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ABSTRACT

algorithms for data interpolation are a major problem in geachemical characterization at big scales, particularly experienced during
» «.auation of prospecting results (based either in soil or rock analysis).

Nifficutties related to sampling (lack of outcropping rocks or non accessible areas for soil collection) are two of many factors that
- enty constrain the resuits obtained by the usual methods of data interpolation.

The presence of a high background noise compromises often the interpretations, generating additional problem on the identification
1+« mitation of the most significant geochemical halos. Notorious differences between the real geometry presented by the geochemical
+ - v es and the images produced via data interpolation (using more or less sophisticated statistical procedures), are also quite common.

Fractal interpolation has proved to be a powerful tool in problems of highly complex data interpolation, such as the brownian motion.

“he application of IFS (lterated Function Systems) algarithm to sampled data from a theoretical model pointed two main conclusions:

') The complexity of the interpotated curves closely resembles the complexity of the original data distribution;

2. Geochemical anomalies masked by an unaccurated sampling method were evidenced by the fractal interpolation methodology.

INTRODUCTION

The interpretation of geochemical data is frequently complicated by the discrete and
metimes inadequate sampling, which allows a quick determination of the general
maracteristics of the distributions statistics, although the details of such distributions are
“ssed.
The interpolation between sampled data points as always been a major concern to
geoscientists dealing with chemical elements distribution. The use of linear
‘“rpolation algorithms was the first attempt to describe the characteristics of a
“oulation from a restricted sample set. The inadequacy of such procedure is evident
*"°n we attempt to make data interpolation to sample sets withdrawn from a harmonic
“ction for example. This led to the use of increasingly complex functions in interpolation
“nthms such as polynomial or harmonic. Although the use of these functions is
- iderably more complex than the simple linear interpolation procedure, their ability to
et Le highly irregular objects is very restricted since the degree of complexity is
“19ly dependent on the observation scale.
During the last two decades the theoretical development of fractal geometry
. “Ols evidenced a wide group of new functions, with infinite degree of complexity,
-:ddescribe in a suitable way natural forms and processes. These new functions are
ol “.QUI tools to solve problems of data interpolation in highly complex populations.
.. "©pattern of chemical elements distribution in the crust is mainly constrained by
Cutcropping lithologies; 2) sampling procedures; and 3) intrinsic analytical errors.
. “7huently, for most of the geological contexts, a geochemical traverse is an irregular
L Fand SO an interpolation method based on fractal geometry is probably much more
‘“hate to characterize it than any other statistical approach.
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ITERATED FUNCTION SYSTEMS (IFS)

There are several ways to construct a fractal object (for more detalls see Peitge
al. 1992), although lterated Function Systems (IFS) are one of the simplest for drawing
deterministic attractors (such as the Von Koch curve, the Sierpinski carpet or ¢
Merenger sponge) through the estimation of y values from randomly selected x vake
The method is based on the application of randomly selected at each iteration fire
transformations W, which are combinations of contractions, rotations, shears z
translations. '

The deterministic attractor has a number of fixed points controlling its geomsr
which verify:

let F: X — X be a transformation in the metric space.
If x € X and F(x)=x then xis a fixed point.

The linear transformations W, may be calculated from the attractor fixed points a

have the general formula:

LGl o

where a;, b;, ¢;, d; are parameters that control contractions, .shears and rotations (and I'm
values ranging from -1 to 1) while e; and f; describe the translatlons

During the first iteration a transformation W, is randomly selected among the aﬂﬁ
of possible transformations, and applied to the initial point (xg,Yo), giving as result a ne
point belonging to the attractor (x4,y4). In the second iteration a new random selectiont
W, is made and then applied to (x;,y1) giving (X2,y2) as a result, and so forward ™
number of iterations needed to define the attractor depends on the contractivity of
fractal image (Horn, 1991).

l
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FRACTAL INTERPOLATION R

Barnsley (1988) proposed an IFS based method capable of interpolaté ?‘#‘
complex functions as fractal curves. Using data points as fixed points (5'”‘7e

interpolated curve must contain them) the data related transformations can be det

and then used to construct an interpolated curve. In order to simplify the nu M

unknown parameters, Barnsley (1988) constrained the shears along X by setting =%

zero. With this simplification the general formula of transformations becomes: Z

.1

b} t O} m ' m @)

Since in this new formulation there are more parameters than linear equations.
left d as free parameters, estimated by the user for each case. HOW@VSer
determination of d;, the above mentioned procedure as two main disadvantag®

1) for N data points there will be N-1 d parameters, making indi
assessment very time consuming;
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2) the evaluation by the user strongly biases the final interpolation result,
recause this can only be done if there is a previous expectation concerning the
rpsults.

ffforts have been made to estimate d; parameters directly from the data and
,~,ah encouraging results were achieved the basic postulate of d € [-1,1] was not
-..~1ed (for more details see Demko, 1989).
in the present work the basic principles of fractal interpolation of geochemical data
... applied, namely for the construction of geochemical traverses. A computing routine
+ple of performing fractal interpolation of two-dimensional data was developed. The
. .t continuity of natural data due to poor outcropping or economic constrains led us to
- onstruction of a theoretical model which represents a gold-vein mineralization with
re strongly detached from the background. From a 400x400 points grid several
~emical traverses were constructed, from which sets of 40 samples were randomly
-+ed The routine developed was then applied to the 40 sample sets, and the results
-~ -ompared with the complete traverses. Since the attractor construction is strongly
vendent on d; parameters several attempts were made to devise a method of
“ermining them from the data sets.
he formulation proposed by Barnsley (1988) has another disadvantage when trying
erpolate natural data since this author used alf the sampled data simultaneously for
+ ~alculation of W, This option is supported by the concept of self-similarity
~ractenstic of all fractal objects, in which the geometry of every piece must reflect the
~try of the whole object. However geological objects are not strictly self-similar, and
i+ studied object - gold-vein mineralization - at least two reasons may be pointed
sroning the existence of strict self-similarity: 1) the primary concentrations of gold
- 'n discrete areas with a restricted scale of characterization; 2) results from fractal
"nng studies of gold contents in drill-cores (Ribeiro, 1994), suggests that fractal
©4ior of gold concentrations distribution is only valid in specific scale ranges.
“"'f’r)re the determination of W, must be done between data points with a significant
" " on and not between all data points as proposed by Barnsley (1988).

"?SL%LTS AND DISCUSSION
_°rder to evaluate the potential of fractal interpolation procedures, the developed
:.,.Jrathm was applied to the following different cases:

Jata sampled from Euclidean functions (e.g. straight line, sine curve,
~a‘abola);

‘ data sampled from the host-rocks of the theoretic mineralization (background
Thues on!y)

a3t

' a sampled from the theoretic mode! of a gold-vein mineralization.
' jﬂses 2) and 3) a linear interpolation algorithm was also applied to the sampled
'{’j‘"‘“aﬂced the main differences between the two methods.
.. [ ‘=ral attempts were made in order to properly estimate d; parameters, and the
,‘:‘S'”g considers a proportionality relation between d and the sine of the angle
77 "€ vectors connecting data points to the axis origin.



Fractal interpolation curve, linear interpolation curve and the complete trayey,

curve cross cutting the ore (fig. 1) were compared. The following conclusions e,
reached:

i) linear interpolation produces an oversimplified image of the complets
geochemical traverse masking the true complexity of the curve;

ii) the fractal interpolation algorithm produces more complex curves (closer to
the original population curve) and geochemical anomalies in fig. 1 (arrow),
masked by linear interpolation, are evidenced by this interpolation method with
a anomaly/background ratio closer to the reality.

iii) some discrepancies between the fractal interpolation curves and the original
data curves, are due to inaccurate evaluation of d parameters (controlling
shear along Y).
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Fig. 1 - Geochemical traverses through the ore. A: Fractal interpolation resutts; B: Linear ingerpdam“ from €9
traverse. Circles represent sample location. Vertical scaling in ppm. Horizontal axis representing distance

origin.
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-ONCLUSIONS
The interpoiation of data from highly complex populations has always been a major

. ~iem in science. The use of interpolant functions from Euclidean geometry was a poor

ometimes not satisfying approach to data handling. Geochemical traverses are

g the group of very complex curves, due to the intrinsic variability of elements

. ~ution, poor sampling and analytical constrains. Usually, in geochemical surveys the

e construction is made by linear interpolation of the data, that although describing

..neral characteristics of the population distribution, potentiaily masks the details of
- population, inducing miscalculations in ore reserves calculations.
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Geochemical traverses through the ore. A: Fractal interpolation results; B: Linear interpolation resuits; C:

“ulete traverse. Circles represent sample location. Vertical scaling in ppm. Horizontal axis representing distance from the
T earehical ongin
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actal interpolation algorithms, namely the lterated Function Systems, exhibit a
sensitivity for dealing with very complex populations such as geochemical
- on of elements. Traverses constructed from IFS routines have a complexity

0 the original population, reveal anomalies otherwise masked by linear
~ 7lion routines, and forces the ratio anomaly/background to values closer to the

X33

"“:Se are promising results for the geochemical surveys specially in cases of poor
"4 conditions.
“% use of IFS for three-dimensional interpolation is a more complicated problem
“ number of free parameters increases to four. The possibility of estimating the
“imeters from the data is presently under investigation.
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