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ABSTRACT: As finding an exact and manageable partition function for nanoclusters is
a desirable but, so far, unattainable task, approximated treatments are proposed to explain
and predict phase changes and phase coexistence at these size scales. In this article, a
review of those approaches is presented, mainly focusing the authors work on the subject.
The foundations and limitations of the proposed models are discussed and perspectives
for extended treatments are given. The discussions are illustrated with new molecular
dynamics simulations of unconstrained NaI and NaCl clusters. © 2009 Wiley Periodicals,
Inc. Int J Quantum Chem 110: 284–292, 2010
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1. Introduction

P hase transitions are known to be present in
everyday life situations. Some of their prop-

erties are even part of common sense. For example,
many people become surprised if some substance
freezes at a temperature different from its melting
point. This phenomenon (hysteresis) is usually asso-
ciated with nonequilibrium (metastable) conditions,
resulting from high cooling rates of a liquid melt and
reversible paths are expected for carefully managed
experiments. However, even for simple and pure
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substances, irreversible melting can occur, that is,
cooling the melt (at any cooling rate, even with
seeding) never results in a crystal [1] and more com-
plex paths can arise. For these substances, a phase
change is not completely described by concepts like,
for example, the melting point. As a consequence of
this complexity, a particular care should be taken to
choose the convenient parameters that unambigu-
ously characterize a system during a phase change.
In this context, regardless of its constitution, a system
with a finite size (for which the energy contributions
either of the interfaces with the outside or of the inter-
phases cannot be ignored) will present additional
features. Such contributions prevent the system to
remain at a fixed temperature during the phase con-
version [2–10], often resulting in a strongly nonlinear
behavior.
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PHASE BEHAVIOR OF IONIC CLUSTERS

The main objective of the article is to review,
although not exhaustively, the strategies and mod-
els proposed to deal with these behaviors, discuss
their foundations, and limitations, and trace out
some possible developments. In Section 2, the nat-
ural variable for phase change studies is discussed.
Computational details are given in Section 3. Section
4 is devoted to the introduction of the coexistence
model for clusters. In Section 5, examples of the
model application to NaI and NaCl unconstrained
clusters, not reported previously, are given. Section
6 contains a complementary view of the phase coex-
istence model foundations. Finally, some concluding
remarks and perspectives of future development are
given in Section 7.

2. The Natural Variable for
Phase Change

Temperature, like other intensive properties, is
often selected as one of the key parameters to con-
trol and characterize the state of a system. Among
other reasons, this choice is related with the usual
interest in studying macroscopic systems in equilib-
rium states, where the intensive properties tend to
be homogeneous and isotropic, and to the experi-
mental accessibility of this property in opposition to
what happens, for example, with the total energy. In
this context, temperature is also used to identify or
characterize phase transitions. However, a carefull
analysis unravels that the total energy (abbreviated
to “energy” from here on) is a more convenient, or the
natural variable for this specific task. In fact, it is not
hard to find good reasons to look for a temperature
substitute. For example, when one says that temper-
ature remains constant during melting or freezing,
at constant pressure, it is implicit that some other
system properties are changing, and a single value
of the temperature might not be a good choice as a
parameter to follow their complete evolution.

To analyze this, consider the Figure 1(a) schemat-
ically representing the evolution of the energy as
a function of the temperature for a bulk system
coupled to a thermostat in the neighborhood of a
first-order transition. The energy evolution is, in gen-
eral, nearly linear before and after the transition
temperature where it sharply changes.

Figure 1(b) corresponds to the behavior observed
in the same system heated or cooled by means of suc-
cessive small energy fluxes and subsequent isolation
of the system after each flux (Section 2). In this case,

FIGURE 1. Interrelation between energy and
temperature in bulk systems during a phase transition.

the temperature is left unrestrained to evolve accord-
ingly to the structural modifications of the system
and may suffer significant variations. The vertical
dotted line in Figure 1(a) emphasizes that, despite
E(T) being not continuous from a strict mathematical
point of view, the phase transformation of a real sys-
tem follows that path with a finite speed determined
by the thermal conductivities and heat capacities of
the intervening systems.

Supposing that we are dealing with a solid–liquid
transition, A [in sub-figures (a) and (b), of Fig. 1]
represents the maximum energy and temperature
values for which the system remains solid during the
heating and, simultaneously, the temperature and
energy of the system after returning completely to
the solid state. Similarly, B represents the temper-
ature and energy of the system immediately after
becoming completely liquid and, simultaneously,
the minimum temperature and energy for which
the system remains completely liquid during the
cooling.

If one does not require a complete description of
all the varying properties of the system during the
transformation, then the two representations and the
associated procedures are totally equivalent.

Consider now Figure 2(a) where overheating and
undercooling are present (the equilibrium situation
is also represented as a guide to the eye). Overheating
occurs when the system overcomes the equilibrium
transition temperature TA, at point A, and continues
heating up till the temperature TA′ where the transi-
tion is effectuated by a sharp energy increase since
the system has reached the point of absolute insta-
bility. Similarly, overcooling occurs when the system
underpasses the equilibrium transition temperature
TB = TA, at the point B, and keeps cooling down
until the transition takes place at temperature TB′ .
Figure 2(b) contains the schematic representation of
temperature evolution as a function of the energy
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FIGURE 2. Schematic behavior of phase changes in
infinite systems presenting hysteresis. [Color figure can
be viewed in the online issue, which is available at
www.interscience.wiley.com.]

for the same system heated, or cooled, by controlled
energy fluxes.

Supposing, again, that we are in presence of a
solid-liquid transition, A′ [in sub-figures (a) and (b),
of Fig. 2] represents the maximum temperature and
energy for which the system remains completely
solid during heating. Similarly, B′ represents the min-
imum energy and temperature where the system
remains completely liquid during cooling. However,
because of the presence of overheating and under-
cooling, the system presents now different behaviors
depending on the system being driven by tempera-
ture or energy. In the case of temperature control,
the solid–liquid transition is a leap from A′ to C and
the liquid–solid transition is a leap from the point B′

to the point D, for at these temperatures the abso-
lute instability of the system has been reached as
already referred to above. Therefore, phases coexis-
tence is not sustained. In the other case, it suffices tiny
energy fluxes, and subsquent isolation of the sys-
tem, to its temperature decrease or increase, solely
by internal structural alterations, until the phase
equilibrium temperature is attained. Thus, the solid–
liquid transition follows the path A′ →F→B and the
liquid–solid one follows the path B′ →E→A.

It should be pointed out that the diagram in
Figure 2(b) contains more information than the one
in Figure 2(a). For example, if the equilibrium tem-
perature is not known at the outset, it can be accessed
from 2(b) but not from 2(a).

Now, let us outline the limiting behaviors of
unconstrained (virtually at zero external pressure)
ionic clusters based on our simulation results.
Figure 3(a) sketches the diagram for a cluster, driven
by energy control, where overheating and under-
cooling are absent, but phases coexistence turns
out along the transition region. The melting and
freezing temperatures TA and TB, respectively, are

significantly different, in contrast with the bulk sit-
uation [see Fig. 1(b)]. In fact, as we shall detail
ahead, at the onset of melting the size of a clus-
ter is always less than the critical nucleus size and
phase coexistence cannot be sustained, unless the
system decreases itstemperature freely until a critical
nucleus is attained. Thus, the nature of controlling
the energy, by small fluxes of heat and subsquent
isolation (designated as a “constant or fixed energy
process”), allows the system to adjust the inter-
nal kinetic and potential energies, at constant total
energy: melting decreases and freezing increases
the temperature. Yet, if a constant temperature, for
instance TA, is imposed upon the cluster, it is unable
of sustaining phases coexistence, jumping to a higher
energy at about that temperature [similar to Fig. 2(a),
replacing A by A′]. Therefore, the two processes of
driving the system, by constant energy or by con-
stant temperature, are not at all equivalent: one is
able to unravel phases coexistence, the other is not.
From the last one, the determination of the molar
fractions of the coexistent phases, and other related
properties [11], is out of the question. As such, the
total energy, instead the temperature, turns out as
the natural variable at least for clusters.

Figure 3(b) displays the case of superheating and
supercooling. The line of phase coexistence is also
indicated just as a guide to the eye. This figure is
analogous to Figure 2(b) for the bulk apart from the
inclination of the coexistence line. The path followed,
isolating the cluster after tiny fluxes of the energy, is
similar to the bulk one because of the reasons given
earlier.

As we shall see in the examples ahead, deviations
from the foregoing limiting situations are generally
observed, depending essentially on the number of
ions, n, in the clusters. Yet, when n→∞ the clusters
approach the bulk behavior as expected. This is one

FIGURE 3. Schematic behavior of phase changes in
finite systems driven by energy. [Color figure can be
viewed in the online issue, which is available at
www.interscience.wiley.com.]
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of our starting points for the theoretical model in
Section 4.

3. Computational Details

In molecular dynamics simulations, heating or
cooling a system under controlled energy fluxes is
achieved by rescaling the velocities using a factor
(slightly greater or less than 1, respectively), sub-
squently isolating the system, calculating its prop-
erties after a complete relaxation, and then making
the next rescaling.

The coupling to a thermostat is obtained by
any suitable constant temperature method, such as
damped-force or Nosé–Hoover techniques [12, 13]
to fix, or drive the system, to the desired temper-
ature. In this case, a phase change is induced by
smoothly increasing or decreasing the temperature
in small steps along the phase change region. All
those techniques produce equivalent results outside
the phase transition regions. However, as discussed
in the previous section, this is not the case inside
those regions. Moreover, the damped-force method,
for example, frequently gives rise to nonphysical
behaviors (instantaneous transitions) or numerical
instabilities on phase transition simulations.

Most of the molecular dynamics computations
have been performed using the Born–Mayer–
Huggins (BMH) potential:

φij(r) = zizje2

r
+ cijb exp

[
σij − r

d

]
− Cij

r6
− Dij

r8
(1)

with the parameters given by Watts and McGee [14].
However, to analyze the relative stability of the

clusters at 0 K, we have also done some calculations
[15] with the Michielsen–Woerlee–Graaf (MWG)
potential:

φij(r) = zizje2

r
+ b

rl
exp

[
kij

(
σ m

ij − rm
)] − Cij

r6
− Dij

r8

(2)

with the parameters given by Michielsen et al. [16]
for l = 4 and m = 1. It is well known that these inter-
action models, despite being rigid-ion potentials,
reproduce some bulk properties of alkali halides and
other substances [17–23]. Recently, we have reported
[24] an extensive study, by molecular dynamics and
free energy calculations, of the phase diagrams for
bulk KCl and NaCl, using those models.

Verlet’s leapfrog algorithm [12] for the numerical
integration of Newton’s equations of motion, with a

time step of 5 × 10−15 s, has been used in all simula-
tions. Thermal properties have been calculated with
a number of steps in the range 105−108, depending
on the size of the clusters and the phase transition
region. Thus, the longer runs correspond to time
scales of the order of 102 ns.

4. Phase Coexistence Model

An exact and complete treatment of phase tran-
sitions and coexistence of a system requires the
respective partition function [25, 26]. This is a chal-
lenging task, even for the simplest systems [27, 28],
and restrictive approximations are unavoidable for
the more complex ones [29]. The partition function
approach has, however, been used for very small sys-
tems that are not able to sustain phase coexistence
[29, 30].

Such small systems either dynamically oscillate
between ordered and disordered conformations [29]
(observed up to ∼100 ions for alkali-halides clus-
ters [31]) or present sharp jumps between ordered
and disordered phases, with hysteresis cycles when
heated and cooled (observed from ∼100 up to ∼1000
ions also for alkali-halides clusters [31]). Bigger sys-
tems presenting sustained phase coexistence (for
example, in the form of two regions: one solid-like
and the other liquid-like separated by a perma-
nent interface), as observed for alkali-halides clus-
ters, with sizes over 1,000 ions, require a different
approach. By making geometric restrictions to the
shapes of the component phases, it is possible obtain
a relation between the system variables [32]. A less
restrictive model in what concerns solid and, spe-
cially, liquid shapes, proposed by the authors [11], is
discussed in the following.

The model construction, focusing solid–liquid
transitions, uses the bulk behavior as a reference
and introduces corrections to account for finite size
effects. In a bulk system, after the melting onset and
solid–liquid equilibrium is attained, adding energy
to the system converts a portion of solid to liquid,
with the temperature and pressure remaining con-
stant. The number of particles in the solid phase, at
a given energy E, is:

n∞
s = El(Tm) − E

El(Tm) − Es(Tm)

n (3)

where Es(Tm) and El(Tm) are, respectively, the total
energy of the bulk solid and liquid at the melting
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temperature Tm, and n is the total number of paricles
in the system.

In a finite system (cluster), a crystallite with size
ns, vitually produced at any given energy over the
bulk solid–liquid line, will be smaller than the critical
nucleus, n∗, which, accordingly to classical nucle-
ation theory [11, 33, 34], is given, as a function of
the temperature, T, by

n∗ = k3 T3
m

(Tm − T)3
(4)

for any nuclei geometry. The function k is defined
ahead. This equation pressuposes, in its derivation,
a bulk liquid phase, which it is not strictly true for
clusters. Nonetheless, we have observed that for a
considerable number of cases, this relation is still
a good approximation down to nanosized clusters
with ∼1,000 particles, either at fixed temperature or
energy [35] and we assume it in a first approach.

Because the size of the critical nucleus, at the
melting temperature, Tm, approaches infinity, the
crystallite at that temperature shall shrink and dis-
appear. As the presence of, at least, a solid embryo,
large enough to overcome the free energy barrier,
is required to achieve a sustained solid–liquid coex-
istence (the dynamics of this is discussed ahead in
the Section 6), a number of particles in the solid,
�ns, shall be transferred to the liquid until a crit-
ical nucleus is formed. However, because the total
energy is fixed during that transference a variation in
the phases composition implies a simultaneous tem-
perature decrease, �T = T − Tm, resulting from the
conversion between kinetic and potential energies
[11], approximately expressed as:

�T = �ns�h
nCp

(5)

where �h and Cp are, respectively, the enthalpy of
melting and the heat capacity.

The number of solid particles in the cluster is

ns = nbb
s + �ns (6)

where nbb
s , given by the same form of Eq. (3), should

be understood as the number of solid particles that
the cluster should have if it followed the bulk behav-
ior. Es(Tm) and El(Tm) of Eq. (3) are now the projected
solid and liquid cluster energies at the bulk melting
temperature, Tm. Combining the two last equations

with Eq. (3), the size of the crystallite as a function
of energy and temperature is:

ns = El(Tm) − E
�h

n + (T − Tm)nCp

�h
(7)

Phase coexistence is attained when the crystallite
size, given by the last equation, becomes equal
to the size of the critical nucleus, maximizing the
entropy of the system [36, 37] (Section 6). There-
fore, after straightforward algebric manipulations,
the key equation of the phase coexistence model [11]
is then:

E = El(Tm) + (T − Tm)Cp − k3 �hT3
m

n(Tm − T)3
(8)

This equation allows the prediction of the (T, E)

curves for direct comparision with experimental or
simulation results.

Apart from the foregoing referred to approxima-
tions, the presented equations can be applied to any
kind of clusters. However, some definitions are still
needed [11, 35]. In the previous equations, k (for the
specific case of cubic nucleus, the ones of interest for
alkali halides) is given by:

k = 4υ
2
3 σ

�h
(9)

where υ is the specific volume of the solid, σ is the
surface tension of the solid–liquid interface, and

El(Tm) = E∞
l(Tm) + ςln− 1

3 (10)

El(Tm) is the total energy of the cluster at, or projected
to, the bulk melting temperature, Tm. E∞

l(Tm) is the
respective bulk limit energy, ςl is the rate of change
of the cluster total energy with system size, n, and

�h = �h∞ + �ςn− 1
3 (11)

�h is the cluster enthalpy of melting, �h∞ is the
respective bulk limit, �ς is the rate of change of
the melting enthalpy with system size, and Cp is the
average of the heat capacities for the solid and liq-
uid bulks taken near the melting point. Solid–vapor
and liquid–vapor interfacial energies are implicitly
considered in Eq. (11) for the variation of the melting
enthalpy with system size.

From the model, several properties can be pre-
dicted as, for example, the cluster melting start and
end points, respectively,

Tif = Tm

(
1 − kn− 1

3

)
(12)
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FIGURE 4. Phase coexistence model prediction versus
simulation results for a set of NaI clusters. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

and

Tinf = Tm −
(

3k3T3
m�h

nCp

) 1
4

(13)

as well as the corresponding energies Eif and Einf [11].
These properties are particularly interesting regard-
ing the discussions ahead for which it is important
to note that the model predicts starting melting tem-
peratures less than the ones for the bulk. Thus, we
have designated the melting of the clusters in the
interval [Tif , Tm] by “early melting.”

The model also predicts other properties acces-
sible from simulations, some of them even from
experiment [38]. They have been recently reported
elsewhere [11, 15].

FIGURE 5. Phase coexistence model prediction versus
simulation results for a set of NaCl clusters. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

TABLE I
Enthalpy of melting, in kJ mol−1, and heat capacity,
in J K−1 mol−1, of solid and liquid NaI clusters at
the bulk melting temperature Tm = 933 K.

n C (s)
p C (l)

p �h

1,000 75.19 69.58 17.53
1,728 68.01 70.53 19.37
2,744 68.27 68.96 19.52
4,096
∞
exp 59.95 64.85 23.60

5. Examples of the Model Application
to NaI and NaCl Clusters

Figures 4 and 5, and Tables I and II con-
tain, respectively, new results [39] for molecular
dynamics simulations of NaI and NaCl clusters with
sizes between 1,000 and 4,096 ions. Despite notice-
able differences relatively to KCl [31, 35] and LiCl
[15] clusters, these results follow the main trends of
the alkali halides melting behavior.

The results in Figure 4 for the NaI clusters were
obtained by using the parameters: Tm = 933 K, k∞ =
0.88, Cp = 69 J K−1 mol−1, E∞

l(Tm) = −611.5 kJ mol−1,
ςl = 84.906 kJ mol−1, �h∞ = 23.6 kJ mol−1, �ς =
−58 kJ mol−1. As expected, taking into consideration
that the model assumes a bulk liquid phase (and the
equations are considered only approximately valid
with a finite liquid phase as referred to in Section 4),
the predictions are more accurate for larger clusters,
and the more significant deviations, if any, tend to
occur at the initial stages of the melting when the
most part of the cluster is solid and the liquid part
is just a small drop on a side or a thin layer on one
or two faces. The model prediction divergence from

TABLE II
Enthalpy of melting, in kJ mol−1, and heat capacity,
in J K−1 mol−1, of NaCl solid and liquid clusters at
the bulk melting temperature Tm = 1, 074 K.

n C (s)
p C (l)

p �h

1,000 69.03 70.57 23.80
1,728 67.44 70.67 24.38
2,744 66.90 70.70 24.97
4,096 66.74 69.70 25.25
∞ 27.75
exp 67.36 70.37 28.25
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the simulation results for the 4,096 ions cluster, over
−622 kJ mol−1, is an exception to the general trend.
This singular behavior is suspected to be due to a
change from a partial wetting to a total immersion
of the crystallite in the melt and requires a further
investigation. The main conclusions are, therefore:
(i) excluding the 4,096 ions case, the melting end
temperatures are correctly predicted; (ii) the melting
start temperatures of the bigger clusters (2,744 and
4,096 ions) are in good agreement with simulations;
(iii) the melting start temperatures of the smaller
clusters (1,000 and 1,728 ions) are a bit underesti-
mated; and (iv) early melting is observed according
to the model predictions similarly to what has been
reported for LiCl clusters [15].

The results in Figure 5 for the NaCl clusters were
obtained with the parameters Tm = 1,085 K, k∞ =
0.72, Cp = 68 J K−1 mol−1, E∞

l(Tm) = −690.98 kJ mol−1,
ςl = 106.16 kJ mol−1, �h∞ = 27.74 kJ mol−1, �ς =
−39.647 kJ mol−1. In this case, the simulations indi-
cate that all the clusters closely approach the bulk
melting temperature. However, the model predic-
tions remarkably underestimate the melting temper-
atures, giving values well inside the solid branches.
This means that the simulations do not show up early
melting, similarly to what has been reported for KCl
clusters [11]. Nonetheless, the end parts of the coex-
istence curves are correctly predicted, remaining
within the fluctuations observed for all the clusters.

Thus, the NaCl case constitutes a significantly less
successful application of the model mainly as far as
early melting is concerned. As the model failures
are undoubtedly related to the approximations dis-
cussed earlier, to trace perspectives that may aid in
overcoming those limitations, a closer review of the
model foundations follows in the next section.

6. Model Foundations

The minimum (reversible) work [33] to create
an embryo inside a bulk liquid phase at a fixed
temperature, T, and pressure, p, is:

Wmin(T, p) = σ(T, p)F + ne�µ(T, p) (14)

where ne is the number of particles in the embryo, F is
the surface area of the embryo (proportional to n2/3

e ),
σ(T, p) is the interfacial solid–liquid surface tension,
and �µ(T, p) is the difference between the chemical
potentials of the solid and liquid phases. Equation
(14) has a maximum when ne is equal to the critical

FIGURE 6. Dynamics through which a cluster attains a
sustained solid–liquid coexistence at constant energy.

nucleus size n∗ [given by Eq. (4)]. Embryos con-
taining less than n∗ particles shrink spontaneously,
whereas embryos larger than n∗ grow spontaneously.
As such, for the formation of the new phase, the
system must first overcome a free energy barrier by
creating a critical nucleus.

The coexistence model assumes, in a first approxi-
mation, that the last equation remains valid for small
clusters. Figure 6 captures, qualitatively, the essen-
tial dynamics through which a cluster can sustain
a solid–liquid coexistence, at constant energy and
external pressure. Suppose, for example, a solid crys-
tallite of size ncry(T1) at temperature T1. Once its size
is less than the one of the critical nucleus , n∗(T1),
the cluster spontaneously melts and the crystallite
shrinks. As the total energy is fixed, the temperature
shall decrease until the crystallite size reaches the
value n∗(T), which also constitutes a critical nucleus,
but now over a different work function surface. For
a size less than n∗(T), for example at T2 < T, the
crystallite would spontaneously grow (with a tem-
perature increase at constant total energy), since
such size is greater than the critical nucleus of the
corresponding work function. Therefore, at n∗(T)

the cluster should be able to sustain solid–liquid
coexistence where the entropy and free energy, in
the constant energy process have, respectively, a
maximum and a saddle point [36, 37].

7. Perspectives on Model Extensions

In the presented model, the slope of the work
function dependence on the embryo size, µ =
�W/�ne that indicates the height of the free energy
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barrier, is evaluated supposing a bulk liquid phase,
which constitutes a first approximation since clusters
are finite systems. Therefore, additional constraints
that can determine the states of the clusters should
be considered regarding an extension of the model.

A partially melted finite system can be seen,
depending on the proportions of the solid and liquid
portions, either as a crystallite embryo in the pres-
ence of an unstable liquid or as a droplet embryo
in the presence of an unstable solid. As such, choos-
ing the solid portion as parameter, we can define the
family of functions Wliq(n−ns, T, p) that may present
considerable free energy barriers to droplets forma-
tion, for T < Tm, like the ones presented by the family
Wsol(ns, T, p) to crystallites formation for T > Tm. The
respective slopes are µliq and µsol.

In this context, the following qualitative outline
can be done, based on the behaviors observed in
some of our simulations and the present model
predictions:

1. µliq <µsol and a droplet is easily formed even at
temperatures significantly lower than Tm. Early
melting is present and the phase coexistence
extends from Eif to Einf accordingly to the model
(observed in LiCl and NaI clusters).

2. µliq < µsol up to the neighborhood of the bulk
melting temperature, Tm, even for very small
droplets. Nearly Tm the droplet formation bar-
rier is overpassed and from there on the phase
coexistence is in accordance with the model.
(observed in KCl clusters).

3. µliq < µsol even at the neighborhood of the
bulk melting temperature, Tm. The system
slightly overcomes Tm and starts melting in
a overheated state until the droplet contribu-
tion becomes less significant and allows the
proper crystallite contribution being attained
by a fluctuation. Then, this is followed by a rela-
tively sharp transition to the model predictions
(observed in NaBr and NaCl clusters).

These outlined situations are not exhaustive More-
over, the forementioned behaviors can be simulta-
neously observed in the same clusters family when
different sizes are considered. For example, the
results for NaI clusters, in Figure 4, show that for
sizes of 1,000 and 1,728 ions, despite they never
come close to the bulk melting temperature, do not
present a strict early melting, whereas the sizes of
2,744 and 4,096 ions do. This means that the bal-
ance between the weights of the contributions from
the crystallite and the droplet changes with size.

Thus, a model extension clearly needs to include,
at least, the quantitative contribution of the droplet
work of formation, the surface of the system (partic-
ulary for small aggregates), and the determination of
the accessible coexistent states considering, at each
energy value, the complete system geometry, in the
spirit of the work by Cleveland et al. [32]. However,
this is not easy to accomplish because of the multi-
plicity of geometries that can be involved, and it is
the challenge of the work in progress.
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