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Abstract. This work deals with the modeling of solid continua undergoing incompatible defor-

mations due to the presence of microscopic defects like dislocations. Our approach relies on a

geometrical description of the medium by the strain tensor and the representation of internal ef-
forts using zero-th and second-order strain gradients in an infinitesimal framework. At the same

time, energetic arguments allow to monitor the corresponding moduli. We provide mathematical

and numerical results to support these ideas in the framework of isotropic constitutive laws.

1. Introduction

We propose this contribution in the wake of previous work on this topic, and with the purpose
to eventually settle a firm framework for the macroscopic description of elasto-plastic behaviors of
deformable solids based on the strain incompatibility concept. The starting point of this approach
is Kröner’s celebrated work [24] on geometric elasticity with defects showing the link between strain
incompatibility and the density of dislocations (see also [38]). Indeed, plasticity is a phenomenon of
deformation of metals made possible by the motion and/or creation or annihilation of dislocation
loops inside the crystal, on or outside specific glide planes. As soon as dislocations are non-
homogeneously distributed inside the crystal, the strain incompatibility ceases to vanish and thus
we prospect a model where strain incompatibility, besides strain itself, plays a central role. The
choice of the strain field as main kinematical variable is also a specificity of our approach, and is
similar in spirit to Ph. Ciarlet’s and coauthors’ recent works on intrinsic elasticity [14]. By this
choice we intentionally depart from the conventional standpoint of considering the displacement
(or the deformation map) as the main kinematical variable. Indeed, in our approach, it is crucial
to base the model on objective quantities, such as the strain rate or the strain increment, instead
of the displacement which relies on the existence of a one-to-one and smooth enough deformation
with respect to some reference configuration. Also, by this choice we adopt a geometric setting
for the kinematical descriptors, with the strain understood as a metric and the incompatibility as
the linearization of the associated Riemann curvature tensor (see [8,13,27]). The derivation of the
model will be based on the principle of virtual work exposed in a systematic way by d’Alembert in
his Traité de dynamique of 1758. Indeed, it appears to us as the most natural in its expression, due
to its generality, rigor in its application if attention is paid to the notion of objective descriptors
(here we follow the approach advocated by Germain [18] and Maugin [28]), and appropriateness to
the mathematical treatment since a variational or weak form is readily obtained. Moreover, to infer
strong forms and prescribe relevant boundary conditions and loads, it is required to carefully study
the associated functional spaces, as we have done in [6,9], including orthogonal decompositions of
these spaces in the spirit of Leray’s projection which is classically used in fluid mechanics. The
interpretation of these boundary conditions was until now an open problem that we also address
here through a mesoscopic analysis, that is at a scale where the dislocations are singularity lines,
the so-called Volterra dislocations [1, 39]. Indeed, we propose interpretations in terms of ”micro-
hard” and ”micro-free” in the spirit of Gurtin and Needleman [20], though our models diverge
from the start. However, in our general macroscopic setting, as opposed to other works by the
second author (e.g., [32,33]), dislocations are not represented by geometric field singularities. This
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is also in contrast to Gurtin and Needleman’s crystal plasticity model where local slip systems are
prescribed. We also display a construction of the strain we deal with from a mesoscopic analysis,
basically adding to the displacement symmetric gradient a correction term in order to account for
the highly nonlinear deformations and the decohesion effects concentrated in dislocation cores.

We emphasize that at the averaged macroscopic scale the body is a continuum medium filled
with dislocations at a smaller scale, represented by a tensor field called the density of dislocations
(in the spirit of Kröner and our previous works). However, the model itself does not directly involve
the dislocation density field, but its effect on constitutive laws. Moreover, in this work we assume
that plasticity is driven by the motion of dislocations only, neglecting disclinations at all scales.
Further, infinitesimal deformations are considered, thereby justifying to linearize also the Riemann
curvature tensor, yielding the strain incompatibility, inc E, that will be considered as a kinematic
variable besides the strain itself, E.

Our mechanical model belongs to the class of higher grade theories of Generalized Continuum
Mechanics, with the incorporation of an internal variable to describe dissipative effects1. Internal
efforts are described using zeroth and second-order strain gradients in a linearized framework, with
isotropic constitutive laws. First-order models show a strong form involving E and inc E, whereas
second-order models involve E and inc (D inc E) with D a material-dependent tensor. First-
order model were addressed in [7], but the present formalism leads to a better interpretation of
boundary conditions and is more tractable from a numerical standpoint due to its variational form.
At the same time, energetic arguments allow us to monitor the corresponding tangent moduli that
generalize the Lamé coefficients to this second-order model, and this is what we substitute to flow
rules. In conventional plasticity, the effective tangent moduli are also byproducts of the flow rules
(see [23]), but in our approach where the notion of plastic strain is absent, they may be decomposed
in elastic and plastic parts (in our modeling example we chose an harmonic decomposition). Note
that other approaches, also with the purpose to avoid the use of any reference configuration, both in
finite and linearized elasto-plasticity with dislocations, are currently developed with success [2,12].
Though, our approach, based on a unique strain field to describe both elastic and plastic effects,
is, to our knowledge, novel.

From a mathematical standpoint, the main tool we repeatedly use is the so-called Beltrami de-
composition2, applied either to the kinematical variable E itself, or to the virtual field Ê. Therefore
we report on functional analysis concepts. Moreover, we also provide thermodynamical consider-
ations and numerical simulations to assess the validity of our model on some simple test cases.
However, a complete incremental scheme is the purpose of future works.

The paper is organized as follows. The geometrical setting and the modeling of internal efforts
are described in Section 2. The prescription of boundary conditions of Dirichlet type is investigated
in Section 3 with the help of a kinematical analysis at the mesoscopic scale. Preliminary mathe-
matical results are collected in Section 4. In Section 5 we interpret the strain at the mesoscopic
scale. The modeling of external efforts is addressed in Section 6. Mathematical properties of the
model for given tangent moduli are established in Section 7, while the evolution of these moduli
is discussed in Section 8. Numerical analysis aspects and simulations are reported in Sections 9
through 11.

2. Construction of a second-order model of incompatible elasticity

2.1. Virtual work principle. Let us consider a body Ω = Ω(t) at time t that undergoes internal
deformations under the action of a system of external forces. The model we propose is based on
d’Alembert’s principle of virtual work in a quasi-static regime, i.e., without inertial terms. This
principle is based on the following assertion: if a certain type of internal deformation is imposed
to the body, the body will in turn produce a reaction in the form of an internal virtual work. It is

1We refer the reader to [31] for this nomenclature and a review of plasticity models based on strain gradients

(and plastic strain).
2whose precise mathematical statement can be found in [27].
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called virtual because one should imagine any type of deformation, and not only the actual one,
which will only be the outcome of problem solving. Let us call Ê the virtual strain field, namely a
3×3 symmetric tensor field representing the local metric change. ThenWi(Ê) denotes the internal
(or intrinsic) work, typically consisting of the integral over Ω of a density of internal virtual work.
Now, the external virtual work We is by definition the work exerted by the system of external
efforts under the considered deformation. The principle of virtual work consists in writing that the
balance law

Wi(Ê) =We(Ê)

must hold for every kinematically admissible virtual strain Ê. This principle also implicitly contains
the assumption that both Wi(Ê) and We(Ê) be continuous and linear functionals of Ê. However,
the topology to be considered for continuity remains a modeling choice. Another major requirement
is the fact that the internal work be an objective functional, namely that it does not involve any
decomposition of Ê based on a reference configuration, boundary conditions, or other arbitrary
choices possibly made by the observer. On the contrary, the external work may be non-objective
(see [28]). This is natural, since it depends on the particular setting of the experiment.

In classical displacement-based formulations, the external work is a continuous linear functional
on a subspace of H1(Ω), therefore we assume in our intrinsic framework that it is a continuous
linear functional on L2(Ω,S3), where S3 is the set of symmetric 3 × 3 real matrices. By Riesz
representation there exists a tensor field K ∈ L2(Ω,S3) such that

We(Ê) =

∫
Ω

K · Êdx. (2.1)

The tensor K may be non-objective. In order to represent classical body or boundary forces, the
construction of K depends on the way a virtual displacement field can be associated with Ê, which
involves boundary conditions. All the modeling aspects raised above will be discussed in details
in the next sections. In particular, we emphasize that it will not be needed for practical use to
explicitly compute K: we will express the external work against an orthogonal decomposition of Ê,
as explained in section 6, to arrive at a weak form appropriate for a finite element approximation,
see section 9.

2.2. Kinematical descriptors: a geometric approach. Besides the virtual work principle,
we strive to adopt a geometrical setting for the kinematical description of the medium. To this
respect we consider the deformed body as a Riemannian manifold, thus equipped with geometrical
quantities such as metric, curvature, connection and torsion. For simplicity we avoid introducing
connection torsion in this work, hence we only allow for the Levi-Civita connection defined from
the partial derivatives of the metric. Thus, we take as main kinematical descriptors the metric and
the resulting curvature. They can be interpreted as follows.

2.2.1. Modeling the deformation field through the metric. We assume that within the medium we
can identify and follow infinitesimal fibers. Denote by a1, a2, a3 three such fibers which at time t
originate from point x and are oriented along the axes of a Cartesian coordinate system and of
length ε. Then the strain rate at x can be intrinsically defined by

dij(t) := lim
ε→0

1

2ε2

(
d

dt
(ai · aj)

)
t

, (2.2)

where d/dt stands for the total (or material) derivative. It is immediately recognized that the
diagonal components of dij represent the relative elongation rate of the fibers, whereas the off-
diagonal terms represent minus one-half the rate of the mutual angular variations. This formula
corresponds to the classical definition from a velocity field v, namely dij = (∂ivj + ∂jvi)/2 (see,
e.g., [19, Section 11.2] and [15, Eq. (I.51)]), which is valid in finite as well as in infinitesimal
elasticity, provided the existence of a transformation is assumed from a reference configuration to
the current one. However it is an essential aspect of the present framework to allow the strain rate
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to be defined independently of any such velocity field. Given a time increment ∆t, we will rather
work with the strain increment

Eij(t) =
1

2

(
lim
ε→0

(ai · aj)t+∆t

ε2
− δij

)
,

so that (2.2) is retrieved as the limit of Eij(t)/∆t when ∆t→ 0, assuming that the limits in space
and time can be interchanged.

Following infinitesimal fibers such that ai · aj = ε2δij at time t = 0, we also define the metric

gij(t) = lim
ε→0

1

ε2
(ai · aj)t.

In this work we will focus our attention on a small and single increment and simply call Eij :=
Eij(0) the strain. We immediately obtain the strain-metric relation

gij := gij(∆t) = δij + 2Eij .

The smallness assumption will be crucial to define (2.1) in the fixed domain Ω = Ω(0). We
emphasize again that the strain tensor is not constructed from a deformation field as in classical
continuum mechanics, which specifically enables curvature. This generalized framework will allow
the modeling of some phenomena which in principle occur below the continuum scale. We only
assume that E behaves like a second order symmetric tensor under a change of basis, which means
that it encodes the behavior of arbitrary fibers in a bilinear algebra format.

2.2.2. Modeling strain incompatibility through the Riemannian curvature and its linearization.
From the metric and the Levi-Civita connection we classically define the Riemannian curvature
tensor that we denote by Riem(g). Expanding Riem(g) in terms of E we obtain an expression of
form [27]

(Riem(g))ijkl = cijklpq( inc E)pq + o(∇∇E),

for some constants cijklpq, and where the incompatibility operator is defined as

inc E = Curl Curlt E, ( inc E)ij = εiklεjmn∂kmEnl.

We use the convention that the Curl of a tensor is computed row-wise, whereby Curlt E computes
the Curl column-wise whenever E is symmetric. It is well known that the incompatibility of a
symmetric tensor is symmetric, and that the incompatibility of a symmetric gradient vanishes,
i.e. inc ∇Su = 0. Therefore, in the small strain setting encompassing the fact that the remainder
o(∇∇E) can be neglected, we will use inc E as a representation of the Riemannian curvature.

Remark 1. Notice that in 3d the Riemann curvature tensor can be written algebrically by means
of the Ricci or even the Einstein tensor. It is interesting to observe as in [25] that the Einstein
tensor, as the incompatibility tensor, is symmetric and divergence free. Therefore our geometric
approach can be understood as grounded on the metric and the Einstein tensors, the latter being
linearized for our purposes.

2.3. The internal work. On the basis of this geometrical setting, the internal efforts will man-
ifest themselves in the form of work expended against virtual deformations described by a pair
(Ê, inc Ê). Therefore we distinguish between two contributions with their own geometrical in-

terpretations. On the one hand, the efforts acting against Ê are a reaction against an arbitrary
deformation, represented by stretching and rotation of material fibers, being compatible or not.
On the other hand, the efforts acting against inc Ê are a specific reaction against a virtual bending
of the manifold, i.e., when departing from a flat manifold through microstructural modifications,
including creation, motion and rearrangements of defects at the micro-scale. The impossibility of
such phenomena is characterized by an infinite stiffness against bending, as we will mathematically
analyze later.
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Therefore we introduce two symmetric second order tensors Σ and Λ, the former one working
against Ê and the latter one working against inc Ê. We write the internal work as the linear
functional

Wi(Ê) :=

∫
Ω

(
Σ · Ê + Λ · inc Ê

)
dx.

Thus the principle of virtual work is expressed as

Wi(Ê) :=

∫
Ω

(
Σ · Ê + Λ · inc Ê

)
dx =

∫
Ω

K · Êdx =We(Ê),

for every admissible Ê.

2.4. Linear constitutive laws. The generalized forces Σ and Λ depend on the physical state of
the medium. In the linear and essentially geometric model which we aim at, we assume that they
are related to the geometrical quantities E and inc E by constitutive laws of form

Σ = AE + B inc E and Λ = CE + D inc E,

where A, B, C, D are fourth-order tensors possibly spatially dependent. As a consequence, the
internal work reads

Wi(Ê) =

∫
Ω

(
AE · Ê + B inc E · Ê + CE · inc Ê + D inc E · inc Ê

)
dx.

The model obtained from the first two terms has been studied in [7–9]. It is appealing in that the

mixed term in the simplified form ` inc E · Ê can be derived by integration by parts from a first
gradient (with respect to strain) model with natural assumptions, it leads to well-posed governing
equations, and it is consistent with compatible elasticity at the limit ` → ±∞ in the absence of
kinematical constraint. However, Dirichlet-type boundary conditions cannot be easily incorpo-
rated, and the natural boundary condition leaves the incompatibility flux across the boundary as
a free variable. Similar conclusions can be obtained by considering the third term CE · inc Ê.
Therefore, in the present model, we drop the two mixed terms and choose B = C = 0. Another
justification for this choice is to assume that, for consistence with standard elasticity, the internal
work reduces to the first term as soon as either inc E = 0 or inc Ê = 0. We arrive at the balance
law

Wi(Ê) =

∫
Ω

(
AE · Ê + D inc E · inc Ê

)
dx =

∫
Ω

K · Êdx =We(Ê), (2.3)

valid for any kinematically admissible virtual strain tensor field Ê.

2.5. Isotropy. We assume that the matrix fields A and D are piecewise smooth, and we consider
an arbitrary point z ∈ Ω at which they are continuous. We choose a ball B ⊂ Ω centered at z and
small enough so that A and D can be seen as constant in B. Actually, continuous variations can
be treated by passing to the limit in the radius, but we prefer to avoid this technicality. Up to a
shift of the coordinate system, we assume for simplicity that z = 0. We rewrite the internal work
expended within B as

Wi(B;E, Ê) =

∫
B

(
AE · Êdx+ D inc E · inc Ê

)
dx.

Given a pair (E, Ê) and an orthogonal matrix Q, we define another strain field E∗ obtained after
rotation of E by Q, namely

E∗(x) = QtE(Qx)Q, E∗ij(x) = QpiEpq(Quvxv)Qqj ,

and likewise another virtual strain field Ê∗. The material is isotropic if

Wi(B;E, Ê) =Wi(B;E∗, Ê∗)
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for every triple (E, Ê,Q). Since equalizing two symmetric bilinear forms is equivalent to equalizing
the corresponding quadratic forms, we define

QA(E) =

∫
B

AE · Edx, QD(E) =

∫
B

D inc E · inc Edx.

The series of computations

∂lE
∗
ij(x) = Qpi∂sEpq(Quvxv)QslQqj ,

∂klE
∗
ij(x) = Qpi∂rsEpq(Quvxv)QrkQslQqj ,

( inc E∗)mn(x) = εmliεnkj∂klE
∗
ij = εmliεnkjQpiQrkQslQqj∂rsEpq(Qx),

Qum( inc E∗)mn(x)Qvn = (εmliQumQsl)(εnkjQvnQrk)QpiQqj∂rsEpq(Qx)

= (εusaQai)(εvrbQbj)QpiQqj∂rsEpq(Qx) = εusaεvrb(QaiQpi)(QbjQqj)∂rsEpq(Qx)

= εuspεvrq∂rsEpq(Qx) = ( inc E(Qx))uv

result in

inc E∗(x) = Qt inc E(Qx)Q. (2.4)

Thus, the isotropy condition

QA(E) +QD(E) = QA(E∗) +QD(E∗) = QA(QtE(Qx)Q) +QD(Qt inc E(Qx)Q)

formulates after a change of variables as∫
B

AE ·Edx+

∫
B

D inc E · inc Edx =

∫
B

A(QtEQ) ·(QtEQ)dx+

∫
B

D(Qt inc EQ) ·(Qt inc EQ)dx.

Choosing first E constant then inc E constant, it follows from a classical result of linear algebra
that QA and QD only depend on the scalar invariants of E and inc E. The three invariants of a
3 × 3 matrix A are I(A) := trA, II(A) := 1

2

(
( trA)2 − tr(A2)

)
and III(A) := detA, hence we can

write

QA(E) = Q̂A(I(E), II(E), III(E)).

Being quadratic we have

QA(E) =
1

2
D2QA(0)(E,E).

Using DI(E) = I, DII(E) = I(E)I− E and the chain rule we get

QA(E) =
1

2

(
DI,IQ̂A(0)( trE)2 +DIIQ̂A(0)(( trE)2 − tr(E2))

)
.

This can be formulated as

QA(E) = αAI(E)2 + βAII(E),

for some scalars αA and βA, and of course a similar expression holds for QD. The 4th order tensor
A is obtained by differentiating twice QA, namely

A =
1

2
D2QA(E) = (αA +

βA
2

)I⊗ I− βA
2
I4,

where the 4th order identity tensor I4 is defined indice-wise as (I4)ijkl = 1
2 (δikδjl + δilδjk). To

summarize we arrive at the constitutive linearized laws

A = 2µAI4 + λAI⊗ I, D = 2µDI4 + λDI⊗ I. (2.5)

Of course we recognize the standard Hooke’s tensor A, with corresponding Lamé moduli λA and
µA, and the new tensor D is its incompatible counterpart.
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2.6. Deviatoric-volumetric decomposition. Since typical incompatible deformations occur in
shear due to the presence of dislocations moving along glide planes, it is natural to use the following
decompositions for Σ and Λ:

Σ = AE = 2µAdev(E) + κA tr(E)I, Λ = D inc E = 2µDdev( inc E) + κD tr( inc E)I,

where the deviatoric part of E and the elastic / incompatible bulk moduli are defined by

devE := E − 1

3
tr(E)I, κA/D =

2

3
µA/D + λA/D. (2.6)

2.7. The tangent model and the flow rules. As already said, in our linearized approach, E is
to be understood as an increment of strain over a certain time interval in a quasi-static evolution.
The tangent tensors A and D may change over time, following a process which will substitute to
the flow rules of conventional elasto-plasticity models. There, a similar effective Hooke’s tensor
often appears in an implicit manner, see e.g. [23, Eq. (63)]. Our choices for evolution procedures
will be discussed in details later. We will also present an implicit approach, in which A and D will,
on the basis of thermodynamic arguments, themselves indirectly depend on E.

3. Burgers tensor, Frank tensor and micro-hard condition

3.1. Frank and Burgers tensors. Here, as opposed to the previous section, we consider lin-
earized elasticity at the mesoscopic scale, i.e., a continuum scale where the dislocations and discli-
nations are modeled as singularity lines, namely either loops, or straight lines with endpoint at
the crystal boundary. We denote by ε the strain outside singularities and glide planes, which is
classically considered as the elastic strain. Following the formalism introduced in [40], there are
two basic tensors that allow to compute the jump of the rotation and displacement fields, namely
the Frank tensor

F = Curlt ε, Fij = εikl∂kεjl, (3.1)

and the Burgers tensor3, given a reference point x0,

B(x) = ε(x) + ((x− x0)× Curl ε(x))
t
, Bij = εij + εipq(xp − x0p)Fqj . (3.2)

These definitions are justified by the observation that, in the compatible framework where the
strain tensor, the rotation vector and the Burgers field can be respectively defined by

ε = ∇Su, ω =
1

2
Curl u, b = u− ω × (x− x0),

we have the relations

∂jωi =
1

2
εikl∂jkul = εikl∂kεjl = Fij ,

∂jbi = ∂jui − εilm∂jωl(xm − x0m)− εiljωl = ∂jui + εiml∂jωl(xm − x0m) +
1

2
εlijεlkm∂kum = Bij .

This provides by integration along a path from x0 to x

ωi(x)− ωi(x0) =

∫ x

x0

∂jωi(ξ)dξj =

∫ x

x0

Fij(ξ)dξj , (3.3)

bi(x)− bi(x0) =

∫ x

x0

∂jbi(ξ)dξj =

∫ x

x0

Bij(ξ)dξj , (3.4)

and obviously the above integrals vanish along a closed loop. Turning now to the incompatible case,
when ε and ω are not constructed from a displacement, the rightmost integrals in (3.3)-(3.4) are
still well-defined using (3.1) and (3.2), but they may be non-vanishing on closed loops. Moreover,

3Our meaning of the Burgers tensor is different from Gurtin and Needleman’s one [20], which for us would be

the dislocation density tensor.
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if we consider a circuit C which encloses dislocations and / or disclinations, then we can define the
Frank and Burgers vectors associated with C as

Ωi[C] =

∫
C

Fijdxj , Bi[C] =

∫
C

Bijdxj .

We note that the above-defined Frank and Burgers vectors are independent of the so-called Burgers’
circuit C that encloses the line singularities (this is called the Weingarten’s lemma, see, e.g., [40]).

The Burgers field, tensor and vector, in contrast to the Frank tensor and vector, depend a
priori on the prescription of an arbitrary point x0. However, if Ωi[C] = 0, i.e., C does not enclose
disclinations, then it is immediately seen that the Burgers vector is independent of the point x0.
In this work, we make the assumption that there are no disclinations. Now, having locally defined
the rotation and Burgers field by the path integrals (3.3)-(3.4), a displacement can also be locally
constructed by ux0

= b+ω×(x−x0), and the jump of u around C at x0 equals the Burgers vector.
Note that ux0

defines a multi-valued vector field at the mesoscopic scale, as it may jump on any
Burgers circuit around a dislocation loop. To make it single-valued we can first define SL as a
surface enclosed by the dislocation loop L and SL = ∪SL as the union of all SL over all dislocation
loops L, then define the vector field ū = ux0

on Ω\SL. It can be shown that the jump of ū is equal
to B on SL, or, equivalently that the circulation of ∇ū is a concentrated measure on L (see [34,35]
for details). To obtain a macroscopic single-valued displacement field on Ω we will consider below
the Beltrami decomposition complemented by a set of boundary conditions. We will analyze the
connection between the two scales, in particular between ε and E, in section 5. We recall that
at the macroscopic scale that we mostly consider in the paper, the dislocations are not present in
the form of line singularities but modeled through a diffuse density field. Therefore all fields are
square-integrable with no concentration effects. It will nevertheless prove useful for both scales to
pursue the mesoscopic analysis towards the derivation of boundary conditions directly applicable
to E.

3.2. Relation between the Burgers vector and the incompatibility field. In order to
evaluate the displacement jump, we can use the Stokes theorem to rewrite the line integral as a
surface integral. To this respect we first compute

( Curl B)ik(x) = εklj∂lBij(x) = εklj∂lεij + εkljεimp∂l
(
( Curl ε)jp(xm − x0m)

)
= εklj∂lεij + εkljεimp

(
∂l( Curl ε)jp(xm − x0m) + ( Curl ε)jpδml

)
= εklj∂lεij + εkljεimp∂l(εpqr∂qεjr)(xm − x0m) + εkljεimp(εpqr∂qεjr)δml

= εklj∂lεij + εkljεimpεpqr∂lqεjr(xm − x0m) + εkljεilpεpqr∂qεjr

= εklj∂lεij + εimpεkljεpqr∂lqεjr(xm − x0m) + εklj(δiqδlr − δirδlq)∂qεjr
= εklj∂lεij + εimp( inc ε)kp(xm − x0m) + εklj(∂iεjl − ∂lεji)
= εimp( inc ε)kp(xm − x0m).

Hence, if S is a surface of boundary C (i.e., ∂S = C) and unit normal N , then we have at each
point of S

( Curl B(x)N)i = ( Curl B(x))ikNk = εimp( inc ε)kp(xm − x0m)Nk,

which reads

Curl B(x)N = (x− x0)× ( inc εN).

This formulates the resultant Burgers vector associated with a density of defect lines inside C, or
equivalently crossing S, as

B[C] =

∫
S

(x− x0)× ( inc εN)dS(x). (3.5)
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3.3. Micro-hard condition. We say that a surface S satisfies the micro-hard condition if

inc εN = 0 on S. (3.6)

By (3.5), this is equivalent to saying that the resultant Burgers vector B[C ′] of defect lines enclosed
in any circuit C ′ = ∂S′ ⊂ S vanishes. In particular, no individual dislocation line can emerge across
S.

Note that the condition ( Curl B)N = 0 can be obtained by imposing B×N = 0 on S. This is
exactly the micro-hard condition of Gurtin and Needleman [20], thus which is stronger than ours.
Similarly, imposing Curlt ε×N = 0 also yields inc εN = 0.

3.4. Macroscopic boundary condition. In Section 5 we will show that the strain E can be
defined in such a way that inc E = − inc ε at the mesoscopic scale. Its macroscopic counterpart
is defined by local averaging, thus we formulate the micro-hard condition at the macroscale as

inc EN = 0 on S. (3.7)

We will see below that div inc E = 0, whereby the incompatibility flux inc EN has no jump in
the space (4.5). Hence (3.7) is satisfied at the interface between Ω and a fictitious outer compatible
phase when the two phases form a continuum from the point of view of the present framework.

4. Green formula, Beltrami decomposition and consequences

4.1. Green formula and related function spaces. Throughout the paper we assume that Ω
is a bounded domain of R3 with C1 boundary.

Lemma 1 (Green formula for the incompatibility [6]). Suppose that E ∈ C2(Ω,S3) and η ∈
H2(Ω,S3). Then∫

Ω

E · inc ηdx =

∫
Ω

inc E · ηdx+

∫
∂Ω

T1(E) · η dS(x) +

∫
∂Ω

T0(E) · ∂Nη dS(x) (4.1)

with the trace operators defined as

T0(E) := (E ×N)
t ×N, (4.2)

T1(E) :=
(

Curl (E ×N)t
)S

+ ((∂N + k)E ×N)
t ×N +

(
Curlt E ×N

)S
, (4.3)

where k := κA + κB is twice the mean curvature of ∂Ω, ES := (E + Et)/2 is the symmetric part
of E, and cross products are computed row-wise. In addition, it holds∫

∂Ω

T1(E)NdS(x) = 0. (4.4)

In particular, choosing compactly supported test functions, (4.1) allows to recover the distribu-
tional formulation of the inc operator, which satisfies inc ∇Su = 0 for all u ∈ L1

loc(Ω,R3) and
div inc E = 0 for all E ∈ L1

loc(Ω,S3). The main function space on which we will build our analysis
is

H inc(Ω,S3) =
{
E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)

}
. (4.5)

It is naturally endowed with an Hilbertian structure for the norm

‖E‖Hinc(Ω,S3) =
(
‖E‖L2(Ω,S3) + ‖ inc E‖L2(Ω,S3)

)1/2
.

The traces T0(E) and T1(E) extend by duality to every function E ∈ H inc(Ω,S3), with T0(E) ∈
H−1/2(∂Ω,S3) and T1(E) ∈ H−3/2(∂Ω,S3), so as to generalize (4.1). An alternative definition of
the boundary trace operators using divergence-free test functions and corresponding liftings has
been considered in [6]. Throughout we will denote duality pairings by integrals.

We next define H inc
0 (Ω,S3) as the closure of C∞c (Ω,S3) in H inc(Ω,S3). The following properties

are proved in [9].

Proposition 2. (1) H inc
0 (Ω,S3) =

{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω

}
.

(2) Let Γ be a relatively open subset of ∂Ω. If E ∈ H inc(Ω,S3) satisfies T0(E) = T1(E) = 0 on
Γ then inc EN = 0 on Γ.
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4.2. Beltrami decomposition and related function spaces. We define the function spaces

V =
{
E ∈ L2(Ω,S3) : inc E = 0

}
,

W =
{
E ∈ L2(Ω,S3) : div E = 0

}
,

Z =
{
E ∈ H inc(Ω,S3) : div E = 0, EN = 0 on ∂Ω

}
,

and, given subsets Γ1, Γ2 of ∂Ω with Γ1 relatively open, Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅,
V0

Γ1
= {E ∈ V : T0(E) = T1(E) = 0 on Γ1} ,

V00
Γ1

=
{
∇Sv : v ∈ H1(Ω,R3), v = 0 on Γ1

}
,

W0
Γ2

= {E ∈ W : EN = 0 on Γ2} .
We refer to [9] for the precise meaning of this latter condition and for the proof of the following
result.

Theorem 3. Assume Ω is simply-connected.

(1) We have the representations

V =
{
∇Sv, v ∈ H1(Ω,R3)

}
, W = { inc F, F ∈ Z} .

(2) If E ∈ L2(Ω,S3) satisfies inc E = 0 in Ω and T0(E) = T1(E) = 0 on ∂Ω then there exists
v ∈ H1

0 (Ω,R3) such that E = ∇Sv.
(3) Let v ∈ H1(Ω,R3). If v = r on Γ1 in the sense of traces, with r a rigid displacement field,

then T0(∇Sv) = T1(∇Sv) = 0 on Γ1. The converse statement holds true if Γ1 = ∂Ω.
(4) We have the L2-orthogonal sums (variants of the Beltrami decomposition)

L2(Ω,S3) = V00
Γ1
⊕W0

Γ2
, H inc(Ω,S3) = V ⊕ Z.

(5) We have the Poincaré inequality

‖E‖H1(Ω,S3) ≤ c‖ inc E‖L2(Ω,S3) ∀E ∈ Z,
for some positive constant c.

Note that Theorem 3 implies V00
Γ1
⊂ V0

Γ1
, with equality if Γ1 = ∂Ω.

For later purpose, we provide two additional results related to the set

Y =
{
E ∈ H inc(Ω,S3) : div E ∈ L2(Ω,R3), EN = 0 on ∂Ω

}
. (4.6)

Theorem 4. If Ω is simply-connected, then there exists c > 0 such that

‖E‖L2(Ω,S3) ≤ c
(
‖ inc E‖L2(Ω,S3) + ‖ div E‖L2(Ω,R3)

)
∀E ∈ Y.

Proof. We define the auxiliary space

X =

{
(F, h) ∈ L2(Ω,S3)× L2(Ω,R3) : div F = 0,

∫
Ω

hdx =

∫
Ω

h× xdx = 0

}
and the continuous linear map

Φ : E ∈ Y 7→ ( inc E, div E) ∈ X .
We equip X and Y with the norms

‖(F, h)‖X = (‖F‖2L2(Ω,S3) + ‖h‖2L2(Ω,R3))
1/2,

‖E‖Y = (‖E‖2L2(Ω,S3) + ‖ inc E‖2L2(Ω,S3) + ‖ div E‖2L2(Ω,R3))
1/2,

whereby X and Y are Banach spaces. If Φ(E) = 0 then E is a symmetric gradient by Theorem
3, and the conditions div E = 0, EN = 0 on ∂Ω yield E = 0. Given a pair (F, h) ∈ X , setting
E = −∇Sw +G with G ∈ Z such that inc G = F , which is possible by Theorem 3 since F ∈ W,
and w a weak solution of {

−div ∇Sw = h in Ω
∇SwN = 0 on ∂Ω
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results in div E = div ∇Sw = h, inc E = inc G = F and EN = 0 on ∂Ω. We conclude that Φ is
an isomorphism. The open mapping theorem yields that Φ−1 is continuous, thence the result. �

Theorem 5. If Ω is simply-connected, then Y is a dense subspace of H inc(Ω,S3).

Proof. We will prove that Y⊥ = {0}, where orthogonality is meant for the inner product of
H inc(Ω,S3). This will yield Y = Y⊥⊥ = H inc(Ω,S3). Let E ∈ Y⊥. We have by definition∫

Ω

(E · F + inc E · inc F ) dx = 0 ∀F ∈ Y.

We use the Beltrami decomposition from Theorem 3 as

E = Ec + Ei ∈ V ⊕ Z,

to obtain ∫
Ω

Ec · Fdx+

∫
Ω

(Ei · F + inc Ei · inc F ) dx = 0 ∀F ∈ Y. (4.7)

Choosing F = Ei in (4.7), using Z ⊂ Y and the L2-orthogonality of Ec and Ei, yields Ei = 0. It
remains ∫

Ω

Ec · Fdx = 0 ∀F ∈ Y.

We can choose in particular arbitrary test functions in C∞c (Ω,S3), showing that Ec = 0. �

Recall that the Beltrami decomposition is not objective, therefore it has not been used to
describe internal efforts. It will be used later to recover a displacement field from the strain and
to describe external efforts when applied to virtual fields.

4.3. Hard boundary condition. In view of Proposition 2, claim (1), we call hard boundary
condition the condition T0(E) = T1(E) = 0. By Theorem 3, claims (2) and (3), it naturally
extends the clamped condition to the possibly incompatible case. Proposition 2, claim (2), means
that the hard condition implies the micro-hard one (3.7).

5. Multiscale definition of the strain at the mesoscopic scale based on the
Beltrami and Radon-Nikodým decompositions

In this section we will show how the strain E, basic ingredient of our approach, can be interpreted
in a coherent way with the Beltrami decomposition.

5.1. Mesoscopic construction. We first place ourselves at the mesoscopic scale where glide
surfaces lead to singularities in the geometrical descriptors. In this setting, if u is smooth enough
outside a surface S of discontinuity, the Radon-Nikodým decomposition of ∇Su writes

∇Su = ∇̄Su− [[u]]�NδS , (5.1)

with δS denoting the two-dimensional Hausdorff mesure restricted to S. Here, [[u]] is the jump of
u counting positively the contribution with outward normal, and (b � N)ij = (biNj + bjNi)/2.
Note that the absolutely continuous part ∇̄Su of the symmetric distributional gradient ∇Su is
the symmetric part of an approximate gradient in the sense of geometric measure theory (see,
e.g., [4, 5]). Moreover, at this scale, ∇̄Su is typically only in Lp for p < 2, since Curl ∇̄u is
indeed a concentrated measure (namely, the dislocation density) only for p < 2 [32,33]. Therefore
we will make use of an Lp version of the Beltrami decomposition developed in [27]. We can
nevertheless work with p = 2 upon choosing a gradually varying jump within the dislocation core,
from 0 to the Burgers vector, as done in [2] and considered next in Proposition 7. Moreover,
the natural framework where (5.1) holds is the space SBD(Ω) of special functions with bounded
deformation (this space was introduced in [36], see also [4,22,37]). The proposition below provides
an interpretation of the kinematic variable E at the mesoscopic scale. It is based on a Beltrami
decomposition of the absolutely continuous (sometimes called elastic) part of ∇Su in order to
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define a strain E made of a compatible plus a concentrated (sometimes called plastic) term. By
doing so, the incompatibility of the absolutely continuous part will be compensated.

Proposition 6. Let Ω ⊂ R3 be simply connected, u ∈ SBD(Ω) with jump set S and jump b,
with u = 0 on ∂Ω. Denote by ∇̄Su the absolutely continuous part of ∇Su. We assume that
∇̄Su ∈ Lp(Ω,S3) for some p ∈ (1,∞). There exists a unique ū ∈W 1,p

0 (Ω,R3) such that

E := ∇S ū− b�NδS
satisfies

div E = div ∇Su. (5.2)

In addition, we have div ∇̄Su = div ∇S ū, and S = ∅ implies ū = u and E = ∇Su.

Proof. We write the Beltrami decomposition of ∇̄Su as

∇̄Su = ∇S ū+ F, ū ∈W 1,p
0 (Ω,R3), F ∈ Lp(Ω,S3), div F = 0.

We have

∇Su = ∇̄Su− b�NδS = ∇S ū− b�NδS + F,

hence E := ∇S ū− b�NδS satisfies

E = ∇Su− F = ∇̄Su− b�NδS − F, and div ∇Su = div E,

completing the existence. For the uniqueness, consider two pairs (ū1, E1) and (ū2, E2). This yields
E2 − E1 = ∇S(ū2 − ū1). From div ∇S(ū2 − ū1) = 0 we infer ū2 − ū1 = 0, and subsequently
E2 − E1 = 0. Lastly, S = ∅ implies div ∇S ū = div E = div ∇Su, whereby ū = u. �

The condition div ∇S ū = div ∇̄Su implies in particular that [[∇S ūN ]] = [[∇̄SuN ]] across S.
Therefore, ū encodes all compatible jumps from ∇̄Su. Setting F = ∇Su− E we have

div F = 0, inc E = − inc F = inc (−b�NδS) = − inc ∇̄Su. (5.3)

The field F accounts for singular deformations localized in the vicinity of dislocation cores. To
illustrate this local feature, let us consider a 2d situation with a glide (half-)plane S = {(0, y, z), y ≥
0} and a single straight edge dislocation line along the z-axis with a constant Burgers vector
b = |b|ey. By (5.3) we can write F = inc Ψ, with inc inc Ψ = inc (b�NδS) = −|b|∂xδx=y=0ez⊗ez.
Looking for Ψ = ψez ⊗ ez we arrive at the free space expression in cylindrical coordinates and
Cartesian components

F =
−|b|
4πr

cos θ cos 2θ sin θ cos 2θ 0
sin θ cos 2θ cos θ(2− cos 2θ) 0

0 0 0

 =
−|b|
4πr

(cos θ(er ⊗ er + eθ ⊗ eθ) + 2 sin θer � eθ) .

Here r is the distance to the dislocation line and we observe the decay

F = O(
|b|
r

). (5.4)

To better interpret the condition div E = div ∇Su, or equivalently div ∇S ū = div ∇̄Su, it
is useful to consider the aforementioned gradual dislocation model. We assume the same edge
dislocation as above with the same yz glide (half-) plane S, but now with a jump [[u]] = f(y)ey
on S. Here f is a smooth function which is constant when y ≥ R and vanishes at the origin, i.e.
f(0) = 0. In other words we obtain a classical dislocation only in the limit R → 0, and as far as
R > 0 the problem is regularized in a core around the dislocation, here given by the cylinder

C = {x2 + y2 < R2}.

Proposition 7. In the above situation we have

inc ∇̄Su = [[T0(∇̄Su)]]∂NδS + [[T1(∇̄Su)]]δS = −f ′(y)ez ⊗ ez∂xδS . (5.5)
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Proof. The first equality stems from the Green formula in Theorem 1. The second one results from

inc ∇̄Su = inc ([[u]]�NδS) = inc (f(y)ey � exδS)

and an explicit calculation. Indeed the above distributional incompatibility is computed as∫
S

(f(y)ey � ex) · inc (ϕez ⊗ ez)dS = −
∫
S

f(y)∂xyϕdS =

∫
S

f ′(y)∂xϕdS +

∫
L

f(0)∂xϕ(0, 0, z)dz,

then we use that that f = 0 on the z-axis. �

By assumption on [[u]] (i.e., that u is of the order f(y) along ey), the component (∇̄Su)yy is of
order f ′(y) within C, which by (5.5) is directly related to inc ∇̄Su. In particular, if f ′(y) → ∞,
both (∇̄Su)yy and inc ∇̄Su degenerate at the same speed. As a matter of fact, the correction field
F defining E by E = ∇Su−F = ∇̄Su− [[u]]�NδS−F exactly compensates the incompatibility of
∇̄Su. Therefore it serves to compensate the degeneracy of (∇̄Su)yy, which is irrelevant to represent
the highly nonlinear core deformations. Equivalently by (5.5) it compensates the tangential jumps
[[T0(∇̄Su)]] and [[T1(∇̄Su)]], without modifying the compatible ones [[∇̄SuN ]], specifically because F
is chosen as divergence-free. Furthermore, by removing the correction term F , the incompatibility
of E is only due to the concentrated shear −[[u]]�NδS .

It is shown in [2] that a limiting version of the classical plasticity theory for a shear band of
vanishing thickness corresponds to the choices of the plastic and elastic strains as Ep = −b �
NδS , Ee = ∇̄Su, respectively. Our construction is fundamentally different, since we rely on a
single symmetric field E containing elastic and plastic strains, minus a local correction term, F ,
accounting for incompatibility, whose effect is taken into account in our model through inc F =
− inc E in order to bypass the direct modeling of large deformations and decohesion phenomena
within dislocation cores. In contrast, the concentrated shear −b�NδS , which is not restricted to
dislocation cores, is kept in E. The change of the material response to shear deformations due
to dislocations will be taken into account in the variation of the shear modulus µA. This will be
developed in section 8.

Remark 2. Note that if we consider S as the full xy-glide plane (instead of half-plane), then it
still holds inc ([[u]] � NδS) = −f ′(y)ez ⊗ ez∂xδS (even without the condition f(0) = 0). Hence
considering f ≡ b on S yields a deformation with zero incompatibility, as the dislocation has glided
along S from one extremity to the other, where it has left the crystal. These are compatible plastic
effects, which are as previously taken into account in the effective tangent modulus µA.

5.2. From the mesoscale to the macroscale. We turn to the macroscopic implications of
the previous discussions. We now use the index η to denote mesoscopic quantities, where η is
a characteristic length of the individual Burgers vectors involved. Therefore, we assume that
we are given a displacement field uη, and that we have constructed a strain field Eη such that
div Eη = div ∇Suη, as in (5.2). We further assume that, when η → 0, uη → u and Eη → E in the
sense of distributions, for some pair (u,E). Since they are defined by a local averaging process, we
consider these limits as the macroscopic displacement and strain fields. It is then straightforward
that div E = div ∇Su. This relation justifies the use of the Beltrami decomposition, or more
specifically item (4) of Theorem 3, as the cornerstone of our approach to connect the strain and
the displacement. Indeed, this decomposition is not only needed to reconstruct u from E, but also
to define the tensor K of external efforts as described in the next section. Moreover, if we define
Fη = ∇Suη −Eη and F = ∇Su−E then Fη → F in the sense of distributions. If dislocations are
concentrated within a region U with resulting Burgers vector b, passing (5.4) to the macroscopic
case yields F = O(|b|/r) where r is the distance to U .

6. Generalized external forces

In view of the above construction, we are going to give alternative representations of the external
work (2.1) using the decompositions from Theorem 3. Consider a partition ∂Ω = Γ1 ∪ Γ2. Let a
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virtual strain Ê ∈ L2(Ω,S3) be decomposed as

Ê = ∇S v̂ + inc F̂ ∈ V 00
Γ1
⊕W0

Γ2
,

with v̂ ∈ H1(Ω,R3), v̂ = 0 on Γ1 and F̂ ∈ H inc(Ω,S3), inc F̂N = 0 on Γ2. The Green formula
yields

We(Ê) =

∫
Ω

K · (∇S v̂ + inc F̂ )dx

= −
∫

Ω

div K · v̂dx+

∫
∂Ω

KN · v̂dS(x) +

∫
Ω

inc K · F̂ dx+

∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x).

We recall the following property proved in [9].

Lemma 8. If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

then∫
∂Ω

(
T1(K) · F̂ + T0(K) · ∂N F̂

)
dS(x) = 0.

Let f ∈ L2(Ω,R3) and g ∈ H−1/2(∂Ω,R3) be given. Using Lemma 8 and restricting for
simplicity to the reference case where inc K = 0, i.e. K = ∇Sw with w ∈ H1(Ω,R3), a (weak)
solution of  −div ∇Sw = f in Ω

w = 0 on Γ1(
∇Sw

)
N = g on Γ2

then we retrieve the conventional external work

We(Ê) =

∫
Ω

f · v̂dx+

∫
Γ2

g · v̂dS(x). (6.1)

We will subsequently assume that K is defined in this way.

7. Well-posedness and elastic limit

7.1. Well-posedness. We are now in position to address the well-posedness of (2.3). In order to
encode a hard boundary condition on Γ1 and a free boundary condition on Γ2 we set

H =
{
E ∈ H inc(Ω,S3) : T0(E) = T1(E) = 0 on Γ1

}
.

A straightforward application of the Lax-Milgram theorem yields the following existence result.

Theorem 9. Let K ∈ L2(Ω,S3) and assume A,D are uniformly positive definite. There exists a
unique E ∈ H such that∫

Ω

(
AE · Ê + D inc E · inc Ê

)
dx =

∫
Ω

K · Êdx ∀Ê ∈ H. (7.1)

7.2. Free boundary condition and strong form. Assuming sufficient regularity for E, inte-
grating the left-hand side of (7.1) by parts yields by the Green formula∫

Ω

(AE + inc (D inc E)) · Êdx+

∫
∂Ω

T0(D inc E) · ∂N ÊdS(x) +

∫
∂Ω

T1(D inc E) · ÊdS(x).

Taking first Ê ∈ C∞c (Ω,S3) yields the strong form

AE + inc (D inc E) = K in Ω,

with K the tensor of external force, Riesz representative of the efforts f and g by (6.1).

Remark that taking Ê = ∇S v̂ yields the classical relations

−div (AE) = f in Ω, AEN = g on Γ2,
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whereby AE is interpreted as the Cauchy stress tensor, and accordingly will be later used to
compute the von Mises stress. By classical lifting in H2(Ω) one obtains the additional boundary
condition

T0(D inc E) = T1(D inc E) = 0 on Γ2.

This is our version of the micro-free or microscopically powerless boundary condition, similar in
spirit to [20] but different in its expression since the authors of [20] have another kinematical
description with prescribed slip systems.

7.3. Elastic limit. We now show that compatible linear elasticity is recovered at the limit when
the eigenvalues of D tend to infinity.

Theorem 10. Assume that A and Dk are uniformly positive definite and denote by dk the smallest
eigenvalue of Dk. Let Ek ∈ H be the solution of∫

Ω

(
AEk · Ê + Dk inc Ek · inc Ê

)
dx =

∫
Ω

K · Êdx ∀Ê ∈ H. (7.2)

If dk → +∞ then Ek → E∞ in L2(Ω,S3) where E∞ is the unique solution in V0
Γ1

of∫
Ω

AE∞ · Êdx =

∫
Ω

K · Êdx ∀Ê ∈ V0
Γ1
. (7.3)

Proof. Choosing Ê = Ek yields

‖Ek‖L2(Ω,S3) ≤ c, ‖ inc Ek‖L2(Ω,S3) → 0, (7.4)

for some constant c. Therefore, there exists E∞ ∈ L2(Ω,S3) such that Ek weakly converges to E∞
in L2(Ω,S3), up to a non-relabeled subsequence. We have for all Φ ∈ C∞c (Ω,S3)∫

Ω

E∞ · inc Φdx = lim
k→∞

∫
Ω

Ek · inc Φdx = lim
k→∞

∫
Ω

inc Ek · Φdx = 0,

hence inc E∞ = 0. Let now ϕ0, ϕ1 ∈ C∞(∂Ω,S3) be supported on Γ1 and Φ ∈ H2(Ω,S3) such
that Φ = ϕ0 and ∂NΦ = ϕ1 on ∂Ω. We have by the Green formula, since Ek ∈ H, and by (7.4),∫

Ω

(E∞ · inc Φ− inc E∞ · Φ)dx = lim
k→∞

∫
Ω

Ek · inc Φdx = lim
k→∞

∫
Ω

inc Ek · Φdx = 0,

hence T0(E∞) = T1(E∞) = 0 on Γ1. We have shown that E∞ ∈ V0
Γ1

. Using a test function Ê ∈ V0
Γ1

in (7.2) yields ∫
Ω

AEk · Êdx =

∫
Ω

K · Êdx,

then passing to the limit reveals that E∞ solves (7.3). By uniqueness of this cluster point, the
whole sequence (Ek) is converging. It remains to prove the strong convergence. To do so we
compute∫

Ω

A(Ek − E∞) · (Ek − E∞)dx =

∫
Ω

AEk · Ekdx+

∫
Ω

AE∞ · E∞dx− 2

∫
Ω

AEk · E∞dx.

We have on the one hand∫
Ω

AEk · E∞dx→
∫

Ω

AE∞ · E∞dx =

∫
Ω

K · E∞dx,

and on the other hand,∫
Ω

AEk · Ekdx =

∫
Ω

K · Ekdx−
∫

Ω

Dk inc Ek · inc Ekdx ≤
∫

Ω

K · Ekdx→
∫

Ω

K · E∞dx.

It follows that

lim sup
k→∞

∫
Ω

A(Ek − E∞) · (Ek − E∞)dx = 0,

from which we infer the strong convergence. �
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In view of Theorem 3, we can rephrase (7.3) in a fully standard form, at least in the following
two cases:

(1) if Γ1 = ∅ (free boundary condition on ∂Ω) then V0
Γ1

= V = {∇Sv, v ∈ H1(Ω,R3)} and the
Neumann linear elasticity problem is retrieved;

(2) if Γ1 = ∂Ω (hard boundary condition on ∂Ω) then V0
Γ1

= V00
∂Ω = {∇Sv, v ∈ H1

0 (Ω,R3)}
and the Dirichlet linear elasticity problem is retrieved.

8. Dissipation and evolution rules

We aim here at studying evolution rules for the tangent moduli κA, µA, κD, µD in order to obtain
a thermodynamically consistent model. We begin with a continuous time framework.

8.1. Continuous time evolution framework. Going back to the general notation from subsec-
tion 2.3, the Clausius-Duhem inequality [19,26] reads in the present case

R = Σ · Ė + Λ · inc Ė − ρ(ψ̇ + sṪ )− q · ∇T
T

≥ 0. (8.1)

Here, R is the dissipation rate, ρ is the density, ψ, s are the specific Helmholtz free energy and
entropy, respectively, q is the heat flux and T is the temperature. We postulate that the specific
free energy is of form

ψ = ψ(E, inc E, θ, T ),

where θ is a scalar internal variable accounting for dissipative phenomena. We can rewrite (8.1) as

R =

(
Σ− ρ ∂ψ

∂E

)
· Ė +

(
Λ− ρ ∂ψ

∂ inc E

)
· inc Ė − ρ

(
s+

∂ψ

∂T

)
Ṫ − ρ∂ψ

∂θ
θ̇ − q · ∇T

T
≥ 0.

A classical physical argument [26] leads to

Σ = ρ
∂ψ

∂E
, Λ = ρ

∂ψ

∂ inc E
, s = −∂ψ

∂T
, (8.2)

and we arrive at

R = RM +RT , RM = −ρ∂ψ
∂θ
θ̇, RT = −q · ∇T

T
.

In our mechanical approach we will neglect the thermal dissipation rate RT , and limit our study
to the mechanical dissipation rate RM . A classical way to automatically satisfy RM ≥ 0 is to
postulate the existence of a dissipation potential φ minimal at 0 such that

θ̇ maximizes− ρ∂ψ
∂θ
θ̇ − φ(θ̇). (8.3)

Indeed, this implies

RM =

(
−ρ∂ψ

∂θ
θ̇ − φ(θ̇)

)
+ φ(θ̇) ≥ −φ(0) + φ(θ̇) ≥ 0.

Upon convexity and lower-semicontinuity of φ, we infer a flow rule for θ based on the equivalences
[10,11,16]

(8.3)⇔ −ρ∂ψ
∂θ
∈ ∂φ(θ̇)⇔ θ̇ ∈ ∂φ∗(−ρ∂ψ

∂θ
),

where ∂φ is the subdifferential of φ and φ∗ is the Legendre-Fenchel transform of φ. Choosing a
positively homogeneous dissipation potential of form

φ(s) =

{
+∞ if s < 0
γs if s ≥ 0

yields φ∗(p) =

{
0 if p ≤ γ
+∞ if p > γ.

This leads to ∂φ∗(p) = {0} for p < γ and ∂φ∗(p) = [0,+∞) for p = γ . On the one hand this
is relevant to represent the threshold effect typical of perfect plasticity, in relation with the more
general framework of rate independent systems, see [30] and the references therein. On the other

hand it implies θ̇ ≥ 0, so that dissipation is characterized by an increase of θ. We believe that
other dissipation potentials may encode hardening phenomena, but we leave this to further study.
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However we will not use convex calculus in the sequel. We will directly translate (8.3) to the
discrete time setting that will be of interest for practical implementation, in the spirit of Hencky’s
model of conventional plasticity (see e.g. [29]).

8.2. Incremental framework. In order to analyze the incremental procedure in a practical set-
ting we adapt the previous considerations. Since we assume linear constitutive laws within each
increment, we directly address the question of the evolution of the tangent tensors A and D. We
focus on a first increment [0, t1] where we assume a time-dependent load of form

K(t) = tK

and constant tangent tensors. Then the strain rate is also constant in the time interval. We will
work with this quantity, rather than the strain itself, and we simply denote it by E. We take t1 = 1
for simplicity. The total work expended during the increment is

W =

∫ t1

0

∫
Ω

K(t) · Edxdt =
1

2

∫
Ω

K · Edx.

The balance law (2.3) yields the reformulation

W =
1

2

∫
Ω

(AE · E + D inc E · inc E) dx.

We assume the isotropic constitutive laws (2.5), where we choose λD = 0 for simplicity. Together
with (2.6) this yields

W =
1

2

∫
Ω

(
κA( trE)2 + 2µA|devE|2 + 2µD| inc E|2

)
dx.

In the same way as in the previous subsection we introduce an internal variable θ, but we bypass
the free energy and the relations (8.2) to directly assume that µA and κD are functions of θ. We

stress that this θ is the incremental counterpart of θ̇ from the time continuous setting, therefore we
will assume that θ ≥ 0. Because it is not expected to play any role in plasticity, the bulk modulus
κA is assumed constant. We assume a constant temperature. Moreover, we fix by convention
θ = (2µD)−1, as by Theorem 10, linear elasticity corresponds to the limit θ → 0. We call θ the
compatibility modulus. We assume that the effective shear and compatibility moduli are related
by a constitutive law µA = µA(θ). For consistence we denote µD(θ) = (2θ)−1.

Call E(θ) ∈ H the solution of∫
Ω

(
κA trE(θ) trÊ + 2µA(θ) devE(θ) · devÊ + 2µD(θ) inc E(θ) · inc Ê

)
dx =

∫
Ω

K·Êdx, ∀Ê ∈ H,

(8.4)
and W (θ) the work

W (θ) =
1

2

∫
Ω

K · E(θ)dx.

The global dissipation for the increment under consideration is the difference between the actual
work and the corresponding elastic work for the same loading, equal to the variation of free energy,
i.e.,

D(θ) = W (θ)−W (0).

Obviously we have the variational formulation

−W (θ) = inf
E∈H

{
1

2

∫
Ω

(
κA tr2E + 2µA(θ)|devE|2 + 2µD(θ)| inc E|2

)
dx−

∫
Ω

K · Edx
}
.

As in the continuous time setting, θ is updated according to a principle of maximal dissipation,
including a dissipation potential. Here it is formulated globally in space and for a finite time
increment as

maximize D(θ)− Φ(θ) over {θ ≥ 0},
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with

Φ(θ) =

∫
Ω

φ(θ)dx,

or equivalently

minimize −W (θ) + Φ(θ) over {θ ≥ 0}. (8.5)

Imposing that φ is minimized at 0 guarantees the nonnegativity of the global dissipation D(θ).
Lastly, due to our choice of function µD(θ), we restrict to θ ≥ θmin for a sufficiently small θmin > 0
that approximates perfect elasticity. We arrive at the joint variational formulation

minimize
(θ,E)∈L∞(Ω,[θmin,+∞))×H

∫
Ω

1

2

(
κA tr2E + 2µA(θ)|devE|2 + 2µD(θ)| inc E|2

)
dx−

∫
Ω

K·Edx+

∫
Ω

φ(θ)dx.

(8.6)
It can be solved by alternating minimizations:

• minimization with respect to E is equivalent to solving the governing equation (8.4),
• minimization with respect to θ can be for instance performed by steepest descent or Newton

iterations, see also appendix A.

This formulation in terms of a minimum problem of two energetic terms, whose equilibrium balances
the dissipation and the energetic cost of some inelastic phenomenon, is reminiscent of the Griffith-
Francfort-Marigo model of damage and fracture evolution as introduced in [17] and considered in,
e.g., [3, 41]. Here, however, the dissipative term in (8.5) is driven by the compatibility modulus θ,
that is a diffuse field.

8.3. Modeling example. Since the material response can be viewed as the sum of elastic and
plastic phenomena in series we adopt the representation

µA(θ)−1 = µ−1
0 + µ̃(θ)−1, (8.7)

where µ0 is the elastic shear modulus and µ̃(θ) is a purely plastic effective shear modulus. It is
reasonable to assume that limθ→0 µ̃(θ) = +∞ and µ̃(θ) is a decreasing function of θ, since in the
elastic limit θ → 0 we expect µ̃ to be large. Let us write the stationarity condition with respect to
θ for (8.6), with E fixed to its optimal value E = E(θ) by (8.4):

−µ′A(θ)|devE(θ)|2 − µ′D(θ)| inc E(θ)|2 − φ′(θ) ∈ N(θ),

with the normal cone N(θ)(x) = (−∞, 0] if θ(x) = θmin, N(θ)(x) = {0} if θ(x) > θmin. Using (8.7)
this is equivalent to

− µ̃
′(θ)

µ̃(θ)2
|µA(θ) devE(θ)|2 +

1

2θ2
| inc E(θ)|2 − φ′(θ) ∈ N(θ).

We suggest the simple laws

µ̃(θ) =
k

θ
, φ(θ) = γθ, k, γ > 0. (8.8)

The first one implies that µ̃(θ) is proportional to µD(θ). The second one induces the threshold
effect as discussed in section 8.1. We obtain the stationarity condition

1

k
|µA(θ) devE(θ)|2 + 2|µD(θ) inc E(θ)|2 − γ ∈ N(θ).

In particular for the von Mises stress σM = |2µA(θ) devE(θ)| we always have

σ2
M ≤ 4γk =: σ2

Y . (8.9)

Therefore σY can be identified with the yield stress in perfect plasticity. We recall that hardening
could be addressed by the construction of a sequence of increments with adapted modeling choices.
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9. Numerical resolution

We consider the free boundary problem: find E ∈ H inc(Ω,S3) such that∫
Ω

AE · Ê + D inc E · inc Ê =

∫
Ω

K · Ê ∀Ê ∈ H inc(Ω,S3). (9.1)

As the space H inc(Ω,S3) does not lend itself to standard discretizations and K is not directly
known, we will work with the decomposition from Theorem 3

E = ∇Su+ Ei ∈ V ⊕W0
∂Ω, Ê = ∇S û+ Êi ∈ V ⊕W0

∂Ω.

Using the representation (6.1) of the external work we arrive at∫
Ω

(
A(∇Su+ Ei) · (∇S û+ Êi) + D inc Ei · inc Êi

)
dx =

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x). (9.2)

Still, the constraints Ei, Êi ∈ W0
∂Ω are not easy to handle through finite element subspaces. For

this reason we turn to a mixed formulation. First, specializing (9.2) to the case where Êi = 0
results in ∫

Ω

A(∇Su+ Ei) · ∇S ûdx =

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x) ∀û ∈ H1(Ω,R3).

Second, since K ∈ V we rewrite (9.1) with K = −∇Sp, p ∈ H1(Ω,R3), and obtain∫
Ω

(
A(∇Su+ Ei) · Êi + D inc Ei · inc Êi

)
dx = −

∫
Ω

∇Sp · Êidx ∀Êi ∈ H inc(Ω,S3).

By summation we arrive at∫
Ω

(
A(∇Su+ Ei) · (∇S û+ Êi) + D inc Ei · inc Êi +∇Sp · Êi

)
dx

=

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x) ∀(û, Êi) ∈ H1(Ω,R3)×H inc(Ω,S3).

This has to be solved by (u,Ei) ∈ H1(Ω,R3)×H inc(Ω,S3) with the additional equation∫
Ω

Ei · ∇S p̂dx = 0 ∀p̂ ∈ H1(Ω,R3),

which represents the condition Ei ∈ W0
∂Ω = V⊥. Since u and p are in the present case defined up

to rigid body motions, we numerically solve a finite element approximation of∫
Ω

(
A(∇Su+ Ei) · (∇S û+ Êi) + D inc Ei · inc Êi + εuu · û+∇Sp · Êi + Ei · ∇S p̂− εpp · p̂

)
dx

=

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x) ∀(û, Êi, p̂) ∈ H1(Ω,R3)×H inc(Ω,S3)×H1(Ω,R3), (9.3)

with εu, εp small positive stabilization parameters. Actually, the unknown p can be eliminated
using

Ei · ∇S p̂− εpp · p̂ = 0 ∀p̂ ∈ H1(Ω,R3)⇔

 p = − 1

εp
div Ei

EiN = 0 on ∂Ω.
(9.4)

We arrive at the variational form∫
Ω

(
A(∇Su+ Ei) · (∇S û+ Êi) + D inc Ei · inc Êi + εuu · û+

1

εp
div Ei · div Êi

)
dx

=

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x) ∀(û, Êi) ∈ H1(Ω,R3)× Y, (9.5)
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with Y defined in (4.6). Note that the test functions in (9.5) are more constrained than in (9.3),
however the two formulations will be proved to be equivalent, which actually is not surprising in
view of the density property obtained in Theorem 5.

Theorem 11. Assume A,D are uniformly positive definite and Ω is simply-connected.

(1) The triple (u,Ei, p) ∈ H1(Ω,R3) × H inc(Ω,S3) × H1(Ω,R3) solves (9.3) if and only if
(u,Ei) ∈ H1(Ω,R3)× Y solves (9.5) and p = −ε−1

p div Ei.

(2) There exists a unique (u,Ei) ∈ H1(Ω,R3)× Y solution of (9.5).
(3) Moreover, ∇Su + Ei converges to the solution of (7.1) (with Γ1 = ∅ and K defined as in

section 6) in H inc(Ω,S3) when (εu, εp)→ 0.

Proof. Step 1. Suppose that (u,Ei, p) ∈ H1(Ω,R3) ×H inc(Ω,S3) ×H1(Ω,R3) solves (9.3). Then
we have already shown (9.4), whereby Ei ∈ Y and (9.5) is satisfied.
Step 2. Suppose now that (u,Ei) ∈ H1(Ω,R3)× Y solves (9.5) and set

p = − 1

εp
div Ei, E = ∇Su+ Ei.

We have in particular p ∈ L2(Ω,R3) and∫
Ω

(
AE · Êi + D inc E · inc Êi − p · div Êi

)
dx = 0 ∀Êi ∈ Y. (9.6)

We define the linear form Λ ∈ H inc(Ω,S3)′ by

〈Λ, Ê〉 =

∫
Ω

(
AE · Ê + D inc E · inc Ê

)
dx ∀Ê ∈ H inc(Ω,S3). (9.7)

We infer from (9.6) that Z ⊂ ker Λ. By Theorem 3 we have H inc(Ω,S3) = V ⊕ Z, hence denoting
by P : H inc(Ω,S3)→ V the projection onto V we have

〈Λ, Ê〉 =

∫
Ω

AE · P (Ê)dx ∀Ê ∈ H inc(Ω,S3).

The projection P being L2-orthogonal, defining R := P (AE) ∈ V ⊂ L2(Ω,R3), it follows

〈Λ, Ê〉 =

∫
Ω

P (AE) · Êdx =

∫
Ω

R · Êdx ∀Ê ∈ H inc(Ω,S3). (9.8)

Going back to (9.6) we obtain∫
Ω

(
R · Êi − p · div Êi

)
dx = 0 ∀Êi ∈ Y,

whereby R = −∇Sp ∈ L2(Ω,S3). By Korn’s inequality, this shows that p ∈ H1(Ω,R3). Moreover,
combining (9.7) and (9.8) leads to∫

Ω

(
AE · Êi + D inc E · inc Êi

)
dx = −

∫
Ω

∇Sp · Êidx ∀Êi ∈ H inc(Ω,S3).

This is exactly (9.3) tested against Êi. Starting from (9.5), testing (9.3) against û is straightfor-
ward. Testing (9.3) against p̂ is equivalent to (9.4), which is satisfied by construction.
Step 3. We now prove the existence of a constant c > 0 such that∫

Ω

(
A(∇Sv + F ) · (∇Sv + F ) + D inc F · inc F + εu|v|2 +

1

εp
|div F |2

)
dx

≥ c
(
‖v‖2L2 + ‖∇Sv‖2L2 + ‖F‖2 + ‖ inc F‖2L2 + ‖div F‖2L2

)
∀(v, F ) ∈ H1(Ω,R3)× Y. (9.9)

Let assume that (9.9) does not hold true. Then we can construct a sequence (vk, Fk) ∈ H1(Ω,R3)×
Y such that

lim
k→∞

∫
Ω

(
A(∇Svk + Fk) · (∇Svk + Fk) + D inc Fk · inc Fk + εu|vk|2 +

1

εp
|div Fk|2

)
dx = 0,

(9.10)
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‖vk‖2L2 + ‖∇Svk‖2L2 + ‖Fk‖2L2 + ‖ inc Fk‖2L2 + ‖ div Fk‖2L2 = 1. (9.11)

From (9.10) we immediately see that ‖vk‖L2 → 0. We also infer ‖ inc Fk‖L2 + ‖ div Fk‖L2 → 0,
hence Theorem 4 yields ‖Fk‖L2 → 0. Using again (9.10) we find that

‖∇Svk‖L2 ≤ ‖∇Svk + Fk‖L2 + ‖Fk‖L2 → 0,

which contradicts (9.11).
Step 4. The existence and uniqueness of a solution of (9.5) follows from step 3, the Lax-Milgram
theorem and Korn’s inequality ‖v‖2L2 + ‖∇Sv‖2L2 ≥ C‖v‖2H1 , for some constant C.

Step 5. We turn to the convergence. Consider an infinitesimal sequence (εku, ε
k
p). We denote by

(uk, Eki ) the solution of (9.5) obtained with the parameters εku > 0 and εkp > 0. We have∫
Ω

(
A(∇Suk + Eki ) · (∇S û+ Êi) + D inc Eki · inc Êi + εkuu

k · û+
1

εkp
div Eki · div Êi

)
dx

=

∫
Ω

f · ûdx+

∫
∂Ω

g · ûdS(x) =

∫
Ω

K · (∇S û+ Êi)dx ∀(û, Êi) ∈ H1(Ω,R3)× Y. (9.12)

Choosing (û, Êi) = (u,Ei) in (9.12), we infer

‖∇Suk + Eki ‖2L2 + ‖ inc Eki ‖2L2 + εku‖uk‖2L2 +
1

εkp
‖ div Eki ‖2L2 = O(1). (9.13)

Therefore there exists E ∈ L2(Ω,S3 and T ∈ L2(Ω,S3) such that ∇Suk+Eki ⇀ E and inc Eki ⇀ T
weakly in L2(Ω,S3), for a non-relabelled subsequence. It is immediately recognized that T = inc E,
since for all Φ ∈ C∞c (Ω,S3) we have∫

Ω

T · Φdx = lim
k→∞

∫
Ω

inc Eki · Φdx = lim
k→∞

∫
Ω

inc (∇Suk + Eki ) · Φdx

= lim
k→∞

∫
Ω

(∇Suk + Eki ) · inc Φdx =

∫
Ω

E · inc Φdx =

∫
Ω

inc E · Φdx.

Passing to the limit in (9.12) choosing Êi as divergence-free, using ‖εkuuk‖L2 = O(
√
εku) by (9.13)

and the Cauchy-Schwarz inequality, we arrive at∫
Ω

(
AE · (∇S û+ Êi) + D inc E · inc Êi

)
dx

=

∫
Ω

K · (∇S û+ Êi)dx ∀(û, Êi) ∈ H1(Ω,R3)×Z. (9.14)

Using the Beltrami decomposition from Theorem 3 we infer that E solves (7.1). The uniqueness
of the cluster point guarantees the convergence of the full sequence.
Step 6. Lastly we prove the strong convergence. We use∫

Ω

(
A(∇Suk + Eki − E) · (∇Suk + Eki − E) + D inc (Eki − E) · inc (Eki − E)

)
dx

=

∫
Ω

(
A(∇Suk + Eki ) · (∇Suk + Eki ) + D inc Eki · inc Eki

)
dx

−2

∫
Ω

(
A(∇Suk + Eki ) · E + D inc Eki · inc E

)
dx+

∫
Ω

(AE · E + D inc E · inc E) dx.

By (9.12) the first integral in the above right hand side is bounded above by
∫

Ω
K · (∇Suk+Eki )dx.

Using the weak convergence and (7.1) we obtain

lim sup
k→∞

∫
Ω

(
A(∇Suk + Eki − E) · (∇Suk + Eki − E) + D inc (Eki − E) · inc (Eki − E)

)
dx

≤
∫

Ω

K · Edx−
∫

Ω

(AE · E + D inc E · inc E) dx = 0.
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This proves the strong convergence ∇Suk + Eki → E in H inc(Ω,S3). �

10. 2D model

With numerical investigations in mind we now briefly discuss the 2D version of the model under
the plane strain assumption

E =

Exx Exy 0
Exy Eyy 0

0 0 0

 , (10.1)

where Exx, Exy and Eyy are functions of the space variables (x, y). We find

inc E =

0 0 0
0 0 0
0 0 ∂xxEyy + ∂yyExx − 2∂xyExy

 ,

and with the same form for Ê, we have

D inc E · inc Ê = (λD + 2µD) inc E · inc Ê.

The 2D linearized model reads∫
Ω

(
AE · Ê + D inc E · inc Ê

)
dx =

∫
Ω

K · Êdx

for all kinematically admissible plane virtual strain Ê. Of course, K has to be constructed in the
form (10.1).

Remark 3. Let us consider the particular case in which λA, µA are constant, inc K = 0 and div K
is constant (constant body force). Set

Exx =
1

4µA(λA + µA)
((λA + 2µA)Kxx − λAKyy)

Eyy =
1

4µA(λA + µA)
((λA + 2µA)Kyy − λAKxx)

Exy =
1

2µA
Kxy.

We easily check that the planar components of AE coincide with those of K and inc E = 0, thus
E is indeed the solution. There is no incompatibility in this case.

11. Numerical examples

The computations are performed using the finite element software FreeFem++ [21]. The codes
are available at https://github.com/samuel-amstutz/incompatibility.git. We use the built-
in Hsieh-Clough-Tocher elements (of class C1) for the approximation of Ei and P2 elements for
the approximation of u and p in the mixed formulation (9.3). We use dual Newton iterations as
explained in appendix A to solve the minimization problem in the independent variable θ, see (8.6).

11.1. Perforated plate under uniaxial traction. We consider a square plate of unit size per-
forated with a disc of radius 0.1 in its middle. A unit uniform traction is applied on the left and
right borders. We perform 20 iterations of alternating minimizations, and within each iteration 10
dual Newton steps. The material parameters are κA = 83, µ0 = 38.46, k = 104, σY = 1, whereby
γ is derived by (8.9). Other parameters are θmin = 10−3, εu = εp = 10−6. We use an unstructured
mesh with 4704 triangular elements. Our findings are displayed in Figure 1. The incompatibility
field reveals that, as expected, the inelastic deformations concentrate in the regions of high shear,
while a large region remains compatible, thus purely elastic. Moreover, the inequality in (8.9) is
satisfied.
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Figure 1. Perforated plate under uniaxial traction. Top: θ and µA. Bottom:
inc E and σ2

M .

11.2. Traction with necking. We now consider a plate of size 1 × 0.5 with two half-circular
perforations at the middle of the bottom and top edges. The mesh consists of 3806 elements. In
order to highlight the necking effect we have set σ2

Y = 0.9 and performed 50 iterations to reach
convergence. The other parameters are the same as in the previous case. Outputs are displayed
in Figure 2. In Figure 3 we show similar results obtained with a refined mesh of 6750 elements, to
illustrate the convergence of the finite element method.

11.3. Plate with inclusion under shear. We investigate further the role of the tangent material
coefficients through the following numerical experiment. The domain at hand is a unit square
subjected to a shear load applied on the edges. A circular inclusion of radius 0.15 is located in
the middle. We prescribe the piecewise constant coefficients µA = 10−3 and 2µD = 10−5 in the
inclusion, µA = 0.3 and 2µD = 103 outside. The mesh consists of 15046 elements. We show our
results in Figure 4. The incompatibility profile is coherent with the accumulation of dislocations
nearby the boundary of the inelastic inclusion due to the variation of their mobilities. Indeed,
dislocations are transported inside the inclusion under the shear efforts, but they cannot escape
because µD is very large outside.

12. Concluding remarks: plasticity without plastic strain?

This paper contributes to the theme of incompatible elasticity, with a view to devise a model
of elasto-plasticity grounded on intrinsic considerations. Indeed, plastic effects in a deformable
solid are here driven by the incompatibility of the total macroscopic strain, to be understood
in a specific sense, and not by a plastic strain as in conventional approaches. Compared with
our previous work on the topic, the main novelties are the following: (i) the model is of higher
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Figure 2. Second example of plate under uniaxial traction. Top: θ and inc E.
Bottom: σ2

M and enhanced deformed configuration (displacements with a factor
5).

Figure 3. Second example with refined mesh (σ2
M and deformation).

order, but shows a variational structure; (ii) the two classical types of boundary conditions are
incorporated and given a clear and coherent physical meaning; (iii) the strain is given a multiscale
interpretation; (iv) evolution rules for the tangent moduli are discussed; (v) numerical aspects are
addressed and simulations on simple academic examples illustrate the relevance of the model. In
addition, as in our previous work, pure linearized elasticity is recovered as a limit case. Future
research may deal with the complete time incremental evolution problem as well as 3d numerical
simulations, with the ultimate goal of modeling real macroscopic material behaviors.
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Figure 4. Plate with inclusion under shear: enhanced deformation and incom-
patibility field.
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Appendix A. Dual Newton method

The goal of this section is to minimize over {θ ≥ θmin} the function

F (θ) = aµA(θ) +
b

θ
+ θ,

given a, b ≥ 0. Recall that µA(θ) is defined by (8.7) and (8.8). Therefore F is convex. Here we
consider the non-trivial case where a, b > 0, and we study the minimization over {θ > 0}, as it
suffices then to threshold the solution. As θ potentially covers the whole positive half-line, it is
sometimes delicate to find a good initialization for the direct Newton method, especially when k
is large. We propose the following dual formulation.

After Legendre-Fenchel conjugacy of the convex lower-semicontinuous function

R 3 θ 7→

{
b

θ
+ θ if θ > 0

+∞ if θ ≤ 0,

we arrive at

F (θ) = sup
r≥0

aµA(θ) + θ(1− r) + 2
√
br ∀θ > 0.

This yields

inf
θ>0

F (θ) = inf
θ>0

sup
r≥0

L(θ, r), L(θ, r) = aµA(θ) + θ(1− r) + 2
√
br.

As, F is strictly convex and goes to infinity at 0 and +∞, it admits a unique minimizer θ̄, and
since the function F is decreasing on the interval (0,

√
b] we have θ̄ >

√
b. A short calculation

reveals that the pair

(θ̄, r̄ =
b

θ̄2
)

is a saddle point of L, and since r̄ < 1 we have

inf
θ>0

F (θ) = sup
0≤r<1

inf
θ≥0

L(θ, r).
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The inner minimization is realized by

θ = max

(
0,

√
ak

1− r
− k

µ0

)
, (A.1)

which entails after some algebra

inf
θ>0

F (θ) = aµ0 + sup
0≤r<1

g(r), g(r) = 2
√
br −max

(
0,
√
aµ0 −

√
k(1− r)
µ0

)2

.

Set

r∗ = max

(
0, 1− aµ2

0

k

)
.

Clearly, g is maximized over [r∗, 1). Hence we define

h(r) = 2
√
br −

(
√
aµ0 −

√
k(1− r)
µ0

)2

.

We apply the Newton method for the maximization of h over the interval [r∗, 1]. Then we infer θ
by (A.1).
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