z;};es, we have all the z;’s corresponding to vertices with black circles @ in R(A).
For j € J, we have z; = ¢;, hence the restricted system satisfies

Bj = (55 + Lres, GRIR)Tj T Lre, LKL Tk if j€Jo
(31)
Therefore if we define &; = ¢; + > 7 @ik, @jx = azx (j,k € J,), we obtain a new
Volterra type system:

i, =Em; + Z AT ;T (J€Jo) (32)
kel

where the graph associated with the matrix A = (@jk); ke, is precisely the subgraph
K of the reduced graph R(A) formed by vertices with O or & and connections
between them. Note that this matrix satisfies a;; = 0, and that there exists a
diagonal matrix D > 0 such that AD < 0. But this implies

d]‘d]‘k + dkdk]‘ = 07
which shows that
a5k 75 0= kg, < 0.

Note also that the (g;) e, form a solution of the system

£+ Z ajkge =0 (J € Jo).
ke

By proposition 4.4, we are in the conditions of corollary 3.3, so system (32) has a
hamiltonian formulation. O

The proof shows that the dynamics on the attractor can be described by a
Lotka-Volterra system of dimension m < n whose associated graph is a tree, which
is conservative and has a fixed point in R’!. Conversely, any such system describes
an attractor, since any system whose associated graph is a tree is stably dissipative.
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ParT II. BEHAVIOR OF SOLUTIONS ON THE ATTRACTOR

5 A Toy Model

One would like to describe the qualitative dynamics on the attractor of the
Lotka-Volterra equations. This amounts to classify the dynamics of n-dimensional
Lotka-Volterra systems, with skew-symmetric matrix whose associated graph is a
forest, and a fixed point q € R?}. We do not know of such classification, but we shall
see by looking at a 4 dimensional linear chain that these dynamics can be rather
complex.

First we make some general remarks. If n is odd the Poisson bracket has rank
< n —1 and there exist Casimirs(). In general (any dimension), the Casimirs take
the form

Clay,...,zn) = ijlogwj,
7=1

where (by,...,b,) is any vector in the kernel of (a;;). It follows that the dynamics
take place on the level sets of these Casimirs, and in the presence of Casimirs we have
effectively reduce the dimension. On the other hand, if n is even and the Poisson
bracket is non-degenerate then there are no such Casimirs. In fact, apart from these
Casimirs, one should expect that generically there should be no other first integrals
besides the hamiltonian function h.

Another general remark is that the level sets of h, given by (25), are n — 1
Sl Locally, in a neighborhood of the fixed point q, this

), - (-2,
du a 25/ o ’
0*h q; 1
( ,2) = |=z] = — >0,
0x; a %) q;
0%h )

and the Morse lemma. On the other hand, using the flow of

dimensional spheres
follows from the relations

rad h
||ggraT||2’ we see that

we can deform isotopically each level set onto any other (see [14]). Therefore the
level sets are isomorphic to S"+!. Alternatively, we could use the fact that % is a
convex function in R%.

In order to illustrate the complexity of the dynamics that can occur on the

A Casimir is a function that Poisson commutes with any other function (see [15]).
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attractor we will consider the following 4-dimensional Lotka-Volterra system:

T = —x+ 3T,

Ty = Hxg— 2921 — du3),

. 33
i3 = —x3+ a3(rs — dxg), (33)
i4 = —|—$4 — T4T3.

We have included a parameter § which must be restricted to | — 1, +oo[ since we
need the fixed point q = (1+9,1,1,1+4 ) to belong to R‘_ll_. The interaction matrix
is skew-symmetric

0 1 0 0
-1 0 46 0
0 0 -10
and its graph is a linear chain:
&
O @) O @)
il 1 il 1

Figure 3: Graph G(A,¢) associated with system (33).

If § = 0 the system is separable and hence is completely integrable. Two inde-
pendent analytic integrals in involution are

L(x) = a1+ 23— loga, —logasg,

I(x) = a3+ 24— logas —loguay.

The common level sets of these integrals are 2-dimensional tori S! x S!, and the
solutions are almost periodic. We are interested in investigating what happens when

§ 0.

6 Periodic Orbits

For any § system (33) has a time reversing symmetry. To see this let o : R‘_Il_ — R‘_Il_
be the involution

O'($17 L2, L3, $4) - ($47 T3y T2, $1).

The hamiltonian vector field X}, associated with the system satisfies 0, X, = —X},.
Therefore, if x(t) is a solution of (33) so is o(x(—t)), and we see that o defines a
time reversing symmetry of the system. In particular, it follows that any solution
crossing twice the set Fix(o) = {1 = 24,22 = 23} is a periodic solution. Using this
method we can find the following family of periodic orbits.
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Lemma 6.1. For any &, the 2-plane
II={(21,22,23,24) 121 = (1 + 0)az, 24 = (1 4+ §)za}
is formed by periodic orbits of system (33).

Proof. If we look for solutions of the form

r1 = (14 )u,
T2 = U,
R (35)
ry = (146,
we see that v and v satisfy the predator-prey system
U = —u-+uv,
{ v = 4v—uv. (36)

This system has a fixed point (1,1) € R?l_ and, moreover, all its solutions are periodic.
These in turn give periodic solutions of the original system.

O

If x(# q) belongs to the 2-plane II of periodic solutions, then

) - = T SEED L TR0

T2 T3

so the level sets of h and the 2-plane Il intersect transversely along the periodic orbit
I'. Therefore, we have the following figure.

Figure 4: Energy levels and periodic orbits of system (33)

Let us consider now the 1-parameter family of 3-planes

{x € R} : ¢p(x) = cos (g — (L4 8)as) +sinb(xg — (1 + 8)az) = 0}, (38)
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where the parameter 6 varies in [0, 7[. Each plane in this family intersects a fixed
energy level set {h = E} ~ S? along a 2-sphere since h is convex:

S§={x €R}: h(x) = E, dp(x) = 0}. (39)

We shall show that for each sphere S2, with 8 € [0,7/2], the flow induces a return
map fy : S; — S3 of the sphere. This map codifies all the dynamics since every orbit
of the system in the fixed energy level set intersects the sphere.

First we need the following

Lemma 6.2. As 0 varies in [0, 7| the family of spheres Sg covers the energy level

set {h = E} ~ §3:
s?= ] si
€0,

Moreover, they intersect along the unique periodic orbit I' of the family I1 which lies
inside S°:

r= () s;

€0,

Proof. If x € R we can choose § € [0, 7 such that x lies in the 3-plane (38) by
setting

Ty — (1 + (S)$3

T4 — (1 + (S)$2

# = — arctan

(if 24 — (1 4 8)z2 = 0 we take § = x/2). Therefore, the family of spheres S3 covers
the energy level set.
If 6, # 6; and x € Szl N Sé then x is a solution of the system

cosfy sinb, ry— (1+0)xs \ 0

cosfy sin by vy — (14 8)ay /|
Since the determinant of the matrix of this system is 2sin(f; — 6;) # 0, we see that
X must satisfy the system

Ty — (1—|—(S)$3 = 07
T4 — (1—|—(§)$2 = 07

i. e., it belongs to I'. O

Volterra’s time average principle (proposition 2.3) states that

1 T
lim —/ x(t)dt = q.
0

T—+4co T
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This average behavior suggests that an orbit starting at a sphere Sz should eventually
return to the sphere. This however does not follow from Volterra’s principle. What
we can say is that every orbit of system (33) must visit every neighborhood of a
sphere S2. In fact, we find

1
lim

T ) 1 T .
T%OOT/O do(x(t))dt = _lim —/0 cos 0(w1 — (14 8)as) + sin O(ws — (14 8)wa)dt

T—+4co
=cosf(q1 — (1 +6)gs) +sinO(qs — (1 +3)q2) = 0,

for any orbit x(t). So we see that for every ¢ > 0 there exists a time . such that

|do(x(t:))] <.

This of course does not mean that the orbit actually returns to the sphere. It could,
for example, approach the orbit I' always from the same side of the sphere Sy. The
fact that this does not happen is a consequence of the following proposition.

Proposition 6.3. Let xo € S2—T and denote by x(t) the orbit of system (33) with
initial condition xqg. Then there are times 0 < tg < t1 such that:

(i) x(to) lies in a different connected component of S —T' than xo;
(i4) x(t1) lies in the same connected component of S3— T as Xo.

SQ

0

A%

o=t

Figure 5: Flow of system (33) on an energy level set.

Proof. The spheres S% and 8727/2 are the boundaries of four connected regions in the
energy level set {h = E} ~ S3. These regions are determined by the signs of the
functions ¢o(x) = z1 — (1 + 0)xs and ¢r/5(x) = x4 — (14 0)x, as described in the
following table:
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Region
|11 | Iv
go(x) | — |- |+ |+
¢ﬂ/2 (X) + | - — +

Now we observe that Vo(x) = log(3) and V, 5(x) = log({%) are local Liapounov
functions in the regions I-IV. In fact, we compute along an orbit of system (33)

. d x
Vo = %1og($—;) =~y + (1+ )2,
. d x
Vaje = %log(x—;l) =21 — (14 8)as.
This gives the following behavior for the signs
Region
I | IT|II | IV
Vo - |1+ -
Vapp | - |- |+ | +

Also, we have
83 = {Vo =log(14 )} = {Va/2 =0},
It follows that
VOZdVO(Xh);ﬁO on S(ZJ_S?T/Z:S(ZJ_Fv
Vﬁ/z = de/z(Xh) #0 on 8727/2 - S(ZJ = S727/2 -T
Therefore, X}, is transversal to S2 — I' and to 8727/2 -T.
We now claim that if x(¢) is a solution of system (33) which at time ¢; is in the

interior of some region R (R = I,II,II11,IV) then the solution must leave region
R, so there exists some later time #; > ¢; for which x(#;) is in the interior of region

R+ I (mod 4).
Assume for example x(#;) is in the interior of region I. Then we have
ti
do(x(ti)) < 0= X (t) <1+
X3( z)

If x(t) stayed for ever in region I then its w-limit set would be in
{(Vo=0}N{Vyp=0}=8S3nS%, =T.

This means that the ratio % should approach 1+ &, which contradicts the fact that
in region I we have Vp = log(3t) strictly decreasing. Therefore, x(¢) must leave
region I. The transvesality condition on the boundaries guarantees that there exists
t; > t; for which x(#;) is inside region II.

The reasoning for the other regions is similar, so the proposition follows.
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We have seen that for the spheres §2 and 8727/2 the flow is transversal except at

points of I'. This also holds for any sphere Sz with 6 € [0, 7/2], and we obtain

Theorem 6.4. For any 0 € [0,7/2], the flow of system (33) induces a homeomor-
phism of the sphere fy : S; — S2. The periodic orbit T' divides de sphere S} into two
open hemispheres, and fo fires I' and maps each open hemisphere diffeomorphically
onto the other.

Proof. For any sphere S3 with 6 € [0,7/2], we observe that X}, is transversal to
S7 —T. In fact, we compute

dpg - Xp =(cos + (14 §) sinf)zyzy + (1 + 0)(cosf — sin f)xqz3
— ((14+96)cos +sinb)zsay.

If x € R satisfies ¢g(x) = 0 we have
x=a1(146,0,1,0)+ a3(0,1,0,14 ) 4+ az(sin 4,0,0, — cosb),
for some real numbers a; > 0, as > 0 and a3. It follows that

dog - Xh|829 —=ayaz(cosfsin 6 4 (14 &) cos® ) (40)
+ agaz(cos Osin 6 + (1 + §) sin’ 6).

Therefore, if § = 0,7/2 the hamiltonian vector field X} is transversal to the the
sphere Sz except at those points where ag = 0, i. e., except for those x € T'.

Figure 6: Spheres S for 8 € [0, 7/2].

It is clear from the proof of the previous proposition that an orbit starting on a
open hemisphere of Sz — I will hit first the other open hemisphere before returning.
The theorem then follows from standard results on continuity and differentiability
of solutions o.d.e.’s with respect to the initial conditions. O
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We remark that for 7/2 < 6 < 7 there are points in S — I' where the flow is
tangential, so for these spheres theorem 6.4 fails.
Note also that the spheres Sz and Si/ue are conjugate under the involution o.

Therefore, although all spheres Sg, with 8 € [0,7/2], give the full description of
the dynamics, it is very natural to consider the “symmetric” sphere 81/4. For this

sphere the map f,/4 is conjugated to its inverse fﬂn4 through the involution o.

In the integrable case 6 = 0 it is not hard to figure out the phase portrait of the
map fp. The orbits of this map are the intersection of the cilinders given by the
level sets of the integral I; (or I3) with the sphere Sy (see section 5).

Figure 7: Intersections of Iy = const. with the sphere Sg.

These levels sets consist of

e Two circles of degenerate fixed points corresponding to Iy = I = h/2 (one
circle is T');

e Two elliptic fixed points corresponding to the periodic orbits with the fixed
energy and satisfying, respectively, 1 = 2o =1 and 23 = 24 = 1;

e periodic orbits around the two elliptic fixed points;

In the following picture we show the phase portrait of f/4 on the sphere 81/4 for
6 = 0. Note that we only need the portrait of one of the hemispheres, the other one
being homeomorphic.

Figure 8: Phase portrait of f,/4 for § = 0.
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The phase portrait of the map f for § # 0 is much more complex. To have some
insight we now turn to the study of the stability of periodic orbits.

7 Stability of Periodic Orbits

We shall now consider the stability of the periodic orbits of the family II. Re-
call from lemma 6.1 that these orbits are parametrized by the solutions of the two
dimensional Volterra system

{a = —u+ uv, (41)

v = 4v—uv.

This system is hamiltonian with hg = u 4+ v — log(uv).

For each value hg = E > 2, the periodic solution (u(t, E), v(t, E)) of system (41)
determines a periodic solution I' = I'(9, E) of the original system. Therefore, the
energy parametrizes the orbits in the family II, and we have()

Lemma 7.1. The period T = T(E) of the orbits lying in Il is a strictly increasing

function of the energy. In fact, % > 0.

Proof. See [23] for a proof. O

Later, in theorem 9.4, we will derive an asymptotic formula for the period T'(E)
as F — oc.

Next we will show that the stability of the orbits in the family II can be reduced
to a Sturm-Liouville problem. First we look at the linearization around a periodic

orbit I'(6, E) C II.

Proposition 7.2. Let ' =T'(4, E') C I be the periodic orbit of system (33) associ-
ated with a solution (u,v) = (u(t, E),v(t, E)) of system (41). Then I has one char-
acteristic multiplier equal to 1, and the other two multipliers o1(8, E') and o2(4, E)
coincide with the Floquet multipliers of the linear system with periodic coefficients

W=ﬂ+®(ﬂﬁﬂ)u%m)w- (42)

They satisfy the hamiltonian symmetry
01(0, E)oz(d, E) = 1. (43)

Proof. Let I = {x¢(t) : t € [0,T]} be a T-periodic solution of system (33) associated
with a T-periodic solution (u, v) of system (41). We linearize the system around this
T-periodic orbit and obtain the linear system with periodic coefficients:

i = L(t,0)z, (44)

Note that the energy of an orbit of system (41) and the energy of the corresponding orbit in II
of system (33) are related by a multiplicative factor of (2 + §).
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where L = L(t, ) is given by

—14+v (14d6u 0 0
0X; _ — 1—w +-dv 0
L= (8$1)x0(t)_ 0 —du —1+w 0 (45)
0 0 —(1+0)v 1-u
Now consider the linear change of coordinates given by
0 —(1+496) 0 1
~ 1 0 —(144) 0
=1 o 1 0 1|
1 0 1 0
Then equation (44) is transformed into
1—u (1+8)v 0 0
V;ff . — (1 + 5) u —14v 0 0 ®
o 0 0 1—wu —v '
0 0 U —14+wv

If we make the time-dependent change of variables:
1/131 = v(t)wl, 1/132 = u(t)wz, 1/133 = v(t)w;;, 1/134 = u(t)w4,

we find, using (41), that w satisfies the linear system

0 (14+8&u 0 0

—(1+&v 0 0 0 |
0 0 0 —u |
0 0 vo0

Therefore, we conclude that the linearization around the periodic orbit is equivalent
to two, 2-dimensional, linear systems with periodic coefficients. Let o1 = 04(d, E)
and oy = 02(0, E') be the Floquet multipliers of the first system

U;l . 0 U(t) wy
(o )=oa( G "0 ) ()
and denote by B(t) the matrix of this system. We have
T
0102 = €Xp (/ trB(s)ds) = 1.
0
On the other hand, the Floquet multipliers of the second system
11;3 o 0 —u(t) ws
wy )\ v(t) 0 wy )

also have hamiltonian symmetry. Since w(t) = (1 — u(t),v(t) — 1) is a T-periodic
solution of this system, its Floquet multipliers are equal to 1. O
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Note that u(t, E') and v(t, E') are positive, smooth, T-periodic functions. System
(42) is then equivalent to the eigenvalue equation

W=~ 155 (ufE))/ = (46)

where we set A = 1+ 8, wy — 2 and wy =

. This remark implies

\/Xu(t)
Proposition 7.3. Let &(¢,6, E) (E > 2) denote the fundamental matriz solution of

(42) with initial value ®(0,6, F) = ( é (1) ) and set

f(O,E)y=tr®(T(E),0,E)=01(5, E)+ 032(, E).

Then for each value of the energy E there exists a sequence of parameters §; = §;(E)

and 6; = 6;(F) such that

o<1 <0y <8 <0y<d3<iy<b3<By< (47)
such that

FOAE)BY=2,  and  f(5(E),E)= 2. (45)
Furthermore, we have 6 = —1, §;(E) =0 and 6,(F) < 62(E).

Proof. The existence of the sequence (47) satisfying (48) follows from standard re-
sults in Sturm-Liouville theory (see, e. g., [3] chapter 8 and [6] chapter 5). It is also
obvious that 80 = —1 and, as in the the proof of proposition 7.2, we see that for
6 = 0 we have a T-periodic solution, so é; = 0. It remains to show that &y > &;.

We also know from standard Sturm-Liouville theory that §; = d, = 1 iff there
are two linearly independent periodic solutions of the linear system

w= (o 07 ) (49)

We claim that this is not the case. First we remark that system (49) is (equivalent to)
the linearization of system (41) around the periodic orbit (u(t),v(¢)). This follows
from a computation as in the proof of proposition 7.2. We will show now that the
fact the period of the orbits is a monotone function of the energy (lemma 7.1) implies
that system (49) cannot have two linearly independent periodic solutions.

In fact, we can introduce action-angle variables (s, ¢) in a neighborhood of the
periodic orbit such that system (41) is equivalent to

§=0,
&Z_%ﬂ7
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where hg = hg(s). The periodic orbit (u(t),v(t)) corresponds to some solution
s(t) = c1, ¢(t) = =92 (c)t + ¢, for some constants c; and cy. If we linearize the
system in action-angle variables we obtain the linear system

= oy o)™ o0

ds2

so all that remains to show is that _8;:;0 # 0. Now recall how the action variable

s is constructed (see [2], chapter 10): if the original system is written in canonical
coordinates (p, ¢) then s(E) is the area enclosed by the orbit {ho(p,q) = E'}:

s(E) = / dg A dp.
ho(p.a)<E

Moreover, the period of the orbits is given by

_ 0s

T(E)= 5.

Since we know from lemma 7.1 that % # 0, we have g;é # 0 and implicit differen-

tiation gives _85:;0 # 0 as desired.
O

As a corollary we obtain the following bifurcation

Corollary 7.4. For a fized energy E, the periodic orbit I'(§, E') changes its stability
from elliptic to hyperbolic as § crosses zero.

The family of periodic orbits II we have been discussing so far can also be ob-
tained by linearizing the system around the fixed point q. Recall that a fixed point q
of a 4-dimensional hamiltonian system (M* w, k) on a symplectic manifold is a non-
ressonant elliptic singular point if the eigenvalues A, Ay, A1, Ay of the linearization
of the hamiltonian vector field X} at q satisfy:

(i) {A1, Az} are simple (Ay # Ag);
(ii) each A; has real part zero;
(iii) Aq and A are Z-linearly independent;
In this case we have the Liapounov sub-center theorem (see [1], chapter V):

Theorem 7.5. (LiapouNov) For each pair (\;,A;) there exists a 2-dimensional
manifold of periodic orbits II; through q such that the tangent space Tyll; is the
eigenspace corresponding to the pair (A;, A;).
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The eigenvalues of the linearization of system (33) at q are £¢ and +i¢(1+9). If
d # 0, the eigenspace corresponding to the pair (¢, —%) is

Tqlly = L({(1446,0,1,0),(0,1,0,1+ 0)},
while the eigenspace corresponding to the pair (i(14 6), —i(14¢)) is
Tqll; = L({(-1,0,1,0),(0,1,0,—1)}.

Therefore, for 6 ¢ Q, q is non-ressonant and the family II; given by Liapounov’s
theorem coincides with the family II we have studied before.

There are two other families of periodic orbits II3 and Il through the fixed point
q, at least for small values of §. In fact, for § = 0 we have the two families of periodic
orbits II3 = {a3 = 24 = 1} and IIy = {a; = 22 = 1}. Moreover, it is easy to check
that these orbits are elliptic, and hence must persist for small 4. Note also that
these orbits are conjugated by the involution o.

The stability of the family of periodic orbits Ily is harder to obtain, but we
conjecture that as ¢ crosses zero these orbits change from hyperbolic to elliptic.
This would mean a change of stability between II; and II.

5 <0 d=0 d>0

Ty elliptic parabolic | hyperbolic
II; | hyperbolic | parabolic elliptic (conjectured)
I1;5 elliptic
I1, elliptic

From this table we obtain the following sketch for the phase portraits of the map
Jrja 81/4 — 81/4 as 0 crosses zero (again we consider only one hemisphere, the
other one being homeomorphic):

0=0
Figure 9: Bifurcation of f;/4 as § crosses zero.

In fact, there is much more to this phase portrait as we will show in the next sec-
tion that for § # 0 the system is non-integrable. Also, simple numerical integration
schemes show the appearance of elliptic isles.
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8 Non-integrability

Poincaré [17] observed that the existence of independent integrals in a neighbor-
hood of a periodic orbit forces some of its characteristic multipliers to be 1. This
remark can be explored to look for integrals in a neighborhood of a periodic solution.
In this section we carry through with this idea to show that the dynamics described
by the 4-dimensional hamiltonian system (33) are non-integrable.

The key result is the following theorem due to Poincaré on the relationship
between integrals in involution and characteristic multipliers. For a proof and a
complete discussion we refer to [12].

Theorem 8.1. (POINCARE) Suppose a Hamiltonian system (M,{ , },h) admits
k-integrals I, . .., Iy in involution

{I;,[;} =0, (J,1=1,...,k),
mdependent at some point Xy of a periodic solution I’

xp €I, dI1 A+~ ANdIk(x0) # 0.
Then I’ has 2k — 1 characteristic multipliers equal to 1.

Consider now a 4-dimensional hamiltonian system (M*, w, k) on a 4-dimensional
symplectic manifold, and assume that the system has a non-ressonant elliptic sin-
gular point q € M. We shall say that the system is completely integrable in a
neighborhood U of q if there exists a second first integral I such that

dI N dh(x) # 0, Vx €O,

where O is some open dense set in U. Using the results of Ito [11] and Eliasson [5]
on Birkhoff canonical forms, one can prove the following criteria.

Theorem 8.2. If a hamiltonian system (M* w,h) is completely integrable in a
neighborhood of a non-ressonant elliptic singular point q € M then the only non-
degenerate families of periodic orbits through q are the ones given by the Liapounov
theorem.

Proof. Assume that the system is completely integrable. Then ([11, 5]) there exist
canonical coordinates (&1,&z, 71, 772) defined in a neighborhood of q such that

&+ n? €§—|-77§) &4 n? €§-|—77§)
2 7 9 2 7 2 '

h = h( and I=1I(

If we let

& =V2sicos g, 1 = V/2sisin ¢, (1=1,2)

we obtain action-angle variables in a neighborhood of q:

h=nh(s1,82), w=Y d&ndp=> dsiAd;.
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Now, by Poincaré theorem, if Il is any family of non-degenerate periodic orbits
through q we must have

{ dh A ds |y =0,

dh/\d82|1—[ — 07 - d81 /\d82|H =0.

Since Il is a smooth 2-dimensional manifold, we check easily that this condition gives
II ={sy =0} or II ={sy =0}, i. e., II is one of the families given by Liapounov
theorem. O

We have seen in the previous section that, for § # 0 small, system (33) has at
least 3 families of nondegenerate periodic orbits through q . Hence this criteria can
be applied to system (33) and we obtain

Corollary 8.3. For sufficiently small 6 # 0 system (33) is non-integrable.

9 Strong Hyperbolicity

The results we have obtain so far for system (33) deal mostly with small values
of the parameter § and small values of the energy E (i. e., a neighborhood of q). In
this section we consider other regions of these parameters, and we show that we can
find regions of strong hyperbolicity.

Let us consider again the linearization of system (33) around a periodic orbit
I'(6, E') C TI which, according to proposition 7.2, can be reduced to the linear system

. 0 wu
W_(l—l—(S)(_v O)W. (51)
In polar coordinates, wy = rcos#, wy = rsin @, this system is equivalent to

{ = (1+8)(u—v)rsinfcosf (52)

0= —(1+6)(vcos?+ usin?9)
The second equation defines a flow on R/27Z with rotation number

265 = L lim 6(t, 5, E) — 6(0,4, E)

T t—=oo t

9

where 0(t, 5, E') denotes any solution of the equation. The number p(d, F) mea-
sures (counterclockwisely) the average number of half turns per period of a vector
®(t,0, E)vo when ¢ runs from 0 to +o0o. It is easily checked that p(8, E') is an even
integer if and only if ®(T, 4, F) has positive eigenvalues which is equivalent to say
that f(J, E) > 2. Similarly p(d, E) is an odd integer if and only if (7,4, E') has
negative eigenvalues or equivalently that f(d, E) < —2 (see proposition 7.3). This
implies that p(d, E) is constant in each unstability interval. More precisely, we have

2¢:+1for o 6]52,’4_1, 52i+2[7

0(6,5) = =012
2 + 2 for § €]09;41, d2it2],
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In the intervals where (51) is elliptic one has
£(8, F) = 2cos(mp(6, E)),

and since f(9, F) is a strictly monotone function of ¢ the rotation number p(9, F) is
also strictly increasing in these intervals.

It is shown in [3] that the values of § for which ®(T, 4, F) is a diagonal matrix,
form a discrete sequence (p;(E)) satisfying

< g < oe < by < - — 00,

Moreover, each unstability interval contains exactly one y; so the sequence (47) can
be completed to

(SO = -1 < Sl(E) S ,ul(E)
< 83(E) < p3(E)

and for each k =1,2,..., we have

o u(E). )= (B ) it el E) =

Based on numerical evidence we conjecture that for a fixed energy E €]2, 400,
the amplitude of oscillations of the function § — f(§, E') converges to 4, with oscil-
lations between —2 and 2, as § — 400, while the length of the unstability intervals
decreases to 0 as § goes to +00. This would imply that for a fixed (low) energy level
E there are no parameters with simultaneously high rotation number and strong
hyperbolicity. On the other hand, for large energy levels we have:

Theorem 9.1. For each k =2,3,..., one has
lim [£(ux(E), E)| = +oc
E—oo

In other words, given k > 2, for all large enough E and § sufficiently close to u(E),
I'(6, E) 1is strongly hyperbolic with rotation number k.

The proof of this theorem requires studying in detail the asymptotics of system
(41). This study will be done in the next subsection. After that we return to the
proof of the theorem.

9.1 Asymptotics of system (41)

We are interested in understanding what happens to the solutions of system 41
when E — oo. Let a = a(FE) and § = §(F), with 0 < @ < 1 < 3, be the two unique
solutions of # —logz = £. The points (a, a) and (3, 3) lie in the intersection of the

5
energy level

ho(u,v) = u+v—log(uv) =F (53)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 31

with the diagonal v = v. Let (u(t, E'), v(t, E)) be the periodic orbit of system (41)
with initial condition (u(0, E),v(0,E)) = (a, «), whose period we denote by T =
T(E). From the reversing symmetry o : R? — R? o(u,v) = (v, u), of this system,
which fixes the initial condition (a, @), it follows easily that

w(T —t,F)= wv(t, F),
{ v((T -1, E)) = u((t7 E)) (54)
In particular we get (w(T/2, E),v(T/2,E)) = (5, 5).

It will be convenient to reparametrize the orbits of system (41). For each z €

[ar, 3] let () € [0,T/2] be defined implicitly by
u(r(@) +o(r(e) _ )

5 =

From (53) we get
u(r(2))o(r(x)) = *2.

Thus u(7(z)) and v(7(x)) are the solutions of a quadratic equation:

12 — eZach_E7

= r4+Vz — e2zlE

The reparametrization 7(z) satisfies:

o) = /OT(x)ldt: /OT“)M@:

Notice that by differentiating (55) we get

(w'(t) + o' ()t = (u'(7(y) + ' (7() 7' (y)dy = 2dy.

Notice also that the radicand y? —e?¥*¥ has two simple zeros at y = a and y = 3 and
is strictly positive in between. This guaranties the convergence, for any = € [«, ],
of the improper integral

T(x) = /ax ﬁdy. (56)

Now define for z € (o, §),

(57)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 32

The function u(x, E') can be expressed as a composition of two simpler functions

(e, B) = LML)

T = glente))

where:

e o :[a, 0] — Ry, is the strictly convex function given by

€2xJ_E

@E(x) = 72

e ¢:[0,1[— Ry is the strictly increasing function given by

1oV
g(w)—ﬁ-

21FE

Note also that ¢p takes its minimum value e at the point & = 1 and satisfies

ep(a) = ¢p(f) = 1.
In the following lemma we enumerate some preliminary estimates.

Lemma 9.2. Let E > 2. Then:
(i) For2a<az<f3-1,

sve(r) <alz, B) < ¢p(r) < ——5—; (58)
(ii) If B — oo,
/: (e, E)de = O (Ee“f/?) : (59)
(iii) For2 < z<pf—1,
[ ity < oot (60)

S

Proof. (i) Just check that g (8 —1) < \/52L17 or(2a) < Y2 and

S

-1
2

(i) For all @ < 2 < 1 we have ?*+¥ < az. Then, as E — oo,

Ve Ve
/ a(z)de < / 11 —1ldz = O(aloga) =0 (EeJ‘E/z) ,

[a]

<gw)<w, forall 0<w<

| 8

/ " (e)de < / " on(e)de = O(pp(Va) = O(HF/2).
Vo Vo
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Addition of these inequalities proves (ii).

(iii) From (i) we have
/ ep(r)dx
2

/zzﬂ(x,E)dac
/; 2om(x) (1 - 5) d

= [pr(@)]; = ¢e(2) — ¢B(2) < ¢r(2).

IA

IA

Using the lemma we can prove the

Proposition 9.3.

B(E)
lim u(z, E)dz = log 2.
E—oo o(E)

Proof. Given € > 0, fix = = 2. Making the substitution w = ¢g(z) we have
s=dw = (1 — 1) dz and therefore

/ZBW’E) (1_%>dw B /s;u ggz
- 1og(1+W) log2 — O (¢g()),

where the remainder O (pg(2)) is positive and converges to zero as E — oo. Thus

B 1 € B - 2e p -
—u(z, B)dz < 3 w(z, E)dz < 3 w(z,E)[1—=|dz
z € z

o X

< Slog2<

Taking F large enough, we obtain

B
log2 — / u(z, E)dz

IA
)
%\
=
O
+
|
+
A
=
0

O

We can state and prove our final estimates for the asymptotic behavior of solu-
tions of system (41).
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Theorem 9.4. Let u(t, E) and v(t, E) be solutions of (41) with energy E and period
T =T(E). Then:

T/2
(i) lim u(t, E)dt —log2 =10;
E—oo 0
T/2
(7) lim v(t, E)dt —23(E) =0;
E—oo 0

(iii) lim T(E) - 2(3(E)+log2) = 0.

FE—oo

Proof. From (57) we get,

T/2 3
/ u(t,E)dt:/ w(z, E)dz, and
0 o]

/OT/zv(t,E)dt — /jﬁ(ac,E)dac:/j2+@(x7E)dx
= 2(ﬂ—&)+/ja(ag,E)dx7

so (i) and (ii) follow. To prove (iii) we remark that for all #, 1 = u(t) + & (log v(t)).
Thus

T T/2 Ié]
5:/ u(t)dt—l—logﬁ—logoe:/ w(z)de 4+ — a.
0 o]

9.2 Proof of theorem 9.1

The following notation is used throughout this subsection. An integer k > 2 is
fixed and we denote by

wi=[ 0] = [ ety |

the first column of the fundamental matrix solution ®(¢, ux(E), E) of system (42)
with 6 = g (E).

It is clear from (52) that # : R — R is a diffeomorphism with #(0) = 0. Thus
given p € R there is a unique t, € R such that (¢t,) = —pr. Geometrically, ¢, is
the time it takes for the vector w(t) to execute p half-turns (it helps to think about
this vector as being attached to the periodic orbit). Of course o = 0 and, because
p(ji E) = b, t = T(E).
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Since f(ux(E), E) = ar(E) + ax(E)*!, we only have to show that |ay(E)| — oo
as B — oo. We write

t t t
|ak(E)| — |w1(tk)| — |w1( k)| |w1( kl1)| . |w1( 2)| |w1( )|
lwi(tkr)| lwi(ter2)l Jwi(t)] Jwi(to)]
In propositions 9.8 and 9.11 below we show that, for large E, (i) |wy(¢;)] > w1 (t;.11)]
forall 2< j <k —1, and (ii) the quotient I 1E ;I is very large while || (t(k )1|)| has a

lower bound close to 1. Therefore, we see that

lan(E)| > lwi (k)| [wi(t1)]

lwy (tk11)| [wi(to)]
so the theorem follows.

We start with a upper bound on the numbers py.

is very large when F is large,

Lemma 9.5. If E > 2 is large enough and k > 2 then 0 < ui(F) < 3k — 1.

Proof. Using theorem 9.4 and the symmetry relation (54) of the previous subsection,
6(T) = 6(T/2)| + [6(T/2) — 6(0)]

T T/2
= (1—|—,uk)/ vecos? 6 4+ usin? Odt + (1—|—,uk)/ veos? 6 4+ usin? Odt
T/2 0

kr

T/2
> 21 ) [ u(tydt > 20+ ) log2 > (14 m) log3,
0

which implies 1 4+ pp < % < 3k. U

Next we show that, for large F, the vector w(t) executes all half-turns in the
region u 4+ v > 1.

Lemma 9.6. If E > 2 is large enough,

u(t;) + U(t;)
(i) % >3- glogE, and
ulty 1 vty 1
(i) ( kJ_g)—QI' (frr1) 56 glogE.
Proof. Defining 6 : (o, 3) — R as 6(x) = 0(7(z)), we see that it satisfies
0(r) = —(1+ ) (@(x) cos? B(z) + a(z) sin? é(x))
= —(1+m) (2c05*0(2) + i(x) ) - (61)

Similarly, if we define  : (a, 3) — R setting 8(z) = 6(T — 7()), this function solves
the equation,

0'(x) = (14 ) (@) cos? b(z )—I—Tj(x)sinzé(ac))

= (14 px) (2sin?6(z) + 12(96)) . (62)

(@
(
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The proofs of (i) and (ii) run by contradiction. Assume

u(t;)—l—v(t;)
— 2y g glogE.

L
2 2

and take z, < z1 such that é(w*) = —g 4+ EL7/6. The variation of @ in the inter-
2

0(x.) —0(21)| = EX7/®, which is a small. But from equation (61)
2

we will derive the conclusion that this variation must actually be much smaller, a

contradiction. Since [z, x%] Cla,p— %log E], by inequality (60), we have

val [z, 21] is
2

T1
[Fawite < on (5= 21ou ) <2845

*

provided E is large enough. On the other hand, we also find

/x% cos? B(z)dx < /x% (é(ac) + g)z dx
(Y ()
< BYBE = Ei4/3.

Thus

= /j% (14 px) (ﬂ(x) + 2 cos? é(w)) dx

*

S 12kEJ_4/3 < EJ_7/6.

This contradiction shows that (i) must hold.
To prove (i), define , € (o, 3) such that §(z.) = —kr + EX7/. Since EL7/6 is
much smaller than 7/2 we must have

and therefore

We only have to show now that z., > 3 — %log E. Assume, in order to derive a
contradiction, that

2
T < 0 — 3 log F.
The variation of § in the interval [a, 2,] is ‘é(x*) — é(oe)‘ = E*7/5 but from equa-

tion (62) it will follow that this variation should be much smaller. As before since
[, 2] C [er, B — %log E], we have
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and

Tx N Tx N 2
/ sin? f(z)dx < / (0(36) + kﬂ') dz < B3,

e

Thus we have the same contradiction as before,

EJ_7/6 —

b(z.) — é(a)‘ < 12k EL3 « BLTS,

O
u(t)

We also observe that on the region v+ v > 1 the quocient Wi) decreases. In fact
we have:
Lemma 9.7. The quotient ult) e strictly decreasing if w +v > 2, 1. e., inside the

u(t .
interval [T7(1),T — 7(1)]. This is the same as saying that % decreases in [1, 3].

~—|

o>

Proof. Just check that

and use the definition of 7(z). O
We can now prove the
Proposition 9.8. If E > 2 is large enough,
[w1(ter1)] > [wi(terz)| > - > wi(t2)] > [wi(td)].

Proof. From lemma (9.6) we have,

t t 2
ol S 5 210ps,
2 3
for all t € [ti,t;,,1]. Thus, from lemma (9.7), the quotient % decreases in the
2 2
interval [t1,t511] and we only have to prove now that |wy(¢;41)| > |wi(t;)| whenever

u(t)

o) decreases in [t;,t;41]. Defining the quadratic form in the (wy, we) plane

Qi(w)=Q ., 1( ) i + i
i w) = . w1, Wy ) =
ity AR u(tipn)  oltiy)

let us show that we have

d
%Q]+%(w(t)) >0, Vt € [t]‘,t]‘+1]. (63)
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We compute:

1d _w(Hwi(t)
5%62]‘4_15(“)(75)) Tt :

= u(t) v(t)

- (“(tng) - ”(tng)) wi(t)ws(t)

at) (W) @
v(t;1) (u(t u(t)) H(Bws(t).

j+15)

= (14 m)

Now, for t € [t;,t we have wq(t)wq(t) < 0 and for ¢ € [t.,1,t;41], we have

j+%]7 Jjt3?
wy (t)wq(t) > 0. Since % decreases in [t;,t;11] we conclude in both cases that (63)
holds.

Finally, we obtain

which gives | (tj41)] > |wi (t,)].
O

We now look at what happens for t close to ty = T and t; = 0. We need two
lemmas.

Lemma 9.9. If E > 2 is large enough,

> EL4/37 and

1
) =6
)

L Yo
U(tug)

(i)

(i)

Proof. Define, as in lemma 9.6,

u(t;) —I—U(t;)
x% = 2 5 2 =4 T(w%) = t1§7
and
ultey ) +olteo)
Teil = : 5 = o T- T(ka_%) =t
Then
u(t;) ﬂ(acl) ﬂ(ac;
2 = — 2 — ~2 , (64)
v(tL)  o(xy) 2—|—u(x%)
2 2
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and analogously, from (57) and (54), it follows that

U(th_§) B ﬂ(wa_%) _ a(ka-%) (65)
oltiry)  Oleay) 2 aeg )

By lemma 9.6, we have z1,2;,1 > 3 — %log E. Then, using lemma 9.7, we see that
2 2

both quotients (64) and (65) are greater or equal to % with 2 = 3 — 2log E.
a(x

But from (58) we have

u(z) i(z) _pp(z) 1 ( 2 ) L o14/3
> 1) _ - _ZlogE) > ZE
ra@ > 3 = 6 erE\fTglesE )2 gET

and this proves both inequalities.

Lemma 9.10. If E > 2 is large enough,
(i) |walty)

(i6) |wz(T = 7(1))] < |wi (T)] /2.

> |wy(to)| E5/S, and

Proof. We first prove (i). Since the function |wq(7(z))| is strictly increasing in the
interval [ov, z1], where it ranges from 0 to wz(f1), and also because
2 2

2
0<ﬁ—§logE<ac%7

(see lemma 9.6), we must have

2
‘wzor (ﬂ — glogE)‘ < ‘wz(tk) .
2
Therefore it is enough to prove now that

2
lwo(t)] > B¢ with t=r7 (ﬁ — glogE) .

Assume not, i. e., |wy(t)| < E*/6. Then

()~ 1) = Jwrlt) — wi0)] < (1+ ) /Otu<s> a(s)] ds
mglogE
< @ m)lea(o)] [ i(w)da
< (k) o)l o (5 - 108 )

6k E5/6
< E4/3

= 6kE*/?,
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which implies that |w(s)| > %, for any 0 < s < t. But then

[wa(t)] = Iwz(t)—wz(0)|=(1+uk)/o v(s) [wi(s)| ds
1 mglogE~
> 5/0( v\i?dw

> ﬁ—glogE—oe:O(E)7

contradicting the assumption |wy(t)| < E*/®. This shows that (i) holds.
To prove (ii), we use the estimate (59):

wp(T — 7)) = |walT) — wy(T — (1))
T
= (1 v(t) |wy ()| dt
( +uk>/w(1) (1) s (1)

T(1)
< (1t m) / u(t) i (T)] dt

IA

(4 fun(D)] [ a)da

< 350 (B P12 |wi(T)| < 25/ Jwy (T)]

We can now show the

Proposition 9.11. If F > 2 is large enough,

] L 1/6 | an
(1) Iﬂh(tl)IZﬁE w1 (to)], and

(ii) Jwr ()] > (1= ) fw ().

Proof. Consider the quadratic form

Y
Because - decreases in [t1,?;] (see lemmas 9.6 and 9.7) we have, just as in the proof
2

of lemma 9.8, %Q;(w(t)) > 0 for all t € [ti,t;]. From this fact and lemmas 9.9
2 2
and 9.10 we obtain

w (tl)z

AV
= 2 =
~ o~ o~

e Nl e

N
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which proves (i).
Similarly, we consider the quadratic form

w2 w2
Qpi(w) = ———+ ———.
ks U(tkﬂg) U(th_lg)

As before, because £ decreases in [t;11,T — 7(1)], we have £Q, 1 (w(t)) > 0 for
2
t € [tki1,T — 7(1)]. Therefore, using again lemmas 9.9 and 9.10, we obtain

= Quuy (w(tesn)

< Quuy (0T - (1)
wl(T—T(l))2 wz(T—T(l))2

ultyy1) v(tgit)
. wl(T)z N eJ_zE/Swl(T)z
B U(tug) U(tug)
o @ (L e lky)) o™y (14 c47)
B U(tk%) U(th_%) _u(th_lg) 7

which implies

fwrlten)] < Jor ()] (14 72) < (@] (1= HF9)
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