
Chapter 6
Verhulst and the logistic equation (1838)

Pierre-François Verhulst was born in 1804 in Brussels. He obtained a PhD in math-
ematics from the University of Ghent in 1825. He was also interested in politics.
While in Italy to contain his tuberculosis, he pleaded without success in favor of a
constitution for the Papal States. After the revolution of 1830 and the independence
of Belgium, he published a historical essay on an eighteenth century patriot. In 1835
he became professor of mathematics at the newly created Free University in Brus-
sels.

Fig. 6.1 Verhulst
(1804–1849)

That same year 1835, his compatriot Adolphe Quetelet, a statistician and director
of the observatory in Brussels, published A Treatise on Man and the Development of
his Faculties. Quetelet suggested that populations could not grow geometrically over
a long period of time because the obstacles mentioned by Malthus formed a kind of
“resistance”, which he thought (by analogy with mechanics) was proportional to
the square of the speed of population growth. This analogy had no real basis, but it
inspired Verhulst.
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Indeed, Verhulst published in 1838 a Note on the law of population growth. Here
are some extracts:

We know that the famous Malthus showed the principle that the human population tends to
grow in a geometric progression so as to double after a certain period of time, for example
every twenty five years. This proposition is beyond dispute if abstraction is made of the
increasing difficulty to find food [. . . ]

The virtual increase of the population is therefore limited by the size and the fertility of
the country. As a result the population gets closer and closer to a steady state.

Verhulst probably realized that Quetelet’s mechanical analogy was not reasonable
and proposed instead the following (still somewhat arbitrary) differential equation
for the population P(t) at time t:

dP
dt

= r P
(

1− P
K

)
. (6.1)

When the population P(t) is small compared to the parameter K, we get the approx-
imate equation

dP
dt

� r P ,

whose solution is P(t) � P(0)ert , i.e. exponential growth1. The growth rate de-
creases as P(t) gets closer to K. It would even become negative if P(t) could exceed
K. To get the exact expression of the solution of equation (6.1), we can proceed like
Daniel Bernoulli for equation (4.5).

Dividing equation (6.1) by P2 and setting p = 1/P, we get d p/dt =−r p+r/K.
With q = p− 1/K, we get dq/dt = −r q and q(t) = q(0)e−r t = (1/P(0)−
1/K)e−r t . So we can deduce p(t) and P(t).

Finally we get after rearrangement

P(t) =
P(0)ert

1+P(0)(ert −1)/K
. (6.2)

The total population increases progressively from P(0) at time t = 0 to the limit
K, which is reached only when t → +∞ (Fig. 6.2). Without giving the values he
used for the unknown parameters r and K, Verhulst compared his result with data
concerning the population of France between 1817 and 1831, of Belgium between
1815 and 1833, of the county of Essex in England between 1811 and 1831, and of
Russia between 1796 and 1827. The fit turned out to be pretty good.

In 1840 Verhulst became professor at the Royal Military School in Brussels. The
following year he published an Elementary Treatise of Elliptic Functions and was
elected to the Royal Academy of Belgium. In 1845 he continued his population

1 One usually speaks of geometric growth in discrete-time models and of exponential growth in
continuous-time models but is is essentially the same thing.
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Fig. 6.2 The population of Belgium (in millions) and the logistic curve. The data points corre-
spond to the years 1815, 1830 and 1845. The parameter values are those of the article from 1845.

studies with an article entitled “Mathematical enquiries on the law of population
growth”. He first turned back to Malthus’ remark according to which the population
of the USA had doubled every 25 years (Tab. 6.1). If we compute the ratio between

Table 6.1 Official censuses of the population of the USA.

Year Population

1790 3,929,827
1800 5,305,925
1810 7,239,814
1820 9,638,131
1830 12,866,020
1840 17,062,566

the population in year n + 10 to that in year n, we find respectively 1.350, 1.364,
1.331, 1.335 and 1.326, which is fairly constant. The population was hence multi-
plied on average by 1.34 every 10 years and by 1.3425/10 � 2.08 every 25 years.
So it had continued to double every 25 years since Malthus’ essay, almost half a
century earlier. However Verhulst added:

We shall not insist on the hypothesis of geometric progression, given that it can hold only
in very special circumstances; for example, when a fertile territory of almost unlimited size
happens to be inhabited by people with an advanced civilization, as was the case for the first
American colonies.

In his article Verhulst also returned to equation (6.1), which he called “logistic”.
He noticed that the curve P(t) increases with a positive curvature (it is convex) as
long as P(t) < K/2 and then continues to increase towards K but with a negative
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curvature (it is concave) as soon as P(t) > K/2. So the curve has the shape of a
distorted letter S (Fig. 6.2).

Indeed, d2P/dt2 = r (1 − 2P/K)dP/dt. So d2P/dt2 > 0 if P < K/2 and
d2P/dt2 < 0 if P > K/2.

Verhulst also explained how the parameters r and K can be estimated from the
population P(t) in three different but equally spaced years. If P0 is the population
at time t = 0, P1 that at time t = T and P2 that at time t = 2T , then a tedious
computation starting from equation (6.2) shows that

K = P1
P0 P1 +P1 P2 −2P0 P2

P2
1 −P0 P2

, r =
1
T

log
[1/P0 −1/K

1/P1 −1/K

]
.

Using the estimations for the population of Belgium in the years 1815, 1830 and
1845 (respectively 3.627, 4.247 and 4.801 million), he obtained K = 6.584 million
and r = 2.62% per year. He could then use equation (6.2) to predict that the popula-
tion of Belgium would be 4.998 million at the beginning of the year 1851 and 6.064
million at the beginning of the year 1900 (Fig. 6.2). Verhulst did a similar study for
France. He obtained K = 39.685 million and r = 3.2% per year. As the populations
of Belgium and France have in the mean time largely exceeded these values of K,
we see that the logistic equation can be a realistic model only for periods of time of
a few decades, as in Verhulst’s 1838 article, but not for longer periods.

In 1847 appeared a Second enquiry on the law of population growth in which
Verhulst gave up the logistic equation and chose instead a differential equation that
can be written in the form

dP
dt

= r
(

1− P
K

)
.

He thought that this equation would hold when the population P(t) is above a certain
threshold. The solution is

P(t) = K +(P(0)−K)e−rt/K .

Using the same demographic data for Belgium, Verhulst estimated anew the param-
eters r and K. This time he found K = 9.4 million for the maximum population. We
see how much the result can depend on the choice of the model!

Verhulst became president of the Royal Academy of Belgium in 1848, but died
the following year in Brussels, probably of tuberculosis. Despite Verhulst’s hesita-
tion between model equations, the logistic equation was reintroduced independently
several decades later by different people. Robertson used it in 1908 to model the in-
dividual growth of animals, plants, humans and body organs. McKendrick and Ke-
sava Pai used it in 1911 for the growth of populations of microorganisms. Pearl and
Reed used it in 1920 for the growth of the population of the USA, which had started
to slow down. In 1922 Pearl finally noticed the work of Verhulst. From then on, the
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logistic equation inspired many works (see Chapters 13, 20 and 24). The maximum
population K eventually became known as the “carrying capacity”.
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