On the reverse mathematics of Lipschitz and Wadge determinacy

Manuel Loureiro
Engineering Faculty-ULHT, Lisbon

joint work with
A. Cordón-Franco (Seville) and F.F. Lara-Martín (Seville)

Journées sur les Arithmétiques Faibles 35
Universidade de Lisboa, 6-7 June 2016
Goal and Plan

Goal: to calibrate the strength of Lipschitz and Wadge determinacy, as well as the Semi-Linear Ordering principle (SLO), in terms of subsystems of second order arithmetic (\mathbb{Z}_2).

Plan

- Introduction
- L/W determinacy. Topological results
- Formalization of L/W determinacy and SLO in \mathbb{Z}_2
- Results in \mathbb{Z}_2
- L/W determinacy and SLO in Cantor space
- L/W determinacy and SLO in Baire space
- Concluding remarks
Introduction. Gale-Stewart and Lipschitz Games

<table>
<thead>
<tr>
<th>Player I</th>
<th>$f(0)$</th>
<th>$f(1)$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player II</td>
<td>$g(0)$</td>
<td>$g(1)$</td>
<td>...</td>
</tr>
</tbody>
</table>

- (Gale-Stewart games) $A \subseteq X^\omega$. \(\textbf{I}\) wins a play of $G(A)$ if \[
\langle f(0), g(0), f(1), g(1), \ldots \rangle \in A
\] Otherwise \(\textbf{II}\) wins.

- (Lipschitz games) $A, B \subseteq X^\omega$. \(\textbf{II}\) wins a play of $G_L(A, B)$ if \[
\langle f(0), f(1), \ldots \rangle \in A \text{ iff } \langle g(0), g(1), \ldots \rangle \in B
\] Otherwise \(\textbf{I}\) wins.
Introduction. Wadge Games

- Variant of Lipschitz games where Player II is allowed to pass, but she must play infinitely often otherwise she loses.

<table>
<thead>
<tr>
<th>Player I</th>
<th>$f(0)$</th>
<th>...</th>
<th>$f(k)$</th>
<th>$f(k+1)$</th>
<th>$f(k+2)$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player II</td>
<td>$p \cdots p$</td>
<td>$g(0)$</td>
<td>p</td>
<td>$g(1)$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

(Wadge games) $A, B \subseteq X^\omega$. Player II wins a play of $G_W(A, B)$ if
$$\langle f(0), f(1), \ldots \rangle \in A \text{ iff } \langle g(0), g(1), \ldots \rangle \in B$$
Otherwise Player I wins.

Reduction to Gale-Stewart games:
- Player I wins $G_L(A, B)$ iff Player I wins $G(\neg(A \leftrightarrow B))$.
- Similar for $G_W(A, B)$.

Introduction. Determinacy axioms in set theory

- (Mycielski/Steinhaus, 1962)

\[\text{AD} = \forall A \subseteq \omega^\omega, \text{ the Gale-Stewart game } G(A) \text{ is determined,} \]
- i.e. either I or II has a winning strategy.

- (Wadge, 1972)

\[\text{AD}_{L/W} = \forall A, B \subseteq \omega^\omega, \text{ the game } G_{L/W}(A, B) \text{ is determined.} \]

- Similarly for pointclasses: open determinacy, Borel determinacy, projective determinacy, etc.

- \(\text{AD} \implies \text{AD}_{L/W}, \ BP, \ LM, \ PSP, \ \neg\text{AC}, \ AC_\omega(\omega^\omega) \)

- (Solovay’s conjecture) \(\text{ZF} + V = L(\mathbb{R}) \) proves \(\text{AD} \iff \text{AD}_W \)
Introduction. Lipschitz and Wadge reducibility

- (L/W reducibility) Given $A, B \subseteq X^\omega$,

 $A \leq_{L/W} B$ iff there is a Lipschitz/continuous $F : X^\omega \to X^\omega$
 such that $A = F^{-1}(B)$.

- (L/W degrees) Given $A \subseteq X^\omega$, we define

 $[A]_{L/W} = \{ B \subseteq X^\omega : B \equiv_{L/W} A \}$

- (Wadge’s lemma) $A, B \subseteq 2^\omega$ or ω^ω. Then:
 1. \mathbf{II} wins the game $G_L(A, B)$ iff $A \leq_L B$.
 2. \mathbf{II} wins the game $G_W(A, B)$ iff $A \leq_W B$.
 3. If \mathbf{I} wins $G_{L/W}(A, B)$ then $B^c \leq_{L/W} A$.
Semi-Linear Ordering Principle

(Wadge, 1972)

\[\text{SLO}_{L/W} = \text{For all } A, B \subseteq \omega^\omega, A \leq_{L/W} B \lor B^c \leq_{L/W} A. \]

Wadge’s lemma implies

\[
\begin{align*}
\text{AD}_L & \implies \text{SLO}_L \\
\downarrow \\
\text{AD}_W & \implies \text{SLO}_W
\end{align*}
\]

Classical consequences of AD have been proved under SLO\(_W\):

\[\text{SLO}_W \implies \text{PSP}, \neg \text{AC}, \text{AC}_\omega(\omega^\omega). \]

(Andretta, 2003/4) ZF + BP + DC proves

\[\text{SLO}_W \iff \text{AD}_W \iff \text{AD}_L \iff \text{SLO}_L. \]
Introduction. Classical results

- (Martin, 1975) $\mathbf{ZF} + \mathbf{DC}$ proves determinacy for all Borel sets.

- (Friedman, 1971) \mathbf{Z}_2 cannot prove that all Borel Gale-Stewart games are determined.

- (Montalbán/Shore, 2012) For each k, \mathbf{Z}_2 proves determinacy for Boolean combinations of k many Π^0_3 sets, but not for all finite Boolean combinations of Π^0_3 sets.

- (Steel, ’77; Tanaka, ’90; Nemoto/MedSalem/Tanaka, ’07) A detailed picture of the reverse mathematics of Gale-Stewart determinacy is known.

- (Louveau/Saint-Raymond, 1987) \mathbf{Z}_2 does prove that all Borel Lipschitz games are determined.
Introduction. Reverse mathematics of L/W games

- In contrast, the situation for L/W games is completely different:
 - There is no detailed analysis of the strength of L/W determinacy in terms of subsystems of \mathbb{Z}_2.
 - Reverse Mathematics of SLO hasn’t been investigated either.

- Known results on Gale-Stewart determinacy give us upper bounds on the strength of L/W determinacy. But these bounds needn’t be optimal.

- This is certainly a notable gap in our understanding of the reverse mathematics of infinite games.
L/W determinacy. Topological results

By reinterpreting Wadge's topological analysis of games we obtain direct proofs of L/W determinacy in $\mathbf{ZF} + \mathbf{DC}$:

<table>
<thead>
<tr>
<th>(A, B)</th>
<th>Cantor</th>
<th>Baire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ^0_1</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Π^0_1</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$\Sigma^0_1 \cup \Pi^0_1$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$Df_2 \cap \overline{Df_2}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>Df_2</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
<tr>
<td>$Df_2 \cup \overline{Df_2}$</td>
<td>\checkmark</td>
<td>\checkmark</td>
</tr>
</tbody>
</table>

We formalize these proofs in \mathbf{Z}_2 and obtain a number of results on the strength of L/W determinacy and SLO.
Formalizing L/W determinacy and SLO in \mathbb{Z}_2

- Γ-$\text{Det}_{L/W}$: L/W determinacy for Γ formulas in the Baire space.

 \[\exists \sigma_I \forall \sigma_{II} [\text{Inf} \rightarrow \neg (A(f) \leftrightarrow B(g))] \lor \exists \sigma_{II} \forall \sigma_I [\text{Inf} \land (A(f) \leftrightarrow B(g))] \]

 σ_I, σ_{II} range over strategies for I and II, resp.

- Γ-$\text{SLO}_{L/W}$: L/W semilinear ordering principle for Γ formulas in the Baire space.

 \[\exists \sigma_{II} \forall \sigma_I [\text{Inf} \land (A(f) \leftrightarrow B(g))] \lor \exists \sigma_{II} \forall \sigma_I [\text{Inf} \land (\neg B(f) \leftrightarrow A(g))] \]

 σ_I, σ_{II} range over strategies for I and II, resp.

- Γ-$\text{Det}^*_{L/W}$, Γ-$\text{SLO}^*_{L/W}$: similar for the Cantor space.
Results in \mathbb{Z}_2

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Cantor</th>
<th>Baire</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCA_0</td>
<td>$\Delta^0_1\text{-Det}^*_W$</td>
<td></td>
</tr>
<tr>
<td>WKL_0</td>
<td>$\Delta^0_1\text{-Det}^*_L$,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\Delta^0_1, \Sigma^0_1)\text{-Det}^*_L/W$,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\Sigma^0_1, \Delta^0_1)\text{-Det}^*_L$</td>
<td></td>
</tr>
<tr>
<td>ACA_0</td>
<td>$(\Sigma^0_1 \cup \Pi^0_1)\text{-Det}^*_L/W$,</td>
<td>$\Delta^0_1\text{-Det}_W$,</td>
</tr>
<tr>
<td></td>
<td>$(\Sigma^0_1)^2\text{-Det}^*_L/W$</td>
<td>$(\Sigma^0_1 \cup \Pi^0_1)\text{-Det}_W$</td>
</tr>
<tr>
<td>ATR_0</td>
<td>$\Delta^0_1\text{-Det}_L$,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(\Sigma^0_1 \cup \Pi^0_1)\text{-Det}_L$</td>
<td></td>
</tr>
<tr>
<td>$\Pi^1_1\text{-CA}_0$</td>
<td>$(\Sigma^0_1)^2 \cup \neg (\Sigma^0_1)^2\text{-Det}_L/W$</td>
<td></td>
</tr>
</tbody>
</table>

$(\Sigma^0_1)^2$ stands for differences of closed sets ($= \Sigma^0_1 \wedge \Pi^0_1$)
Results in \mathbb{Z}_2. Reverse mathematics results

Theorem Over RCA_0 the following are equivalent:

1. ACA_0
2. $(\Sigma_1^0)_2^{\text{Det}}_L^*$
3. $(\Sigma_1^0)_2^{\text{SLO}}_L^*$

Theorem Over ACA_0 the following are equivalent:

1. ATR_0
2. Δ_1^0-Det_L
3. Δ_1^0-SLO_L
4. $(\Sigma_1^0 \cup \Pi_1^0)$-$\text{Det}_L$

Theorem Over RCA_0 the following are equivalent:

1. ATR_0
2. $(\Sigma_1^0 \cup \Pi_1^0)$-$\text{Det}_L$.
L/W determinacy and SLO in $2^\mathbb{N}$. Methodology

- Closed set $\leftrightarrow \varphi(f) \in \Pi_1^0$. Open set $\leftrightarrow \varphi(f) \in \Sigma_1^0$.

- Basic fact: subset F of $X^\mathbb{N}$ is closed iff it is the body of a tree T on X, i.e. $F = [T]$.

- The topological structure of sets A, B gives us information for constructing a winning strategy in $G_{L/W}^*(A, B)$.
 - clopen sets \leftrightarrow comparison of associated well-founded trees.
 - $A = [T]$ closed and not open \leftrightarrow existence of a path of T with eventual extensions outside T for any initial sequence.
 - $A = [T_0] - [T_1]$ difference of closed sets \leftrightarrow existence of a path of T_1 with eventual extensions in T_0 which, in turn, have eventual extensions outside T_0.
Theorem

The following assertions are pairwise equivalent over RCA$_0$:

1. ACA$_0$
2. $(\Sigma^0_1)_2$-Det_L^*
3. $(\Sigma^0_1)_2$-SLO_L^*.

Proof. (Sketch)

(1 \to 2) We construct winning strategies by analysing several (a lot of!) cases of differences of pruned trees.

(2 \to 3) RCA$_0$ proves that Γ-$\text{Det}^*_{L/W}$ implies Γ-$\text{SLO}^*_{L/W}$.

(3 \to 1) Show that if \mathcal{I} wins $G_L^*(A, B) \lor \mathcal{I}$ wins $G_L^*(\neg B, A)$ then
\[\{ x : \varphi(x) \in \Sigma^0_1 \} \] exists. Using $\varphi(x)$, we construct $(\Sigma^0_1)_2$ sets $A(f)$ and $B(g)$ s.t. \mathcal{I} cannot have a winning strategy in $G_L^*(\neg B, A)$. Then \mathcal{I} has a winning strategy in $G_L^*(A, B)$, say $\sigma_\mathcal{I}$. We use $\sigma_\mathcal{I}$ to construct a Δ^0_1 formula equivalent to $\varphi(x)$. Finally,
\[\{ x : \varphi(x) \} \] exists by Δ^0_1-CA_0.
Methodology: similar to the Cantor space:

- finite trees \leftrightarrow well-founded (and so ranked) trees
- comparison of maximal lengths \leftrightarrow comparison of tree ranks

(Hirst, 2001) Let α and β be countable well orderings. The following are equivalent over RCA_0:

1. ATR_0.
2. $\forall \alpha, \beta (\alpha \leq_w \beta \lor \beta \leq_w \alpha)$.

(Hirst, 2000) ATR_0 proves: well-founded tree \leftrightarrow ranked tree.

(Increasing functions on trees) $S \preceq T$ iff there is a function $f : S \rightarrow T$ such that $s_1 \subset s_2 \rightarrow f(s_1) \subset f(s_2)$.

ACA_0 proves: if $S \preceq T$ then $\text{rk}(S) \leq_w \text{rk}(T)$.
Theorem
The following are equivalent over \textbf{ACA}_0:

1. ATR_0
2. $\Delta^0_1\text{-Det}_L$
3. $\Delta^0_1\text{-SLO}_L$

Proof. (Sketch $3 \rightarrow 1$)

$I\!I$ wins $G_L(A, B) \lor I\!I$ wins $G_L(\neg B, A) \rightarrow \alpha \leq_w \beta \lor \beta \leq_w \alpha$

\[
\begin{align*}
\alpha, \beta & \rightarrow \text{ranked trees } S(\alpha), T(\beta) \\
\sigma_{\text{II}} & \rightarrow \text{function } f : S(\alpha) \rightarrow T(\beta)
\end{align*}
\]

\[
\begin{align*}
S(\alpha) \leq T(\beta) \\
\alpha \leq_w \beta
\end{align*}
\]
L/W determinacy and SLO in $\mathbb{N}^\mathbb{N}$. Main result

Theorem

The following are equivalent over RCA_0:

1. ATR_0
2. $(\Sigma^0_1 \cup \Pi^0_1)$-Det$_L$
3. Π^0_1-Det$_L$
4. (Δ^0_1, Π^0_1)-Det$_L$

Proof. (Sketch $4 \rightarrow 1$)

Since we have

$$\Delta^0_1\text{-SLO} + \text{ACA}_0 \rightarrow \text{ATR}_0,$$

it suffices to show

$$(\Delta^0_1, \Pi^0_1)$-Det$_L \rightarrow \text{ACA}_0$$

over the base subsystem RCA_0.
Concluding remarks

A first step towards a better understanding of the reverse mathematics of L/W determinacy ...

- Reinterpreting Wadge’s classical work in descriptive set theory, we developed a topological analysis of the L/W games for the first levels of the difference hierarchy.

- We showed that this analysis can be carried out within natural subsystems of \mathbb{Z}_2.

- Main results: we obtained new reversals for ACA$_0$ and ATR$_0$ in terms of Lipschitz determinacy and SLO.

- In particular, we investigated the reverse mathematics of the salient Semi-Linear Ordering Principle for the first time.
A reversal for \textbf{WKL}_0 in terms of L/W determinacy is left pending.

- Natural candidates: $\Delta^0_1\text{-Det}^*_L$ or $\Sigma^0_1\text{-Det}^*_L$.
- Main obstacle: to determine the exact strength of the Dichotomy Principle:

 $$\text{BinaryTree}(T) \rightarrow (\text{TrueClosed}(T) \lor T \text{ defines a clopen set})$$

We developed our analysis of L/W games up to the difference of closed sets. But it seems plausible to extend this analysis to all finite levels of the difference hierarchy.
(Conjecture) The following are equivalent over RCA_0:

1. ACA_0.
2. For each natural number k, $(\Sigma^0_1)_k\text{-Det}_L^*$.
3. For each natural number k, $(\Sigma^0_1)_k\text{-SLO}_L^*$.

(Conjecture) The following are equivalent over RCA_0:

1. $\Pi^1_1\text{-CA}_0$.
2. For each natural number k, $(\Sigma^0_1)_k\text{-Det}_L$.
3. For each natural number k, $(\Sigma^0_1)_k\text{-SLO}_L$.
Lines of future work

- (Andretta, 2003/4) \(\text{ZF} + \text{BP} + \text{DC} \) proves

\[
\text{SLO}_W \iff \text{AD}_W \iff \text{AD}_L \iff \text{SLO}_L.
\]

(L1) To formalize Andretta’s proof within \(\mathbb{Z}_2 \) in order to obtain equivalences between subsystems of second order arithmetic and Wadge determinacy principles.

- (Louveau/St.-Raymond, ’87) \(\mathbb{Z}_2 \) proves full Borel L/W determinacy.

(L2) To study in detail Louveau/St.-Raymond’s proof in order to isolate a natural subsystem of \(\mathbb{Z}_2 \) which can prove full Borel L/W determinacy, and to investigate whether that subsystem would turn out to be actually equivalent to Borel L/W determinacy.