Population growth in ideal habitats

How does a population grow when colonizing an habitat under ideal physical and biological conditions ?

The muskox

Original distribution: North America, Greenland

Depleted by hunting from 1700 to 1850

Last individuals in Alaska: 1850-60

Nunivak Island

Nunivak Island 31 animals, 1936

Geometric growth

Initial population at the Nunivak reserve: 31 individuals

Measures of variation in N

 $\Delta N = N_{t+1} - N_t$ Absolute variation

 $\Delta N > 0$ growth $\Delta N = 0$ no change $\Delta N < 0$ decline

$$\frac{N_{t+1} - N_t}{\Delta t} = \frac{\Delta N}{\Delta t} \qquad Mean \ variation \ over \ \Delta t \equiv variation \ time^{-1}$$

$$\frac{1}{N_i} \frac{\Delta N}{\Delta t} \qquad \text{Mean relative variation} \equiv \% \text{ variation}$$

$$\frac{N_{t+1}}{N_t} = \lambda$$

 λ = finite rate of increase

What happens if λ remains constant ?

$$N_{t+2} = \lambda N_{t+1}$$

$$N_{t+2} = \lambda \lambda N_t = \lambda^2 N_t$$

$$N_{t+3} = \lambda N_{t+2} = \lambda^3 N_t$$

$$N_{t+n} = \lambda^n N_t$$

 $N_{t+n} = \lambda^n N_t$

. . .

Geometric growth

May λ remain constant ?

 $\lambda = \frac{N_{t+1}}{N_t}$ Contribution of each individual in t, for the population in t+1

Biological meaning of λ ?

What is the biological meaning of λ ?

Are newborns envolved ? deaths ? both ?

Reproduction timing

Seasonal breeding

Continuos breeding

Census and reproduction in seasonal breeders

Pre-breeding census

$$S_{t} = \frac{N_{t} + B_{t} - D_{t}}{N_{t} + B_{t}} = \frac{N_{t+1}}{N_{t} + B_{t}}$$

 $b_t = \frac{Number of newborns}{Number of parents}$

$$b_t = \frac{B_t}{N_t}$$

Biological meaning of λ

remember
$$\lambda_{t} = \frac{N_{t+1}}{N_{t}}$$
 Substituting N_{t+1}

Using:

We get:

$$\lambda = S_t (1 + b_t)$$

Survival rate

 $S_t = \frac{N_{t+1}}{N_{t+1}} \quad \therefore \quad N_{t+1} = S_t \left(N_t + B_t \right)$

Newborns in Portugal, 1994, INE 1995

Continuous reproduction

N changes continuously !

Any time interval $\Delta t = [t, t+1]$ will be arbitrary

$$Lim_{\Delta t \to 0} \quad \frac{\Delta N}{\Delta t} = \frac{dN}{dt} = Instantaneous \text{ variation at t}$$

Instantaneous variation

Instantaneous variation at time t:

$$\frac{dN}{dt} = B_t - D_t$$

Instantaneous rates,

Birth rate =
$$\frac{newborns}{parents} = \frac{B_t}{N_t} = b_t$$

Mortality rate = $\frac{deaths}{population} = \frac{D_t}{N_t} = d_t$

Instantaneous rate of growth

$$\frac{dN}{dt} = N_t b_t - N_t d_t = N_t (b_t - d_t)$$

r Instantaneous rate of growth (Malthusian parameter)

$$\frac{dN}{dt} = rN$$

r units: Individuals per individual per unit time

Given an initial N_t what is $N_{t+\Delta t}$?

Solution

$$\frac{dN}{dt} = rN$$

Ordinary differential equation of 1st degree

Assuming r is constant,

Solution, by separable variables:

$$N_{t+\Delta t} = N_t e^{r \Delta t}$$

$$N_{t+\Delta t} = N_t e^{r \Delta t}$$
Independent variable
$$N_{t+\Delta t} = N_t e^{r \Delta t}$$

Unregulated growth

Discrete time:
$$N_{t+1} = N_t \lambda$$

Continuous:
$$N_{t+\Delta t} = N_t e^{r \Delta t}$$

If λ applies to the time interval $\Delta t=1$,

Relationship between instantaneous rate of growth and finite rate of increase

$$e^r = \lambda$$

Survival and reproduction depend upon N_t

What good is the unregulated growth model if it does not apply to most populations ?

- 1. Illustrates the consequence of assuming constant survival and birth rates
- 2. The model describes the initial stages of population growth, showing the enormous potential of populations to grow
- *3. It is a good starting point for the introduction of other components that confer greater realism to population growth*

Human population 1

Copyright O Pearson Education, Inc., publishing as Benjamin Cummings

Human population 2

Source: <u>Demographic yearbook</u>. Annuaire démographique. New York Dept. of Economic and Social Affairs, Statistical Office, United Nations

b_t and d_t in an exponential population

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.