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Abstract 
The Cu soil geochemistry data set covering 570 km2 of the Ferreira do Alentejo – Serpa region is 

examined in detail by means of complementary numerical procedures. The obtained results show that it is 
possible to discriminate promising exploration targets concerning different mineralising systems on the basis of 
threshold values and spatial anisotropy parameters. 

Introduction 
In the Ferreira do Alentejo – Serpa region, there are several evidences supporting the presence 

of different mineralising systems, namely those involving Cu-bearing sulphides (e.g. Oliveira, 1986; 
Mateus et al., 1998; Jesus, 2002). These systems represent a variety of geological settings, ages, and 
thermal ore-forming conditions achieved during the Variscan Orogenic Cycle, some being 
characteristic of the Ossa Morena Zone southern border. That is the case of: 1) Ni-Cu(-Co) sulphide 
disseminations in deformed and metamorphosed wehrlite-troctolite rocks of the Beja-Acebuches 
Ophiolite Complex (e.g. Palmeira prospect); 2) Ni-Cu(-PGE?) sulphide disseminations in some 
gabbroic layers belonging to the lower sequences of the Beja Igneous Complex (BIC) (e.g. Balona 
site); 3) Cu(-Ni) veins and stockworks within metasomatic haloes developed in the upper layered 
gabbroic series of BIC (e.g. Castelo Ventoso quarry); 4) Cu(-Ag-Au?) epithermal type mineralisation 
related to the late porphyry intrusives of BIC (e.g. Caeirinha prospect); 5) Cu sulphide disseminations 
in strongly carbonatised rocks adjoining WNW-ESE shear zones (e.g. Western Mombeja prospect); 
and 6) Sb-Cu(A-Au?) quartz-carbonate lodes closely related to N-S to NE-SW strike-slip fault zones 
and/or to their particular secondary structural features (e.g. Ventosa prospect). Considering such a 
large diversity of coexisting Cu-bearing systems, is it possible to accurately discriminate promising 
exploration targets of each type on the basis of soil geochemical data? Theoretically yes, because 
differences in threshold values and in the anisotropy of the anomalies (ellipse axial ratio and 
orientation) are expected for each system provided a minimum disturbance of the soil geochemical 
signal occurs (strong physical erosion, surface run-off, topography driven creep). In the Ferreira do 
Alentejo – Serpa region, significant mixing of geochemical signals due to different mineralising 
systems is hard to occur because of a relatively uniform and smooth topography and a very mature 
drainage system. Therefore, this region seems suitable to test numerical procedures aiming the 
separation of soil geochemistry anomalies having different causes and thresholds, determining also 
their spatial anisotropy. An immense Cu soil geochemistry data set covering a large area (570 km2), 
following a regularly closely spaced grid (usually 100 x 100m) was numerically processed – Fig. 1A –
and the results were cross-validated with the accessible geological knowledge of some areas. 

Numerical procedures 
The multifractal character of the geochemical data set was determined by computing its 

multifractal spectrum for different areas using the method of moments (Halsey et al., 1986), and 
correcting for edge effects (Gonçalves, 2001). Anomaly separation and threshold computation used the 
Area-Concentration multifractal model (Cheng et al., 1994). This model has proven useful for the 
identification of anomalies either at a local or regional scale in different metallogenic settings 
(Gonçalves et al., 2001). Geochemical maps were produced by ordinary kriging, but a substantial 
effort was put into variogram modelling as a way to study spatial variability and anisotropy. 
Experimental directional variograms were computed and fitted with theoretical models. Anisotropy 
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ratio and direction was modelled with VARIOWIN (Pannatier, 1996). The output maps use the 
computed thresholds as cut-off for the contoured areas. 

Results 
Table I summarize the most relevant results categorized according to the 1:25000 Portuguese 

topographical maps number. The geographical positioning of these maps is shown in Fig. 1A, together 
with the location of the selected examples shown in Fig. 1B, 1C, 1D and 1E. 
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Fig.1 – A: Geographical positioning of the surveyed area following 
a regular grid (usually 100×100 m) originally defined in 1:5000 
scale maps; the coordinate system used is the International Gauss 
Ellipsoid Lisbon Datum. The numbers and limits of the Portuguese 
1:25000 topographical maps are also shown, as required by results 
displayed in Table 1. Areas in grey mark the selected examples of 
Cu-anomalies (B, C, D and E); greyscale in ppm. 
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