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This note supplements the lecture delivered at Academia das Ciências de Lisboa, November 27, 2009, on 
the interpretation of quantum mechanics. Although decoherence has been briefly referred to in the 
lecture, it has not been included in the resulting chapter “The Interpretation of Quantum Mechanics 
Revisited”, in "Quantal Aspects of Chemistry and Physics", Chapter 5, pgs. 45-77 (eds. J.Redinha; J. da 
Providência; A.Varandas), Coimbra University Press, 2011. 
 

Classical mechanics states that the positions (qi) and momenta (pi) of a N-particle system (i = 1, 
2,…,N) are precisely defined simultaneously at any instant. So are other dynamical properties, 
functions of positions and momenta. The state of the system at time t is defined by the set of values 
[qi(t), pi(t)], i.e., it is identified with observable variables. 
An experimental measurement on the system reveals the values of the properties that otherwise 
would remain unknown, though well-defined. The measuring device just “look” and register what 
the values really are. Any measurement has, of course, ever-present uncertainties but the real values 
of the properties can always be estimated by treating the random errors. 
Ultimately, we do not even need to make successive experimental measurements. It suffices to 
know precisely the initial positions and momenta of the particles (for instance, by a measurement at 
the starting instant) and to resolve the motion equations from there on. Then, we should be pretty 
certain about the values of the properties of the system at any posterior instant. So, a measurement 
would be no more than a confirmation of what we already know. Alternatively, Liouville's equation 
can project the system in phase space and work out the respective probability density functions. 
Whatever the choice, one point seems clear: in the classical picture a measurement device is just 
one of the tools to know the properties of the system assuming that their real and ever-deterministic 
values are not significantly affected. 
Is this strictly acceptable? Indeed, a measurement device interacts, so the observed system certainly 
loses its eventual isolation. In principle, one should somehow include additional terms into the 
motion equations for describing the interactions, predict and explain the observations: why “this” 
and not “that” value? No such need for classical mechanics: the device disturbances can always be 
reduced to a minimum and the values of the properties are already “imprinted” upon the particles at 
any instant. Thus, just “look and register” with no further worry.  
Classical statistical mechanics do not neglect, however, the role of the environment in non-isolated 
systems. It is introduced explicitly into the probability density functions or in the molecular 
dynamics equations of motion, considering different constraints (e.g. temperature, pressure and 
chemical potential). Average values and molecular trajectories are then predicted for comparison 
with experimental observations. Nevertheless, the explicit consideration of the measuring devices is 
generally absent, supposedly accounted for the estimation of random errors. The observer/device 
appears like an outsider to the system that flows independently “out-there”. In other words, it is 
assumed that the information about a given system can be obtained without influencing its state. 
 
The structure of the orthodox (conventional) quantum mechanics is quite different. The state of a 
system is not identified by a set of observable variables (as in classical mechanics) but by a vector 
|Ѱ(qi; t)> of Hilbert’s space, where the qi’s are “dummy” position variables. The physical properties 
are represented by linear Hermitian operators, and the positions and momenta, for example, are no 
longer well-defined, simultaneously and precisely, at a given instant. The only possible observable 
values (Ak) for a property A, represented by operator Â, are the solutions of the eigenvalue 
equation: 
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Â |αk> = Ak |αk>  (k = 1, 2, …) 

 
where the |αk>’s are the eigenvectors constituting a basis of Hilbert’s space. As such, an arbitrary 
pure state |Ѱ> can be represented by a coherent superposition of these pure basis vectors: 
 

k k
k

| | |      

Now, two postulates of quantum mechanics: 
 
a)  If A is measured on an arbitrary state |Ψ>, the strongest predictive statement that can be made is 
that the probability of obtaining the value Ak is |<αk|Ψ>|2. 
 
b) A measurement generally changes non-deterministically the state vector. Regardless of the state 
before the measurement, immediately after it the new state will coincide with the eigenvector 
corresponding to the obtained eigenvalue (this is the so-called reduction or collapse of the state 
vector). 
 
The postulates mean that the direct link between cause and effect is broken. This is the big clash 
with classical mechanics. In fact, it is implied that measurements on exactly the same state may give 
different results. Only if the state vector coincides with an eigenvector of the operator Â, for 
example |αi>, can one be certain that repeated measurements of the observable A give always the 
same result, Ai. However, in that state, repeated measurements of another observable B, whose 

operator, B̂ , does not commute with Â, may give different results for B.  
 
Quantum mechanics, contrary to classical mechanics, assumes the role of the measuring device, 
though only postulating its effect. Nothing in the original mathematical structure of the theory 
explains how and when the state vector collapses leading to the selection of the observed 
eigenvalue. This is very uncomfortable and raises puzzling questions. 
 
The measuring device should be an inseparable part of the observed system, constituting with it an 
isolated super-system. If one follows the time evolution of the pure state vector of such an isolated 
super-system, by Schrödinger’s equation (or the equivalent time-evolution operator), a succession 
of entangled states is obtained, and the non-unitary evolution (collapse) of the total state vector, 
assumed by postulate b), does not turn out. This seems expectable since the time-evolution operator 
is unitary, i.e., it preserves the relationships of the phase angles (coherence) of the initial state 
vector. However, it is a striking issue mainly for cosmologists leading to many quantum 
formulations, from the relative-states (many-worlds) to the actual M-theories.  
 
Let’s turn to quantum statistical mechanics. Consider an ensemble of very many systems each in the 

same pure state k k
k

| | |     . The ensemble is also described, initially, by a pure 

ensemble-state vector which, according to the unitary time-evolution, would always remain pure. 
After a measurement of property A, in every member of the ensemble, each system shall 
experimentally be found in one of the possible pure eigenstates |αk> with probability |<αk|Ψ>|2. Yet, 
as the measurement is non-unitary the initial relationship of the phase angles of the pure state is not 
preserved. Therefore, for most of the situations, the ensemble is projected into a statistical mixture 
of (incoherent) pure states precluding, particularly at macroscopic scales, the occurrence of 
interference (Schrödinger’s cats). The statistical mixture is no longer described by a pure ensemble-
state vector, otherwise such “cats” would frequently be observed.  
 
Either a statistical mixture of states or a pure state can be described by density matrices (ρ), the 
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fundamental tools of decoherence theory. Put simply, in a coherent superposition of pure states, the 
off-diagonal elements of the density matrix (meaning interferences) are non-zero, whereas for a 
statistical mixture of incoherent pure states they are zero (expressing what is observed under most 
practical laboratory conditions).  
Essentially, decoherence theory aims to reach the classical-like limit of quantum dynamics through 
a continuous reduction (decoherence) from the coherent density matrix to the incoherent density 
matrix that describes the statistical mixture of states observed in the laboratory. To this end, the 
influence of the outside world (environment plus observer) on the system can be formalized by 
adding relaxation terms to von Neumann’s equation: 
 

 int

d 1
H , relaxation terms

dt i
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  


 

 
(the relaxation terms are added phenomenologically to account for the ensemble aspects of the 
problem) 

 
Then, it is expected that the preferred basis of the measurements (the pointer basis) is robustly 
singled out and that decoherence prevents the coherent superposition of the basis vectors from 
persisting. 
It is noteworthy that this formulation does not seem to change the fundamental structure of the 
conventional quantum mechanics. It resembles what is done in classical statistical mechanics by 
introducing additional terms to Newton's, Hamilton's, Lagrange's or generalized Liouville's 
equations, in order to account for different environments, not appearing to alter the fundamental 
structure of classical mechanics. 
In the context of decoherence theory striking conclusions are drawn. For example, the so-called 
collapse of the state vector appears not as an instantaneous projection to a particular measurement 
eigenstate but rather as a physical process taking a finite time. Thus, decoherence times can be 
estimated indicating how fast or slow decoherence processes might take depending on the type of 
environment and interactions. For most macroscopic systems the decoherence process is generally 
so fast that can be assumed instantaneous. In contrast, at mesoscopic scales there are systems that 
may even be catched in the process of coherence decaying. Moreover, other systems may only 
decohere in huge times. 
 
The picture coming from decoherence theory alleviates, at least to me, the spiritual discomfort of 
postulate b). Of course, one can adopt an instrumentalist-pragmatist-positivist standpoint and apply 
the postulate straight away. After all, in practical terms, is what the majority of people do: as the 
recipe works very well let's use it as it is. Nevertheless, I believe that human mind requires more, 
and some of this “more” seems to be offered by decoherence theory. Incidentally, should not 
postulate b) be rephrased by dropping the words “non-deterministically” and “immediately”?  
 
There are, of course, criticisms on decoherence theory. Here, we do not delve into them but outline 
one related to that postulate:   
 
“Decoherence theory eliminates interferences but, even so, all possible results Ai are left valid: A1 
and A2...and Ak...and...The orthodox formulation, on the contrary, asserts that the choice is 
undetermined before the measurement (all outcomes are valid: A1 and A2...and Ak...and...) however 
determined after the measurement, i.e., only one outcome is observed (A1 or A2...or Ak...or...). 
Decoherence theory does not provide a mechanism explaining how “and” becomes “or”, therefore 
does not solve properly the measurement problem”. 
 
The orthodox interpretation states that after the measurement “and” becomes “or” but without 
explaining “how” this happens, only postulates the fact frequently observed at least in most 
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laboratory conditions. Moreover, it is suggested that the process is instantaneous and at random.  
 
This is not so for decoherence theory. The reason of the elimination of interferences is explained (by 
means of the ever-lasting interactions within system external world), illustrating how and why the 
classical-like limit of quantum dynamics can turn out; it also suggests that the physical process is 
not totally at random. Furthermore, it is able to work out decoherence times, showing that the 
process is not instantaneous. Yet, like the orthodox interpretation, it neither gives a mechanism 
explaining why only one outcome is observed nor predicts its value. 



 
The last point, however, seems unanswerable by decoherence theory. In fact, its formulation is 
within the mathematical structure of the conventional quantum mechanics. Thus, the probabilities of 
the reduced density matrix, though similar to the classical ones, remain quantum probabilities, i.e., 
they are just classical-like probabilities. As such, they do not express a lack of knowledge of the 
precise initial state, and of other details, that once known would predict (like in classical mechanics) 
the single outcome of a measurement.  
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