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A VARIATIONAL APPROACH TO SINGLE CRYSTALS WITH
DISLOCATIONS*

RICCARDO SCALAf AND NICOLAS VAN GOETHEM?

Abstract. We study the graphs of maps u : @ — R3 whose curl is an integral 1-current with
coefficients in Z3. We characterize the graph boundary of such maps under a suitable summability
property. We apply these results to study a three-dimensional single crystal with dislocations forming
general one-dimensional clusters in the framework of finite elasticity. By virtue of a variational
approach, a free energy depending on the deformation field and its gradient is considered. The
problem we address is the joint minimization of the free energy with respect to the deformation
field and the dislocation lines. We apply closedness results for graphs of torus-valued maps, seen
as integral currents and, from the characterization of their graph boundaries, we are able to prove
existence of minimizers.
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1. Introduction. A longstanding problem in the theory of dislocations is to un-
derstand the three-dimensional configuration of the clusters associated to minimizers
of the elastic energy. One of the main difficulties concerns dealing with the singularity
of the stress and strain in the vicinity of dislocation lines, which implies their non-
square integrability, as opposed to traditional models of elasticity. Indeed, the stan-
dard approach of regularizing the fields by introducing a small tubular neighborhood
of the dislocation core is often adopted in the framework of linear elasticity. A dif-
ferent approach consisting in proposing an energy functional with less than quadratic
growth in the framework of nonlinear elasticity is here adopted, as suggested in the
pioneering paper by Miller and Palombaro [26], itself based on the framework pro-
posed by Ortiz in [28]. Even the mere existence of minimizers for such an energy is
a very challenging problem, whose preliminary solutions have been proposed by the
authors in a series of papers [31, 32, 33]. In these contributions the problem has been
generalized as to consider as variables a deformation tensor field and the dislocation
density, in contrast with [26], where the dislocation is a fixed planar circular loop (and
hence not subjected to joint optimization together with the deformation F'). In the
present paper we propose a complete solution of the minimization problem in the case
where the 3d dislocation cluster is generated by one Burgers vector. As a refinement
of the results of [33], where a strong hypothesis related to a regularizing term in the
energy was made, here we relax such hypothesis into a weaker one, which we call
“physical” (see the subsequent discussion for details; the content of the main results

*Received by the editors January 22, 2018; accepted for publication (in revised form) November
28, 2018; published electronically February 26, 2019.
http://www.siam.org/journals/sima/51-1/M116657.html
Funding: This work was supported by national funding from FCT - Fundacao para a Ciéncia
e a Tecnologia under project UID/MAT/04561/2019. The work of the second author was supported
by FCT Starting Grant “Mathematical Theory of Dislocations: Geometry, Analysis, and Modelling”
(IF/00734/2013).
TDipartimento di Matematica “G. Castelnuovo,” University of Rome 1, “La Sapienza,” 00185
Rome, Italy (scala@mat.uniromal.it).
tDepartamento de Matemdtica, CMAFcIO, Faculdade de Ciéncias, Universidade de Lisbon,
Alameda da Universidade, C6, 1749-016 Lisbon, Portugal (vangoeth@fc.ul.pt).

489


http://www.siam.org/journals/sima/51-1/M116657.html
mailto:scala@mat.uniroma1.it
mailto:vangoeth@fc.ul.pt

490 RICCARDO SCALA AND NICOLAS VAN GOETHEM

can be found in section 5). To prove existence of minimizers, the main mathematical
tool used is Federer’s theory of currents [17] (with the aid of Cartesian currents the-
ory as well; see, e.g., [21]) to describe both the deformation and the dislocation lines,
together with Ball’s variational approach to finite elasticity [7]. The use of currents
has proven to be very useful recently in the modeling of dislocations. Treating these
objects as integral currents provides strong closedness principles which are not avail-
able for measures, and the notion of convergence for vector-valued measures is too
weak to fit. Furthermore, the theory of currents with coefficients in a group [18, 40] is
used to describe dislocations with Burgers vectors constrained to stay in a prescribed
lattice. A consequence of this constraint, as we will show, is that the displacement
can equivalently be seen as a torus-valued map, and hence the theory of currents on
non-Euclidean spaces [14] turns out to be crucially helpful.

This analysis is a necessary prerequisite to study the evolution of dislocation
clusters, in particular at the quasi-static regime. A first contribution as a sequel of
this work has been given in [34].

The crystal with dislocations in finite elasticity. A single crystal is repre-
sented by a three-dimensional body € C R? with a smooth boundary. We denote by
L C Q the set of dislocation lines. The basic kinematic variable is the tensor F' € R3*3,
which represents the state of deformation of the body. The physical interpretation
of the chosen kinematical variable F' in terms of deformation (to or from the current
configuration) is discussed in section 5.4 as based on the physical insight of Acharya
contributions [1, 2, 4] and sometimes in contrast with [28]. In our approach we prefer
not to mention any reference configuration, since this notion is ambiguous in the pres-
ence of dislocation singularities. Following the intrinsic approach of Ciarlet [11], we
rather consider F' as an intrinsic quantity, namely, through the differential-geometric
metric tensor C = FTF (Cij = Ff&lkF]k). Further, the basic dislocation variable is
its density tensor, i.e., the finite tensor-valued Radon measure

(1.1) Ap =T bH|..

In this formula b is the Burgers vector, a vector defined on £ and constant on each
isolated loop of L; 7 is the unit tangent vector of the Lipschitz curve £ defined
Hi -almost everywhere, where Hi . denotes the one-dimensional Hausdorff measure
restricted to £. In our approach the deformation field F and the dislocation density
are linked by the constraint

—Curl F =A%,

The main problem we study in this work is the minimization of an energy func-
tional W representing the internal energy of a deformed single crystal in the presence
of dislocations. The available free energy W is assumed to be a function of some in-
variant (under Euclidean transformations) tensors describing the mechanical as well
as the dislocation-induced deformations, the tensor C, and the dislocation density
A. Since the dislocation cluster is a microstructure, we will also assume that W
depends on an appropriate second-order deformation related to C and the gradient
of C, called the material connection I'.}

I This object, following [8] (under the physical interpretation that F is the classical deformation
tensor from a reference to the current configuration), is the correct thermodynamical quantity to
be considered in finite elasticity. The skew-symmetric part of I is related to the dislocation density
tensor introduced by Noll in the context of continuum bodies with dislocations [27]. We emphasize
that this geometric object has been used for a long time in the literature, since the works of Kroner
in the fifties until recently (see, for instance, [24, 30, 36, 41]).
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The variational problem. The energy W depends on C,T', and Az. In order to
address the minimization problem while complying with classical principles of rational
mechanics, we assume that the energy is a function of the first- and second-order in-
variant tensors related to F' and DF'. It is shown in section 2 how this dependence can
be written in terms of M (F) := (F, cof F, det F') (the vector of all subdeterminants
of the matrix F'), Curl F, and Div F. Therefore the energy reads

(1.2) W(F,DF) =W, (M(F))+Wd(DiV F)-l—WdiSlo(Ag),

where

We (M(F)) = /QWB(F(;E)7 cof F(x), det F(x))dz,

with W, lower semicontinuous with respect to the weak convergence of M (F'); Waislo
is a functional on the space of Radon measures M, (£2, R3*3) which is lower semicon-
tinuous with respect to the weak-x convergence, and

Wa(Div F) = /QWd(Div Fla))de,

is a weakly lower semicontinuous functional on L™ (2, R3), » > 1. Note that Wy (Div F)
can also be seen as a perturbation of the energy W, 4+ eWjyiglo for some small parameter
e related to the microstructure (see [19]). Even if often W, is taken polyconvex in
order to supply for weakly lower semicontinuity, we emphasize that in our minimiza-
tion problem it can be general, for it suffices to be L!-lower semicontinuous in M (F).
Let us also remark that this approach allows us to consider an elastic energy that de-
pends on F and F~!, as discussed in section 5.4; the quantity F~! is indeed of crucial
meaning in many dislocation classical models (see, for instance, [1, 2, 3, 4]) in contrast
with the approach of [26, 28] that we follow. Even though the variable F~! can be ex-
pressed as a combination of the entries of M (F) (namely, F~! = (cof F)T/det F), at
the present stage we cannot address the existence of a minimization problem involving
only the variable F~1 in the stored-elastic part, since we still need some control on
cof F and det F', and hence energy dependence on these variables (see section 5.4).
We will make the following crucial coercivity assumption:

(H) W(F,DF)=C(||F|[Ls + || cof F||L,+0[ldet F[7. +[|Div FI[7-)+clAc|(2) =

for some constitutive positive constants v, C', and ¢, and 6 > 0. We assume 1 < p < 2,
q,r,s > 1 and — Curl F = AT € M,(Q), a bounded Radon measure. Note that if W
is independent of det F' (and hence 6 = 0), we can infer boundedness of det F' by
control of F' and cof F.

Let  C €, with Q and Q simply connected and smooth. Let b € 27Z3 be a fixed
Burgers vector. We fix a boundary condition & for the dislocation (see section 5 for
the specific notation) and a map Fe LP(Q; R3*3) with — Curl F= AL =b®a on Q,
and Div ' € L"(Q;R3) with > 1. Then we define the class of admissible functions
as

Fy = {F € LP(Q; R>*®) : cof F e LY(Q;R*>*3), det F e L3(Q), Div F e L"((;R?),
—Curl F = AL =b® L for some closed integral 1-current £,
and F = F on 0\ Q.
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We are interested in the variational problem

(1.3) IgréljrtlbW(F, DF).

Note that both F' and £ are unknown. The following theorem was proved in [33].

THEOREM 1.1 (existence result with regularization term [33]). Let 1 < p = ¢ =
§ < 2,7 > 3. There exists a solution F € F, of the minimum problem (1.3).

We remark that the original problem was formulated in [26] with £ fixed, F' as-
sumed to be locally the gradient of a Cartesian map away from £, and Wy = 0 (and
Waiislo constant, the dislocation being fixed). Then, with F' and £ unknown, the varia-
tional problem was first solved in [32] with W, replaced by an energy term accounting
either for the number and length of generating dislocation loops or, equivalently, the
number of connected components of a 1-set containing £. This kind of assumption
is similar in spirit to that for variational problems in fracture; see, e.g., [13]. The
main novelty in [33] is the replacement of these energetic terms by Wy, the latter
having the physical interpretation of a higher-order term related to the invariants of
the gradient of the tensor C. However, the condition r > 3 is hardly justifiable in the
natural ambient space for F' is LP with p < 2.

The existence results. As anticipated, we would like to avoid the rather strong
condition r > 3 in Theorem 1.1, which is presumably too strong with respect to
the singular forces exerted by the dislocations. It turns out that if we consider the
hypothesis cof F' € L2, we are able to weaken considerably the assumption r > 3 and
in particular find a range for the exponent r which accounts, as for p, for the case
r < 2. The first existence result of the present paper (see Theorem 5.2 in section 5)
is the following.

THEOREM 1.2 (for general dislocation clusters with one Burgers vector). Let 1 <
p<2q>2s>1 andr > 1—72 Under suitable hypotheses on the coefficients (see
Theorem 5.2) there exists a minimizer F € Fy, of W.

In section 2 we will see that F' can be written as the sum of the gradient of
two maps, v and v, the first one with values in the three-dimensional flat torus T3.
The proof of Theorem 1.2 relies on analyzing the graph G, of the deformation
maps u and v, seen as an integer-multiplicity current. Then a characterization of the
boundary of the graph of w + v is required. Here the theory of currents in metric
spaces (the flat torus in our case) and its link with the theory of integral currents
with coefficients in Z? become crucial. Specifically, suitable closure and compactness
theorems are required; these can be obtained by application of the theory developed
by Fleming [18] and the rectifiability property of flat chains [40], together with the
adaptation of classical compactness theorems by Federer to the case of metric spaces,
whose solid basis was recently developed by De Pauw and Hardt [14, 15]. Let us here
stress that the use of currents in the space €2 x T2 is a direct consequence of the choice
7?3 for the lattice where the Burgers vectors are constrained. The dislocation currents
are treated as classical flat chains, namely, 1-integral currents with coefficients in the
group Z3.

A general expression for the boundary of G, 4, is given in Theorem 4.2 of section 4,
and this expression reduces to a current representing the dislocation density, i.e.,

OGurv = L&D,
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in the case ¢ > 2. In the latter case, we will show that, due to the high integrability
of cof F, in the region close to the dislocation cluster it must hold that

(1.4) Vu x Vv = 0.

In the more general case of linearly independent Burgers vectors, a characterization
of the graphs G, 1, is currently far from reach, but can be addressed in some specific
geometric setting. For instance, it is possible to show that if the three dislocation
clusters associated to the Burgers vectors ey, ey, es are disjoint (which takes place
in many observed situations, as in the case of parallel dislocation lines, or when the
clusters are constrained to lie on parallel slip planes), then the graph G, 1, associated
to the deformation F' is an integer-multiplicity current (see Theorem 4.13). Moreover,
also in this setting, if the cofactor is square integrable, then the boundary 090G,
still coincides with the dislocation density (see Theorem 4.14). This allows us to
solve a more general minimization problem. However, since we are not yet able to
characterize 0G, 1, in every geometric setting, we must appeal to an extra hypothesis
on the admissible class of deformations. Specifically, we denote by L; the dislocation
current associated to the Burgers vector e;, i = 1,2,3. A deformation showing general
dislocation densities satisfies

(15) —CUYIF:Azl-FAE,Z-FAES:61®£1+€2®£2+63®£3.

We then assume the following.
(x) The graph G+, is an integral current, and its boundary is written as

(1.6) OGutv=L1®@e1 +LaRer+ L3R eg

(see section 4). Let us again emphasize that property (x) holds true under some
specific geometric assumptions, but at the present stage we do not know if it also
holds in the general case. The class of admissible deformation fields reads

F* = {F e LP(Q,R>*3) : cof F e LY R3*3), det F e L*(Q), Div F e L"(Q; R?),

3
—Curl F = ZA£ for integral 1-currents £;, F = F on Q \ Q,

i=1

(1.7)  and F satisfies (%) } .

Then our second existence result is the following (see Theorem 5.3 in section 5).

THEOREM 1.3 (for general Burgers vectors). Let 1 < p < 2, > 1,8 > 1, and
r > % Under suitable hypotheses on the coefficients (see Theorem 5.3) there exists
a minimizer ' € F* of W.

Notice that once condition (x) is satisfied, then we can also drop the hypothesis
g > 2. We conjecture that condition (x) holds true whenever g > 2.

The main result: Characterization of the graph boundary. In order to
prove the two aforementioned existence results, as said, we need to characterize
the boundary of the displacement field u seen as a map with values in the three-
dimensional torus. Hence, the major part of the paper is devoted to this effort,
yielding the following theorem that we believe relevant as a stand-alone result.
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THEOREM 1.4 (characterization of the boundary; cf. Theorem 4.11). Let u €
SBV (;RH)NWLP(Q; T2) be the harmonic map given in Theorem 3.4 below, satisfying
(3.12) with b € 2nZ3. Let v e W2T(Q;R3); if

12 6 —2r

(1.8) r> = P <2, and

then the current given by the graph of w + v with values in T3, namely, Gyi, €
D3(QxT?), is a rectifiable integer-multiplicity current with finite mass whose boundary
is given by the formula

(1.9)

agm(w):—;ﬂ/o% /S <dw (:E,Si—i—u(m)) : (.91,66;]1(96)> A <52, g;(x)> A5> dH?*(x)do

for allw € D*(Q x T3) and a.e. t € [0,2m). Here Sy is the level set w =t of the map
defined by %w =u.

Moreover, if F = Vu+ Vv satisfies cof F € L*(Q;R3*3), then the graph Gy, is
integral and its boundary is a two-dimensional integral current given by
(1.10)

agm(w):mb(w):—;ﬂ/o%/& <dw <x,§i+v(m)> 7(81,0)/\(52,0)/\5>d7{2(x)d9

for allw € D?(Q x T3) and a.e. t € [0,27).

See Lemma 4.8 and Theorem 4.11 for the detailed statement and notation. We
remark that as soon as the field v is sufficiently regular, the condition cof F' € L?
with ¢ > 2 implies that the tangential derivative of v along the dislocation line must
vanish (that is, equivalently, that (1.4) holds true). This condition is crucial, since it
applies on cof F and not on v, which therefore need not be C'-regular, as was the case
in [33] (see Theorems 4.1 and 4.2). Specifically, a condition on cof F' is physically
easier to check, since it is directly related to the growth condition of the bulk energy.
For this reason the relaxed hypothesis r > 1—72 and cof F' € L? in place of r > 3 is
called “physical.”

2. Model variables. The model deformation variables being C' and DF (through
the observable I'), we have to consider their invariants (under suitable maps), since it
is natural to assume that the energy must depend only on them. More precisely, the
metric tensor C := FTF is known to be invariant under Euclidean transformations;
namely, it remains unchanged after superimposing a rigid body motion upon the orig-
inal motion. Moreover, also the compatibility connection is such an invariant [8], since
in terms of C' it is written as

I'= CilDSC <(DSC)ijk = %(8,60” + @Cik — 31‘01@')) .

In order to comply with material frame-invariance, for an isotropic body the
response laws are given in terms of the invariants of C, namely,
(2.1) I,(C)=trC=F-F,
I5(C) = trcof C' = cof F - cof F,
I3(C) = det C = (det F)?.
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Since in the presence of dislocations F' never belongs to L?(2;R3*3), the energy has
a less than linear growth with respect to the first invariant. As for I(C), the cofactor
of F' is defined as

1
(24) (COf F)ij = (F X F)ij = ieikm‘fjlanlanv
and the relation trcof C = cof F - cof F entails that trcof C € L'(Q) if cof F €
L2(2;R3*3). This means that, heuristically, the natural hypothesis that trcof C is
a summable function requires that cof F' be at least a square-integrable function.
Moreover, by the identity

(25) (Sij det F' = Fki(COf F)k]

it follows that, since F' € LP(Q;R**3) with p < 2, the control of cof F € L9(;R3*3)
with ¢ > 2 such that %—i—% < 1 yields a control of det F' € L'(£2). The hypothesis that
the energy has a more than linear growth with respect to the second invariant will be
crucial in order to get a control on the determinant and to finally prove existence of
solutions to (1.3).

Let us also observe that it is a classical requirement to assume /I3(C) is sum-
mable, a condition on the summability of det F. We will see that in the minimization
problem, this condition will not play a crucial role, and one could easily consider the
incompressible case as well.

As for the higher-order model variable, the only linear invariant of DF is, accord-
ing to [5, eqn. (2.1)],

th(DF) = fijk(DF)zk = Giijanﬁ = tr Curl F,

while the third quadratic invariant of DF', out of eleven independent invariants [5,
eqn. (2.3)], is

I§"*Y(DF) = 6,n040pq(DF)j(DF)y = Div F - Div F.

Note that in terms of the invariants C and T one can write I8**(DF) = C- trT'® trT.
In the case of gradient hyperelasticity with dislocations, we will consider energies
of the form

W(F,DF) = Wiso(I(C), I(DF)) = Wiso (I(C)) + Wiso (I(DF)),

where [(C) and I(DF) are the invariants of C and DF. The energy Wi (I(DF))
contains the term
Wdislo( Curl F),

accounting for anisotropic energy contributions due to the presence of dislocation
loops in the otherwise perfect crystal.

We remark that the gradient of F' plays a role through two independent terms:
the deformation part Div F' and the defect part Curl F. It is also noticeable that
such a higher-order term Div F is sometimes considered as a regularization term (as,
e.g., in [19]) to first-grade elasticity. Here we regard it simply as the third quadratic
invariant of DF.

Let us discuss the assumptions made on the stored elastic energy. For the sake
of discussion, F' is here given the interpretation of the deformation tensor from a
reference to the current configuration. Let v; be the principal stretches of F', i.e., the
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eigenvalues of v/C. A homogeneous and incompressible Ogden material possesses a
stored-energy function of the form

3 3

Woa (F) = % S =3+ > ((wiw)? —3),

i=1 i#j=1

with o, 8 > 1 (see [7]). For « = B = 2 this corresponds to the Mooney—Rivlin
material Wyr = 9 (I1(C) — 3) + c2(I2(C) — 3), originally designed for rubber-like
materials. Nevertheless Ogden-like energies are also considered for dislocations in
finite elasticity (see [42] for practical examples). For o > 2 it is known that Zle g
is not in L'(2), in the presence of dislocations (the unsuitability of Mooney materials
to describe dislocations was already reported in [42], since it creates the “paradox on
longitudinal force”).

Therefore, in our model we consider an Ogden material with o = p < 2, with
the identity |F|P = (F - F)P/2 = (trO)P/? = (23 v2)p/2 < ¢ Y2 0P for some

i=1"Yi i=1Yi
¢ > 0, simply meaning that F € LP(Q;R3*3) as soon as the energy is bounded.
As for the second term, one needs Zf’#:l(vivj)ﬁ € LY(Q), and this is achieved if
cof F - cof F = trecof C = 15(C) € L(Q2) and 8 > 2. Therefore, we are led to the

assumption
(2.6) cof F e LY(Q;R3*3),

with ¢ > 2. This assumption will replace the more artificial one r > 3 made in [33].

It is classically known since Rivlin and Saunders’ work [29] that for incompressible
rubber-like materials the bulk energy W satisfies |0, W| < |01, W|; i.e., the material
response is essentially independent of I;. However, for crystals, to the knowledge of
the authors there is no reason to make this assumption. For a compressible material,
the classical approach is to add to the bulk energy the term f(det F) with f > 0
convex such that f(t) — oo as t — 0T and satisfying f(t) > c|t|® for some ¢ > 0 and
s > 1. Since f(det F') must be in L'(Q), one requires that

(2.7) det F € L°(Q),

with s > 1. An example of stored elastic energy W (I(C)) used for dislocations in a
nonlinear context that shows the simultaneous presence of I, and I3 is the Blatz—Ko
material (see [42, eqn. (3.1.17)]).

As for the term Wk (I(DF)), it is nowadays a classical approach to consider
gradient models (for instance, the pioneer work in this respect was [35]) to avoid
instabilities in continua submitted to severe loadings and/or large deformations (see
also [19]).

3. Mathematical formalism. One of the crucial points is that the very nature
of the displacement field in the presence of dislocations is multiple-valued, due to the
fact that the value of the displacement field depends on the number of loops made
by a circuit wrapping around the dislocation line and along which the deformation is
integrated (consider the classical Michell-Cesaro formulae [6]). There are two ways to
mathematically address this fact. First, the traditional approach consists in avoiding
any such multiple circuits by “closing” the dislocation loop L with a surface S enclosed
by L. Hence we avoid multivaluedness, but deal with a jump of the displacement on
the surface, where it is of constant amplitude. The second approach is to define
the displacement as a map with values in the three-dimensional torus. Then the
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displacement does not “see” the jumps when loops are made around L. We consider
these two approaches in [33]. Note that, in addition to their mathematical reason to
be, the surface S may be given a physical meaning. Therefore explicit expressions of
the terms supported by S were also provided in [33].

3.1. Generalities about currents and graphs.

Basic facts. Let o be a multi-index, i.e., an ordered (increasing) subset of
{1,2,...,n}. We denote by |« the cardinality (or length) of a, and we denote by & the
complementary set of , i.e., the multi-index given by the ordered set {1,2,...,n}\ a.

For all integers n > 0 and k£ > 0 with k£ < n, we denote by AxR™ the space of
k-vectors and by AFR"™ the space of k-covectors. We denote by D*(£2) the space of
smooth and compactly supported k-forms, which is a topological vector space. Any
k-form w € D*(Q) can be written in terms of its components, namely,

(31) w = Z PaldTy,

el =k

with ¢o € C°(2), and dz, denoting the k-covector, k = ||, dzo = dzo, A+ Adzg, .
The external derivative of a form w € D¥(Q), k < n, is the form dw € D**1(Q) given
by dw = 300 3 0=k 922dx; A dao, where w has the form (3.1). Given a function
F:UCR™ -V CR"” of class C! and a k-form w € D*(V), the pull-back of w by F
is the form Ffw € D*(U) defined as

(Fﬁw,vl/\"'/\vk>:< oF 8F>

W, m=— N A
61}1 avk

for any k-vector v € ARR™.

The cofactor form. For any real n x n matrix A and for a and 8 multi-indices
with |a| + |8] = n, MZ(A) denotes the determinant of the submatrix of A obtained
by erasing the ith columns and the jth rows for all i € a and j € 5. The symbol
M (A) denotes the n-vector in A,,R?" given by

(3.2) M(A) == > ola,a)MI(A)eq Neg,
la|+|B]=n

where {e;,€;}i<n is the standard Euclidean basis of R?", and o(«, @) is the sign of
the permutation (a, &) € S(n). Accordingly, we define

1/2

MA) =1+ > M4

la]+|Bl=n
[B]>0

For a matrix A € R3*3, the symbols adj A and det A denote the adjugate, i.e., the
transpose of the matrix of the cofactors of A, and the determinant of A, respectively.

Explicitly, M}(A) = Ay, Mi(A) = (cof A),; = (adj A);;, M{}33(A) = det A, for
1/2

1,7 = 1,2,3. Moreover, | M(A)| = (1 + Z” Afj + Z” cof(A)fj + det(A)z)

K
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Currents. Let 2 C R™ be an open set. The dual space of D*(£), denoted by
Dr(Q), is called the space of k-currents in Q. We will usually denote currents with
capital italic letters. A weak convergence in Dy () is defined as follows: We say that
T — T in the sense of currents if for every w € D¥(Q) we have Tj,(w) — T (w). The
boundary of a current T € Dy () is the current 9T € Dj_1(£2) defined as

OT (w) = T (dw) for all w € DF1(Q).

A closed current is a current with null boundary (as is, by definition, every current in
Do(2)). The mass of T € Dg(Q) is the number M (T) € [0, +o0] given by M(T) :=
SUP,epr (), lwj<1 T (W) If M(T) < +oc then T turns out to be a Borel measure in
Mp(Q, AR™), and its total variation coincides with M (7). It is easily seen that the
mass is lower semicontinuous with respect to the weak topology in Dy (2). It is also
convenient to introduce the quantity N(7) := M (T) + M(9T) for every T € Dy(12).

Let U C R" and V C R™ be open sets and F' : U — V be a smooth map. Then the
push-forward of a current T € Dy (U) by F is defined as FyT (w) := T((Ffw) for w €
DF(V), where Fhw is the standard pull-back of w and ¢ is any C*°-function that is
equal to 1 on spt7 NsptFhw.

Integral currents. Let 0 < k£ <n, and let S C R™ be an HE_rectifiable set with
approximate tangent space T,S. If 7: S — Ai(R") and 6 : S — R are H*-integrable
functions with 7(z) € T,S a simple unit k-vector for H*-a.e. xz € S, then we can
define the current 7 as

(3.3) T(w) = /S (@(2), 7(@)0(@)dHE (2)  for w e D).

Every current for which there exists such S, 7, and 6 is said to be rectifiable. If also
its boundary 97 is rectifiable, then we adopt the following notation:

(3.4) T ={S,7,0}.

The current T € Dy () is rectifiable with integer multiplicity if it is rectifiable,
has rectifiable boundary, and the function 6 in (3.3) is integer-valued. An integer-
multiplicity current 7 such that N(7) < oo is said to be an integral current. As is
known, the simplest example of an n-dimensional integral current is the integration
over a set of finite perimeter U C R™. This is denoted by [U] € D, (R™) and is defined
as

[Ul(w) = /U<w(x),7>dx for all w € D"(R"),

where 7 :=e; A --- A e, is the standard orientating vector of R".

If S = F(U), where F : U C R — R™ is a map smooth enough, we can define
the push-forward by F of the current [U], which can be written as Fy[U](w) =
[UN(Fiw) = [ (Flw,7)de = [g(w, 2= Ao A FE)dH™.

An integral current 7 € Dy (R™) is said to be indecomposable if there exists no

integral current R such that R # 0 # 7 — R and

N(T) = N(R) + N(T — R).

The following theorem provides a decomposition property of every integral current
and the structure characterization of integer-multiplicity indecomposable 1-currents
(see [17, sect. 4.2.25]).
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THEOREM 3.1 (Federer). For every integral current T there exists a sequence of
indecomposable integral currents T; such that

T=> T and N(T)=>_ N(T).

Suppose T is an indecomposable integer-multiplicity 1-current on R™. Then there
exists a Lipschitz function f : R — R™ with Lip(f) <1 such that

ful0, M(T)] is injective and T = fy [[0, M(T)]].
Moreover OT =0 if and only if f(0) = f(M(T)).

In other words, an indecomposable integral 1-current turns out to be a simple
Lipschitz curve.

Graph currents. Let us consider the space £ x R3. We will use the Euclidean
coordinates x = (x1, 2, 23) for x € Q and y = (y1,y2,y3) for y € R3. Every 3-form
w € D3(2 x R3) can be decomposed as w = 3 wapdr® Ady”, with wap € CZ°(Q x R3),
where the sum is computed over all multi-indices « and 3 such that |«a| + |8] = 3.

Let p > 1. We denote by A, (2, R?) the space

A, (Q,R?) := {u € L' (Q;R?) : u is approx. differentiable a.e. on Q, and
MZE(Du) € LP() for all [a] + |3] = 3}.

The symbol M£(Du) was introduced in (3.2) with A = Du. If u € A,(Q,R?), then
Gu, the current carried by the graph of u, is defined as follows:

(3.5) G = (Id x uw)4 [,

where Id x u : R?* — R3 x R? is given by (Id x u)(x) = (z,u(x)), viz.,
(3.6) Gu(w) = / U(a,d)wag(x,u(x))Mg(Du(x))da:
Q

for all w = wypdr® A dy? € D3(Q x R?). Moreover if u € A,(2,R3), then G, turns
out to be an integer-multiplicity 3-current in € x R3.

3.2. Graphs of maps with values in T3. The flat torus T is defined as T =2
R/ ~, with ~ the equivalent relation given by

(3.7) a~b ifand only if a—b € 27Z.

In [33] (see also [32]) we studied the graphs of maps u : Q@ — T3 as currents in
D3(Q x T?). This space can be seen as the dual of the topological vector space
D3(Q2 x T?3), consisting of all compactly supported smooth 3-forms in Q x T3. By
(3.7) it can be easily deduced that D3(Q2 x T3) coincides with the class of smooth
3-forms in Q x R? which are 27-periodic in the last three variables. As a consequence,
there is a natural embedding from the space of currents in D3(2 x R?) with compact
support in  x R3 to D3(£2 x T?), obtained by restricting 7 € D3(2 x R?) to the space
of 3-forms in Q x R? which are 27-periodic in the last three variables. More precisely,
if 7 € D3(Q2xR?) has compact support in 2 xR?, then the current 7'(T") € D3 (2 x T?)
is well defined as
T(T) == Tipsaxts),
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where D3(Q x T?) denotes the class of 3-forms in Q x R3 which are 27-periodic in the
last three variables. Since in general smooth functions in Q x R3 are not periodic in
the last three variables, it is easily seen that M (T(T)) < M(T).

The procedure of embedding a current in D3(2 x R3) into D3(2 x T?) can be
applied to graphs of functions u € A,(Q,R?); we define T'(u) : § — T? using the
projection 77 : R — T, namely, T'(u;) := 7mr(u;) for i = 1,2,3. Since 7p is a smooth
function, gT(u) turns out to be a 3-rectifiable current in Q x T® whenever G, is a
3-rectifiable current in £ x R2. Furthermore it holds that Grw) = T(Gu).

We introduce the space A, (£, T?) as follows:

A, (Q,T%) == {u € L*(Q; T?) : u is approx. differentiable a.e. on ©, and
(3.8) MPE(Du) € LP(Q) for all |a| + |8] = 3},

where L'(Q; T?) coincides with the space of measurable functions u : Q — T3,

A weak convergence is defined on A,(Q, T?). Namely, we say that a sequence
ug, € A, (Q, T3) weakly converges to u € A, (Q, T?) if up, — u strongly in L' (;T3),
and M2 (Duy,) — MZ (Duy,) weakly in LP(€2) for all multi-indices || +|8] = 3 (see [21,
sect. 3.3.3]).

Following the classical theory of Cartesian currents (see [20, 21]), it is straight-
forward that if u € A, (2, T?), then the graph G, is an integer-multiplicity 3-current.
Moreover, since the mass of a current does not increase by composition with T, if
there exists @ € A,(Q2, R3) such that T'(z) = u and Gz is an integral current, then G,
is an integral current.

LEMMA 3.2. Let ug, u € A,(,T?), be such that up — u weakly in A,(Q,T?);
then G, — G, as currents.

The following closure theorem is a standard adaptation of Theorem 2 of [21, sect.
3.3.2).

THEOREM 3.3 (Federer-Fleming). Let uy be a sequence in A, (2, T?) such that
w — u strongly in LP (% T3), and suppose that there exist functions vl € LP() such
that M2 (Duy,) — v2 weakly for all multi-indices o and 3 with |o| + || = 3. If

(3.9) M(8G,,) < C < +00

for all k > 0, then u € Ay(Q, T3) and v? = ME(Du).

Let us remark that the original proof of the closure result on which the last theo-
rem is based is due to Federer and Fleming, but that was only established for currents
in Euclidean spaces. The theory for the flat torus can be obtained as adaptation of
the more general theory for G chains developed first by Fleming, and then by White,
De Pauw, and Hardt (see, for instance, [14, 15] and references therein).

3.3. The displacement and the dislocation-induced deformation: Basic
results. Let us start with a technical result. Let {2 be a bounded open set with
smooth boundary, let g € CH*(9§;R?) be such that faQ gdH? = 0, and let v €

C2(Q; R?) be the zero-average-value solution to

(3.10) {Av =0 in

Onv=g on 9.

Then ||v|¢2.e < C|lgllet.a, with C = C(2) (see [22, Thms. 6.30 and 6.31]).
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THEOREM 3.4 (harmonic map [37]). Let L be a Lipschitz closed curve in R® and
S a bounded Lipschitz surface with boundary L and unit normal N. Let b € R3. The
solution of the system

Au=0 in R3\ S,
(3.11) [u] :=ut —u" =0 on S,
[Onu] == Oyut —Oyu™ =0 on S

is given by (up to a harmonic map in R?)
(3.12) ui(z) = —bi/ ON® (2 — z)dH? (")
s

for x € R®\ S, where ® is the fundamental solution of the Laplacian in R3, namely,
Ad = 4.

In the following theorem the symbol BVP denotes the space of functions with
bounded variation whose absolutely continuous part of the gradient belongs to LP,
p>1

THEOREM 3.5 (nature of the displacement field [33]). Let L be a closed Lipschitz
curve in Q, and let b € 2xZ3. Then for any Lipschitz surface S with boundary L,
every solution u to (3.11) belongs to BVP(Q;R3) with p = %, satisfies Div V%u =0,
and satisfies — Curl V*u = b® L in the sense of distributions (here V®u is the part of
the gradient of u that is absolutely continuous with respect to the Lebesgue measure).
Moreover, if the curve L is of class C?, then V%u € LP(Q;R3%3) for all 1 < p < 2.
As a consequence, u can be seen with values in T3, in which case it happens that
T(u) € WLP(;T3), and VT (u) = V®u. Furthermore, T(u) does not depend on the

specific surface S enclosing L, but only depends on L.

We will often consider u as torus-valued, thus dropping the symbol T" and denoting
T(u) by u as well. As a consequence, in what follows, the identification

Vu = V%

will mean that the gradient of the torus-valued map u equals the absolutely continuous
part of the distributional derivative of the vector-valued SBV-map wu.

Remark 3.6. Let us emphasize that the integral in (3.12) (and then the content
of Theorem 3.5) can be extended, by Federer decomposition Theorem 3.1, to any
integer-multiplicity 2-current S C R3. Indeed, if £ is an integral 1-current, it can be
decomposed as the sum of simple Lipschitz curves L;, each of which having a surface
S; enclosing it. Then formula (3.12) can be generalized as the sum of the same integral
on all S;. It is easy to see that the absolutely continuous part of the gradient of the
resulting © does not depend on the choice of the surfaces S;.

If S has as boundary an integral 1-current £, then it follows that

—Curl Vu=>b® L.

This will be used in our main result (Theorem 4.11).

THEOREM 3.7 (Biot—Savart [9, 33]). Let Q) C R3 be an open, simply connected,
and smooth set. Let u be a tensor-valued Radon measure such that p € Mgi, (Q; R3%3)
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(whgre the label div stands for divergence-free). Then there exists a unique F €
LY (;R3*3) solution of

—Curl F=p in
(3.13) DivEF=0 in
FN =0 on 9.

Moreover, F belongs to LP(Q;R3X3) for all p with 1 < p < 3/2, and for all such p
there exists a constant C' > 0 satisfying

(3.14) 1]l < Clul(9).

In the case that 4 = b T H'L,, for some b € R® and a C2—closedA curve L in
with unit-oriented tangent vector T, then the solution F belongs to LP(£; R3*3) for all
p < 2.

Note that improved regularity for F' applies, as discussed in section 5.4.

An archetypal result. Let £ be a closed loop (or in general a closed integral
1-current), and let i be a field defined on Q. Let u; be the map introduced in (3.12)
with b; = 27, and consider it as torus-valued, namely, u; € WP (;T). To prove
several of the following results we will use the following coarea formula:

(3.15) /0 ! /{ IRCLEETE /Q ()| Vg ()| de

Now, if f{ui:t} n(z)dH?(z) is proved to be independent of ¢ € [0,27), then one also
has the following identity:

20y = ) T ()
/{u,-—t} n(z)dH?(x) = QW/Q??( NVui(x)|de.

The following lemma is proved by means of this formula.

LEMMA 3.8. Let L € D1(Q) be an integral closed 1-current supported in Q, and
let w e WH3/2(Q;T) be the harmonic map given by formula (3.12) with b; = 2. Let
Sy :={z € Q:w(x)=t}. Then for a.e. t € [0,27) the surface S; is the support of an
integral 2-current S in Da(QY) such that 08, = L.

Proof. Let L be the support set of the l1-current £. Letting ¢ € C2°(£;R?) be
arbitrary, we have

Vw

277/ o -TdH' = —/ Curl ¢ - Vwdzx = —/ Curl ¢ - |Vw|dx
L Q Q [Vwl

27 27
(3.16) :/ / Curl<p~Ntd’H2dt:/ / @ - TedH dt,
0 St 0 St

where N; = _% is the unit normal to S, and in the last equality we have employed
the Stokes theorem. By arbitrariness of ¢ we deduce that the distribution given by
0 fo% Jos, ¢ T, dH*dt coincides with 277H!L 1, which implies the thesis. d

As a consequence of the preceding lemma, and adopting the notation in (3.4), it
follows that for a.e. ¢t € [0, 27) the integer-multiplicity current

(3.17) St ={S:, 7= N, 0 =1}
is integral with boundary 0S; = L. In particular the multiplicity of S; is 1.
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3.4. Preliminaries on dislocations at the continuum scale. We call a dis-
location loop any simple closed curve £ in ) which has an associated Burgers vector
b € 2nZ3. We say that an R3*3-valued field F is a deformation in the presence of
dislocation £ and Burgers vector b if it satisfies the condition

—Curl F = Azb =bTH ,,

where 7 is an oriented tangent vector to £ defined H'-a.e. Given any b € 27Z3 we call
a b-dislocation current a closed integral 1-current £” with associated Burgers vector b,
and its corresponding density, denoted by Ao € My(Q,R3*3), is the divergence-free
measure satisfying

(3.18) (Apv,w) = LP((wb)*)

for every w € C2°(2, R3*3), where on the right-hand side (wb)* is the covector writing
(wb)* := wy;b;dzy, (with Einstein convention on repeated indices). We will employ
the following notation:

(3.19) App =L @b=7"2b0" H' [,

with 6 the multiplicity of the vector b (see [32] for details). Notice that the dislocation
density can be identified with the dislocation current if seen as integral currents with
coefficients in Z3; we prefer, however, to use the label “dislocation density” when we
treat it as a Radon measure.

DEFINITION 3.9 (regular dislocation). We denote by B := 2rZ3 the lattice of ad-
miassible Burgers vectors. A regular dislocation is a sequence of b-dislocation currents
L :={Lvep. To each dislocation is associated a dislocation current, still denoted by
L:=3,c5L" and the associated dislocation density Az := Y 5 Ars.

Given a regular dislocation L, it is possible to split it on the canonical basis of
R3, L = £, + Lo + L3, in such a way that £; has 27e; as associated Burgers vector
and satisfies

3
(3.20) Ap=Ag, + A, + A, =21) Li®e;.
i=1
Moreover, as proved in [32], one has [Li|q < c|Az|aq, (), for some constant ¢ > 0
independent of ¢ and €.

A tensor F € LP(Q;R3*3), with p > 1, is called a deformation field in the presence

of the regular dislocation L if it satisfies

3
(3.21) —Curl F=A7 = A7, + AL, + A7 =21) e;®L;.
=1

3.5. Properties of the dislocation-induced deformation. By Helmholtz
decomposition we can write any deformation field F' € LP(£2; R3*3) in the presence of
the regular dislocation £ as the sum of a compatible and an incompatible part,
(3.22) F=Vi+F°,
where FO is the unique solution of

— Curl F? = AL in Q,
(3.23) Div F® =0 in Q,
FON =0 on 0.
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By Theorems 3.7, 3.4, and 3.5, it is easy to see that the incompatible field F©° is, up
to a harmonic map, given by the sum of three fields V®u;, i = 1,2, 3, where u; is the
map given by (3.12) with b = 2mwe; and S being the support of an arbitrary integral
2-current S € Dy(Q)) with boundary S = L;, i = 1,2,3. Namely, there exists a
smooth harmonic map ug € C>(€2; T?) such that

3
(3.24) FO=Vuy+ Y Vu,

i=1

with u; € Wh3/2(Q;T3) given by (3.12) with b = 2me;, i = 1,2,3. Moreover, if
FO € LP(Q;R3*3) with p € (3/2,2), then, since ug is regular on Q, we infer u; €
WLP(Q; T3) for i = 1,2,3. For the compatible part of F, we have that o in (3.22)
satisfies —A? = — Div F, so that if — Div F' € L"(Q;R?), then © € W27 (;R3). As
for wug, this is harmonic and smooth. We denote v := ¥ + uy.

In summary, we can always decompose a deformation field F' € LP(£;R3*3) as
the sum of three gradients,

(3.25) F = Vi + Vug + Vu = Vo + Vu,

where the function v = ¥ + ug has values in R® and u in T3, with uy a smooth
harmonic function. Furthermore, by standard projection v can in turn be identified
with a torus-valued map. Starting from this key representation, we can consider the
graph G, ., of the map v +u € WP(Q; T3) as an integer-multiplicity 3-current in
the space 2 x T2, and, up to characterize its boundary 9G, ., it is possible to adapt
standard closure results for Cartesian currents to our case, thus getting compactness
principles for minimizing sequences of the problem (1.3).

It is worth emphasizing here the strict connection between this representation and
the fact that the Burgers vectors are constrained to stay in the lattice 5. Actually,
in [32, 33] it was proved that whenever a field F' € LP(Q; R3*3) satisfies (3.21), then
it can be decomposed as in (3.25). The fact that u and v can be seen as maps with
values in the flat torus is a direct consequence of (3.21), and such correspondence can
be obtained by the procedure described in section 3.2. This procedure only consists
in identifying the displacement modulo a vector in 27Z3; in turn, this identification,
when we look at u and v, consists in restricting their graph currents to the space of 3-
forms which are 2m-periodic in the second variable. A complete theory of closedness for
this class of currents is then provided by the corresponding results for G chains [14, 15].

We stress that the domain © x T3 for the graphs associated to u and v is not
a convenient choice but is required by the choice of the lattice B = 27Z3, since, as
already mentioned, u and v have values in T2 as a consequence of (3.21). A different
choice of the lattice B would give rise to a different target space for v and v.

Let us now focus on the mechanical induced deformation v. A control of the
L™-norm of Div F provides us with the control of the W2 -norm of v. Indeed,
Div F = Av € L"(Q;R3), so that v € W27 (Q;R3), Vo € WHT(Q; R3*3), and V?v €
L7 (Q;R3*3%3) " By Sobolev embedding, Vo € L*(;R3*3) with s = ;2=. Now, one
has by (2.4) that ( Curl cof Vv);; = €;x (Vi jVk nn+01,jnVk,n), and hence by the Holder
inequality Curl cof Vv € L!({;R3*3) with ¢t = 63_"70. Thus Curl Curl cof Vo =
—Acof Vv € WHH(;R3*3) (by the identity Div cof Vv = 0) and hence cof Vv €
WLHt(Q; R3¥3), that is, once more by Sobolev embedding, cof Vv € L"();R3*3)
with h = 32—, By (2.5) we have I det Vv = Vv cof Vv, and hence by the Holder

6—2r
inequality again det Vv € L™(Q) with m = 3. Thus we state the following result.
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LEMMA 3.10. Let Q C R3 be a bounded Lipschitz open set. Let v € W27 (Q;R3);
then cof Vo € WHE(Q;R3*3) with t = G2~

e

Owing once again to the decomposition (3.25), and assuming that the dislocation-
induced deformation Vu is generated by a single Burgers vector b (which, without
loss of generality, we assume b = 2meq ), the term det F' can be written as the sum

V’Ul V’(Ll
(3.26) det F = det (Vv + Vu) = det | Vug | + det | Ve
va VUg

Hence, since det Vo € L57(Q) and since cof Vo € L7 (Q;R3*3), in order for
det F € L'(Q), it suffices, again by the Holder inequality, that % + zl) < 1, that is,

3.27 > .
(3.27) "= 5p-3

Since p < 2 this entails the natural requirement r > % Note that » may still be less
than 2. In particular, the preceding discussion yields the following lemma.

LEMMA 3.11. Let F € LP(Q;R3*3) be such that (3.25) holds true with v €
W2T(Q;R?), and let u € WP(Q; T2) be the solution of (3.11) with b = 2we;. Suppose
p<2andr > are such that (3.27) holds true. Then det F € L*(Q) with

1 6-—2r 1
3.28 - = —.
( ) s 3r + P

4. Boundary of graphs.

4.1. Preliminary results. Let L be a Lipschitz closed and simple curve, let
b € 2773 be a fixed Burgers vector, and let v € C*(£2;R?). We introduce the currents
L Ab and C,4, belonging to Da(Q x T3) and defined as follows:

£ Abw) = —% OQW /L <w (:c % 4 U(m)) ) A 5> M ()6,
(4.1) Cougo(w) = —% O%/L <w (:c % + U(m)) ,%f(x) A 5> dH* (z)do

for all w € D?(Q x T3). Here 7(x) € R? is the tangent vector to L at the point z,
7:=(7,0) € A\RS, b := (0,b) € A{R®, 7 = (0,v) € A;R®. From this point on we will
use the arrow to distinguish b (and similarly for the other vectors), which belongs to
R3, from the 1-vector b := (0,b) € A;RS.

The following result [33, Thm. 4.1] shows that the boundary of the graph of the
torus-valued displacement field w is related to the dislocation density.

THEOREM 4.1 (dislocation density as a graph boundary [33]). Let S be a simple
Lipschitz surface in  whose boundary is L, a simple Lipschitz and closed curve in 2.
Let b = (by, ba, b3) € 2wZ3, let u = (u1, uz,uz) : @ — R3 be the map given by (3.12).
Then u € W3 (Q;T3) and G, is an integral current in D3(Q x T3) whose boundary
is given by

(4.2) 0Gu(w) = L A b(w)
for all w € D2(Q x T3). In particular |0G,| = |L Ab| = |£L @ b|.
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The following result [33, Thm. 4.6] gives a representation of the boundary of
the graph of a torus-valued displacement field u when it is perturbed by a regular
displacement v (i.e., associated to the compatible deformation Vv).

THEOREM 4.2. Let S, L, b, and u be as in Theorem 4.1, and let v € C* (9, R3).
Then Gy, is the integral current in D3(Q x T3) given by

(4.3) OGutv (W) = LA(W) + Cpugn(w)
for all w € D?( x T3), with Cyyp defined in (4.1). In particular, it holds that
(4.4) M(0Gu+v) < C(1+ [ Dvl|r=)|L @ b](€2)

for some general constant C' > 0.

4.2. Weak form of the graph boundaries. The aim here is to express the
graph boundaries in (4.3) as integrals over a suitable current S with boundary £ (by
the Stokes theorem or, equivalently, by definition of boundary for currents). This will
provide a weak formulation of (4.1) valid for less regular fields v.

Introducing the map ® : Q x [0,27] — Q x R? given by ®(x,0) = (x, % + v(z)),
it is easy to see that the current J, = —L A b — Cy4, can be written as

.= [ ) [ @ nBan )0 = 12 x 0,241 (@)
o JL
(4.5) = ®y[L x [0,27]](w) for all w € Do(2 x T?),

where 7 is the tangent vector to the segment [0,27) C Q x [0,27) (and with abuse
of notation now 7 is the tangent vector to L x [0,27) C € x [0,27), and hence
7,t € A;R*). Using the fact that the form w is 27-periodic in the second variable,
this can be rewritten by definition of boundary as

To(w) = 0(®4[S x [0, 27]]) (w) = 4[5 x [0, 27]] (dw)
(4.6)

_ % 0% /S <dw (az % + v(x)) (51,05, 0(x)) A (59, B, 0(2)) A 5> M2 () do,

where S is a Lipschitz simple surface with boundary L and with orienting simple
vector s; A Sa, 1,82 € Ts and with 0,v := Vv - a for a vector a € R3.

Explicitly, we can decompose 7, with respect to a (local) orthonormal coordinate
system: Let us denote s3 = s; X s3 so that {si, s2, s3} is an orthonormal basis of R?
with associated coordinates {{1,&2,£3}. Since s3 = N the unit normal to the surface S,
it is evident that this system of coordinates is local; we will still denote by {x1, z2, 23}
the standard coordinates system associated to the Euclidean basis {ej, es,e3}. The
nonconstant change-of-basis matrix will be denoted by A € R3*3, so that a vector
a € R3 has coordinates al¥ := A;;a; with respect to the basis {s1, s2, s3}. The matrix
A;; = Aij(x) depends on z € S C Q, and since it is unitary, its L>-norm is bounded
in , namely,

Aij € LOO(Q;R3X3).

Let {b/|b|, b1, b5 } be an orthonormal basis of R? with {y;,92,%3} as associated Carte-
sian system. Let us first consider the i1-component of 7, for i € {1,2,3}. Recalling



A VARIATIONAL APPROACH TO SINGLE CRYSTALS 507
that dx; = A;,d&g, this is
To (wdxlAdm =T )

27
/ <8Jf ( — + 'U( )) AjkAildfk A dgl A dyl’N£> dH2(1')d9
J
27
(4.7) + — / <ayj ( — + ’U($)> Ajydé N dyy A dyj, N£> dHQ(w)dG

where o
Ny = (51,05,0()) A (s2,05,0(2)) A D.
It is now easy to compute
o]  fork=11=2,
(déx Nd& Ndyy, NEY =S —Jb| forl=1, k=2,

0 otherwise,

while

(—1)! bl gt for 1€ {1,2}, j #1,

& A dyy A dy;, NY) =
(d& A dyr A dy; ) {0 otherwise,

where, in the last expression, [° := {1,2} \ {i/}. Eventually, from (4.7) we have
To(pdai Ndyr) = T (¢ )

w %/MX mommwhm Aja(2) Ais (z))dH? (2)d0

(4.83)
|b| 2 / v, v, ' 9
by +0() ) ( GE@ () - GE @) A (@) ) ).
A similar computation yields the expression

To (‘del ANdy;) = T2 ()

|b| 2 61)2 31)3 81)3 3’02
I o (o) (3t s~ g o
(4.8b)

|b| Z / " / e ( v(x)) (Aﬂ(x)gZ(x) —Ajz(x)gZ(x)) dH? () do),

valid for w = @dy; A dy; (i = 2,3), ¢ € C(Q x T3). In the expression for J,
i € {2,3}, we have denoted i° = {2,3} \ {¢}. From (4.1) it is evident that the current
Jv is nonzero only if computed on forms of the type w = @dz; Ady; (i = 1,2,3) or
w = pdy; Ady; (i = 2,3), since all the other components turn out to be identically
zero. Namely, we have

jv(gpdmi A dxj) = \ij’o(‘p) =0,
(4.8¢) To(pdyz N dys) = T () = 0.
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Moreover the currents £ A b and C,, act on different components. More precisely,
from (4.1) we infer the following properties:

(4.9)

LAbw) =0 if w+# @dx; A dy; for some i =1,2,3,
Cuto(w) =0 if w # @dy; A dy; for some j = 2,3,

which implies that

(4.10)

To(pdx; A\ dyr) = —L N b(pdx; A dyr),
Jo(pdyr A dy;) = —Cuyo(pdyr A dy;).

4.3. Case of a single dislocation.

Weak expression of the graph boundary. The following lemma gathers some
properties of graph boundary related to a single dislocation loop.

LEMMA 4.3. Let L be a simple Lipschitz closed curve in Q, and let u = (u1,uz2,us)
€ SBV(;R3) N WLP(Q; T3) be the harmonic map of Theorem 3.4, satisfying (3.12)
with b € 27Z3. The following assertions hold true:

(a)

Let v € CY(Q;R3). Then Guyy is an integral current in Ds(Q x T?) whose
boundary is given by

- agu+v v (w)

gﬂ/<dw( ol )) (51,5111( )>A<52,§:2(x)) AE>dH2(x)d9

for all w € D?(2 x T3).

The current J, does not depend on the Lipschitz surface S in the formula
in (a) which encloses L. Moreover, the value J,(w) does depend only on the
value of w € D?(Q x T?) in a neighborhood of L. In particular, if w and @&
coincide in such a neighborhood, then J,(w — @) = 0.

Let r > 1—72 and p < 2 be such that

-2 1
6 T+7<17

4.11
( ) 3r P

and assume Vu € LP(Q;R3*3). Let v € W2 (;R?), and let v, € C*°(Q;R3)

be a sequence of functions such that v, — v strongly in W27 (Q;R3). Then
for all w € D?(Q x T?) we have

(4.12) Jo, (W) = Tu(w),
where

To(w)
:iﬁ 0%[5‘ <dw (x,gfr+v(x)>,<sl,§:1(x)> (sz,aa;(x))/\5>d7{2(x)d9

2
(271r)2/02ﬂ/9 < dw <x,3i+v(x)> , <sl,§:1(a:)) A (wﬁi(w))

Ab|Vw(z)] >da:d9,

>
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where w has values in T and is defined by w% =, and Sy := {w =t} is
an arbitrary level set of w, t € [0,27) (notice that the last expression is well
defined thanks to the fact that Vv € W' has pointwise meaning H?-a.e. on
Sy since v > 1). In particular, the value of J,(w) does not depend on the
specific surface Sy, namely, does not depend on t € [0,27), and depends only
on the values of w in a neighborhood of L x T3.

Proof. Step 0. Statement (a) is the content of Theorem 4.2. The expression of
the boundary is obtained by application of the Stokes theorem as in (4.5) and (4.6),
where S is an arbitrary simple Lipschitz surface enclosed by L. Thanks to the fact
that J, = =L Ab— Cy4, has the expression given in (4.1), also statement (b) follows
straightforwardly.

Let us prove assertion (c¢). To demonstrate (4.12) we will show that any compo-
nent of 7, as in (4.8a) converges to the corresponding component of 7,. We have
to treat the two components in (4.8a) and (4.8b).

Step 1. Convergence of (4.8b). We have to prove that

(4.13) T2 () = T ()

for any ¢ € C2°(Q x R3) that is 27-periodic in the second variable. First we observe
that, thanks to point (b), the value of 7:*2(¢) does not depend on the specific surface
S chosen in (4.8b). Thanks to Lemma 3.8 we can take S = S;, a level surface of the
function w € W1P(€2; T), which is defined in such a way that u = %w (note that u,
by (3.12), is always parallel to b, namely, S; := {z € Q : w(z) =t € [0,27)}. By
(4.8b) it holds that

(4.14)
S VAR ACRDIC e e L

/ i /s o, ( (x)> (a(;g;)l (@)A1 ()~ 8(3”5”1)2 (x)AjQ(x)> d7-l2(a:)d9) .

Since this expression does not depend on ¢ € [0,27), we also have
(4.15)

T 0)= 5 /0 R
aor (L[ o (gt (S gl 25 2 ey

_Z/ %/ %/S az; < (“3)) (6(82)1 (2)Aj1(2)— ag?l)z (x)Ajg(x)> dH2(x)d9dt>.

Let us show the convergence of the second line, which is the most involved (the other
line is treated similarly; see the following remark). For all 8 € [0, 27), we observe that
the quantity

(4.16)
B (o) (e - S50 womcn

coincides, by the coarea formula, with

(4.17) /Q%Z (:E7 % + vn(sc)> (8(31?1)2 agz;)s - 8(61'};)3 5(;67;)2) (2)|Vw(x)|dz.
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We now observe that the term D, (dg]gl)z 0(8'1157;)3 — 8(5’5”1)3 85;’;;)2 )|Vw| coincides with
or V§U1
(4.18) D, = —m det | Ve(vn)2 |
Ve(vn)s

with V¢ standing for the gradient in the local basis. Note also that

V,@ul Vgul Vgul
det Vm (Un)g = det Vg (Un)g At = det V§ (’Un)z
Vi (vn)3 Ve(vn)s Ve(vn)s

Hence, recalling that uy, (v,)2, and (v,)3 are expressed in the basis {b/|b|, bi, b3 }, it
follows that the value of D,, does not depend on the local basis {s1, $2,s3}. To prove

(4.18), observe that P, := a(;gl)z 8(31?2)3 - ag}gl)3 6((;’5"2)2 = (cof Vvy)13=((cof an)Sg,)

where s3 corresponds to the vector N. Moreover Vu; = Ib‘ > Vw and Vw = —|Vw|N,
so that D,, = —(cof Vu,); - Vw, from Wthh (4 18) follows Now, by Lemma 3.10
we have cof Vv, € Wt t(Q R3*3) with t = by Sobolev embedding cof Vu,, €

6 7‘7
L1(Q; R3*3) with ¢ < 525, and since u; € LP(Q;R?), by (4.11) we infer that
2 Vuy
D, — D:=—"-det | Vuy in L'(Q).
|b| VU3

From this we conclude that the quantity in (4.17) converges to

dp bo Ovy Ovg  Ovs Oug
(4.19) /Qa—y3 (m, o +v(z )) (651 96, 8&352) (z)|Vw(x)|dz,

thanks to the fact that c’%ﬁ. is of class C*° (the component with coordinate y3 is not

local), and v,, converges to v in L>(Q;R3) (since r > 3/2). Moreover, by the Holder
inequality, it is easy to see that the quantity in (4.17) is bounded by a constant
independent of § € [0,27). We have hence proved, by the dominated convergence
theorem, that the first line in (4.15) converges to

‘bl 2 61}2 87}3 81)3 8112
(4.20) / / s ( v(x)) (3515’52 — 8&852) (2)|Vw(x)|dzdb.

The second line in (4.15) can be proved to converge to

_p Z/Qﬁ/ oz, ( (@) (gg(@flﬂ(m) - ng(x)Ajg(:v)) dxdf.

Since the argument is very similar to the previous one, we omit the details here
and refer to Remark 4.4 below. Summarizing, we have shown that the term in (4.15)
converges to the sum of (4.20) and (4.21), which we denote by fOQW Jo Qo Vw(z)|dxdd.
It remains to show that

(4. 21)

27 27
(4.22) /O /Q Qo|Vw(z)|dzdd = 27 /O 5 QodH?(x)do
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for any ¢ € [0,27). This will conclude the proof of (4.13) together with the fact that
J212(p) does not depend on t € [0,27). We will prove that the first line in (4.14)
converges to

|b‘ 2 ( ) (61)2 6’03 (9’03 81)2) 2
/s, Dus ) ) 3 ae, g, og, ) DI )0

The argument above allows us to use the dominated convergence theorem, so it suffices
to show that for every fixed 6 € [0, 2),

5 (o o) (P - g g o

tends to

dy bo Ovg Ovg  Ovg Ovg 9
/St 9s (x, o +U(3§)) (351552 - 351352) (x)dH(x).

We recall that P,, = (cof Vv, )N -s1. Since by Lemma 3.10 cof Vo, € WHE(Q;R3*3)

with ¢t = we have P € WI(S,; R3*3), and by
Sobolev embeddlng, P, € LY(Sy; R?’X?’) for any ¢ < 52— Moreover, g—?f;(-, 20 4 u,())
converges to 7 “” = (-, ;’fr +o(-)) in W2~ 77(S;; R) and hence in L* (St, R) with s = £22-.

Now the clalm follows by the Hélder inequality since r > 12 > ﬁ

The treatment of the second line in (4.14) is similar (see also Remark 4.4).

Step 2. Convergence of (4.8a). We have to prove that for all ¢ € C2°(Q2 x T?) it
holds that
(4.23) Toil (@) = Tyt ().

As for the previous step, we claim that

sro=2([" / 5 (@) ) (A ) i) = Ao s () 4 o)l

/ " /S b ( (@) (ag’g"l)j(@Aﬂ(x) - 85912;% (:U)Ail(x)> dHQ(x)dQ)

converges to

Ib\ </2W/ 2 < U(x)> (Aj1(2)Ain (@) — Aja(2)Ans () |V (x)|dado

424
- " 52 (250 +0@) (G @A) - FE@An@) ) [Fula)dads ).

Emulating the arguments of Step 1, the convergence of the first line is straightforward.
To treat the second line, we observe that the quantity (E,);; := M(l’)Aﬂ(%) -

082
a(a;}é)j (z)As2(x) satisfies the relation

(425) (En)” = (61‘ X V(’Un)]) -N = (V(Un)j X N) - €5
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Indeed it suffices to recall that e; = A;rsg, i.e., e; has coordinates A;; in the basis
{s1,52,s3}, and notice that (E,);; is equal to the third component of the vector
e; X V(vy); in the basis (s1, s2, s3) with s3 = V.

To prove the desired convergence it now suffices to argue as in Step 1. Moreover,
(4.24) is seen to coincide with

T e _ ( / - / o, ( v(w)) (Aj1 (2) A () — Ajo(a) At () dH? () d6
(4.26)

) (oni omio) i)

for any t € [0, 27).

Step 3. Let us finally see that the value of 7,(¢) does depend only on the value
of ¢ in a neighborhood of L x T?. This also follows from point (b) and the fact that
if ¢ coincides with ¢ in a neighborhood of L x T3, then

Tl = @)= lim T, (o~ ) =0. 0

Remark 4.4. To see the convergence of the second line in (4.15) the argument is
very similar to the one adopted for the first line, with the difference being that this
term has to be treated as for the last line in (4.24). Indeed the term

8(1}”)2 8(’Un)2
Ay — A,
o6 ok T
is recognized as the quantity (V(v,)2 X N)-e;. Then it suffices to follow the argument
in the proof of Step 1 considering that V(v, )2 € WL (Q;R?) and V(-, 22 +v,(+)) €
W27 (Q; R3) thanks to the regularity of v,,.

The fundamental lemma. In order to prove the following lemma we need
to introduce some additional notation. Let L be a simple Lipschitz loop in 2 and
introduce the distance function d(x) := dist(z, L), which is a Lipschitz function whose
differential satisfies, for a.e. z € Q, |Vd(z)| = 1. Given a function v € W27 (Q;R3),
we also introduce the current £ A b € Dy(Q x T?) defined as

(4.27) L Ab(w) = —% O%/S <dw (:g % —H}(:v)) ,(51,0) A (s2,0) A5> dH>(z)do

for all w € D?(Q x T3). In the formula above, S is an arbitrary Lipschitz surface
enclosing £, while, as usual, b = (0,b) € A;RS.

LEMMA 4.5. Let L be a closed simple Lipschitz loop, and let uw = (u1,us,u3) €
SBV(Q;R3) N WLP(Q;T3) be the harmonic map satisfying (3.12) with b € 27Z>.
Let w € WP(Q;T) be defined by w= = u. Let v € W' (% R3) and assume that
Vu € LP(Q;R3*3), with 552 + ]% < 1. If the condition

1
(4.28) lim — [Vox N|de =0  for a.e. t €[0,2m),
€20 € Js,n{d<e}
where N = —% is the unit normal to Sy, holds true, then

(4.29) Jo(w) = L AD(w).
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Proof. We shall prove that condition (4.28) has the property of nullifying some
components of J,(w). In particular, using the coordinates system introduced in (4.8),
we will show that J21(p) = J,(¢dys A dy;) = 0 for all p € C°(Q x T?), for i = 2, 3.
This will imply the thesis, thanks to the fact that the only nonzero components of 7,
are those in (4.10) (compare with (4.9)). Let us recall that

To(pdys A dy;) = T ()

_ ol ( 27 ( ) (81123113_61)381;2> 2
/ /s g "2 TV (z) 06, 08, 06 0& (z)dH*(x)do

(4. 30
/ " X 2 (g 0)) (An(0) G0 (o) 5 @) ) anla)as )

for an arbitrary ¢ € [0,27). Thanks to Lemma 4.3(c) this expression does not depend
on the value of ¢ outside the neighborhood {d < €} x T? of L x T3. Hence we consider
a smooth cut-off function 7. : R — [0,00) which is even and such that 7. = 1 in
[0,€/2], n. vanishes in [e,00), and its derivatives satisfies |n.| < 3/e. Then we set
o(z,y) = ¥(z,y)n.(d(x)) with ¢ € C>(Q x T?) in the expression above and estimate
(4.31)

724
\bl /S ‘ j(x,;i+u<x))‘]Ajl<x>§Z<x>—A 2(0) G (o) | o)
;’lf' l e a2 e - anw g o

The first term tends to 0 since |J| := |g%g—§; - g—gfg—gﬂ belongs to L (S;), while . | 0

H2-a.e. and V) is bounded. Indeed, J is recognized as the determinant of the matrix

001
Vg | = (cof V)N - 5.
VU?,

By the regularity of the cofactor we find (cof Vo)N € L1(S;) by the standard theorem
of traces for Sobolev spaces.

As for the other terms in (4.31), they also tend to zero, taking into account
condition (4.28). The product Ajl(x)g—g;(x) - Ajg(il‘)%(ﬂ?) coincides with (Vuv; x
N) - €j, so the claim follows by the fact that the latter belongs to L'(S;) and by
(4.28).

In a similar way it is possible to prove that also the second line in (4.8a) vanishes.
Hence we arrive at the following characterization of the current 7,; namely, written
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in components, this reads
To(dz; A dyr)

|b‘ 7T/ oz ( 9 T )) (Aj1(2) Asz(2) = Ajo () At () ) dH? (2)dO
(4.32) ju(gad;m Ndz;) = j«;(@dm A dyi) = To(dya A dys) = 0.

Now it suffices to recognize that this expression entails that 7, coincides with the
expression in (4.27), by definition. d

Looking back at (4.10) we find out that £ A b is exactly £ A b when v is of class
C'. Arguing by approximation of v by smooth maps v,, we easily infer that the current
(4.29) is well defined and its mass does not increase after approximation, since for
every n it coincides with |L]|[b], i.e.,

(4.33) M(LAD) = |£]|b]-

So as not to overburden notation, we will still denote £ A b by £ A b itself. We have
obtained the following corollary.

COROLLARY 4.6. In the hypotheses of Lemma 4.5, it holds that
M(0Gytv) = M(LAD).
As a consequence G, 1, is an integral current in D3(Q x T3).

Remark 4.7. From a physical viewpoint, condition (4.28) seems to be difficult
to check. However, as we will see in the next section, this is strictly related to the
summability of the cofactor of Vu.

4.4. Main result 1: Characterization of the graph boundary for clusters
with a single Burgers vector. In this section, instead of a single line, we study
dislocation clusters associated with a single Burgers vector b € 27Z3. Let L be a
Lipschitz closed loop in 2. We know that the Minkowski content of L tends to the
one-dimensional Hausdorff measure of L, that is,

Hzx € Q:d(z,L) <1}

(4.34) -

— HYL) asr—0.

wr

Now let L be a countable union of closed Lipschitz curves L; C © such that H!(L) =
oot HY(Li) < +oo. For any i € N, by (4.34), there is a positive real number r; such
that if » < r;, then it holds true

o€ Qd L) <tH _pprp

(4.35)

r

Now, choose a sequence of positive real numbers §;, i € N, as
(4.36) §; = min{271 7 r;} < 1,
so that Z;’io 6; < 1. For € > 0, let us define the open set D, as

(4.37) D, := UjenD?, D! ={x € Q:d(zx,L;) < €6;}.
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By (4.35), one has

124
7r62(5i2

D] <Y |Di| < 27é? (Z 53%1@1—)) < 2mH(L),
=0

< 2HY(L;)  forallie N,

i=0
(4.38) |[D.|—0 ase—0.

Let £ be a closed integral current in Dy (€2). By Theorem 3.1 we infer that there is
a sequence of indecomposable 1-currents £; supported on Lipschitz loops L; such that
L =372, L;. Moreover there exists an integral 2-current S € D(Q) with oS = L
that, again by the decomposition theorem, can be written as S = Y ;- S; with S;
indecomposable integral 2-currents with S; = £;. We will now analyze the boundary
of the graph of deformations of the form Vu+ Vv, with u being the solution to (3.12)
with the cluster £ in place of the simple loop L. It will be easy to see, in the case
where v is of class C!, that the boundary 0G, ., will take the form

(4.39)
To(w) = % /0%/8 <dw (x % - v(w)) : <31» i(m)) A (82, ait@)) AE> dH? (x)do

for all w € D?(Q x T?) (see Lemma 4.8 below). Moreover we will see that the integral
(4.39) does not depend on the specific current S. Indeed, if v is of class C!, we can
apply the Stokes theorem as in (4.5) and (4.6).

Let us now characterize the boundary of G, for general fields v € W27 (Q;R3).

LEMMA 4.8. Let L € D1(Q2) be a closed integral 1-current in §, and let u €
SBV(;R?) N WLP(Q; T2) be the harmonic map of Theorem 3.4, satisfying (3.12)
with b € 2rZ3. Let v € W2 (Q;R3) and assume

12 6 —2r

(4.40) r> - p <2, and

Then the current given by the graph of u + v with values in T2, namely, G, , €
D3(Q x T3), is an integer-multiplicity current with finite mass and with boundary
given by

- agu+v (w)
(4.41)
1

-1 0277 /S <dw (x % +v(m)) , <31, g:l(x)> A (52, (,i;;@)) A 5’> dH2(2)d0

for allw € D2(Q x T3) and a.e. t € [0,2m). Here S; € D2(Y) is an integral 2-current
whose boundary is £ and whose support is Sy, the level set of the map w € WP (Q; T),
which, as in Lemma 4.3, is defined by %w =u.

Proof. The fact that the current G, 4, is rectifiable with integer multiplicity is an
easy consequence of the fact that the graph

Guro = {(2,y) € QX T* 1 y = u(a) + v(x)}
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is a 3-rectifiable set (see Theorem 4 in [21, sect. 3.1.5] and Proposition 1 in [21,
sect. 3.2.1]). Moreover it has finite mass since all the minors of Vu+ Vv are integrable,
as a consequence of condition (4.40), taking into account that Vu is of rank 1.

Let us prove that the boundary of G, ., takes the form (4.41). Let v,, € C>(£); R?)
be a sequence such that v,, — v strongly in W27 (£2;R3). Let us write £ as a countable
sum of indecomposable components, £ = >, L;, where £; is a simple closed Lipschitz
curve in Q for all i. Accordingly let us decompose S; in indecomposable components
(St); in such a way that 0(S;); = L; (we recall that by Lemma 3.8 it holds that
dS; = L for a.e. t € [0,2m) and that, moreover, the multiplicity of S; is 1 for a.e.
t € [0,2m)). We will first show that for all n > 0 the graph G, ,,, has boundary given
by
(4.42)

st [ (1o 00 (0 o ) )

where S; = {w =t € [0,27)} is an arbitrary level set of w. To see this we proceed as
follows. Let u; be the function in SBV (;R3) N W2 (€; T3) given by (3.12) with S;
replaced by (S;);, whose boundary is L;, so that — Curl (Vu;) =b® L;. It is easy to
see that u™ := " ju; converges to u strongly in Wl’%(Q; T3), as m — oo; indeed
we easily see that

(4.43) VU™ = Vu  in L3 (Q;R¥3),

and thus, by Poincaré’s inequality for torus-valued maps, u™ — u strongly in L3 (;T?)
as m — oo.

Furthermore it is easy to see that G,m_,, converges to G,4,, in the sense of
currents as m — oo, thanks to the fact that v, is smooth and that Vu" has rank 1
(i.e., that the cofactors and determinants are null) and to the strong convergence of

™. Defining
(4 44)
2m
T (w): / / dw —|—vn() 50,292 )V A (52,27 (@) ) A8 am2 ()b,
" 27T m 8 S1 a 52
where S* = {w™ = t} (w™ is defined via Zw™ = u™), we claim that JJ"(w)

converges to J,, (w) in (4.42) for all w € D?*(Q x ’]I‘?’) as m — +o00. Indeed, using the
coarea formula as in (4.16) and (4.17) we see that
(4.45)

2m
T =g | T

~ (2n) /Zﬂ/ <dw< or Tl )>’<51’ZZT(@)A<327222( )) Ab>|Vw (2)|dzdd.

Thanks to convergence (4.43), the smoothness of v,, and (4.40), this converges as
m — oo to
(4. 46

(27)2 /%/ <dw< 5 tunlz )> ; <81,g1:;(w)) A (w%ﬁ(m)) A5> \Vw(z)|dzdd

— Jvn( Jdt=T, (W),

:277
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where in the first equality we have used again the coarea formula and in the last
equality the fact that the integral in (4.42) does not depend on ¢ € [0,27), thanks
to the regularity of v,, (we can apply the Stokes theorem together with Lemma 3.8).
Now we want to pass to the limit J, (w) as n tends to co. Using again the coarea
formula, as in the last expression we have

T, (w

~(2n)? /%/ <d“’( 27 Ton(® )) (817??( )>A<82’ZZQ( )) /\b|Vw|>dxd9

Thanks to the condition on the coefficients (4.40), this tends to

(271T)2/027r/9 <dw <x, % +v(z)> <51, 881)1( )) A <52,aa:2($)> /\5|Vw|>d:z:d0,

which again by the coarea formula equals
(4.47)
To(w)

:(27102/0%/0%/&@0 (x,;fr+v(aj)> <sl,ai”1( )>A<32,§1’2( )) /\5>d’;‘—[2(x)dtd9,

where Sy := {w =t}, t € [0, 2m).
Let us now show that the quantity

J = /0% /S <dw (x % —H}(x)) 7 (817 g:l(g;)> A (32, 58”2(:5)) AE> M2 () d0

does not depend on ¢ € [0,27). This will demonstrate that

Tl 2W/QW/& <dw( +oa )) <sl,§”1< ))A(SQ,gsz(x))A5>dy2(x>de

for a.e. t € [0, 2m).
For a.e. t € [0 27), by Lemma 3.8 the surface S; has boundary L, and by decom-
position is written as Sy =) _.(Sf); with 9(S); = L;. Setting

Ji = /027r /(St)i <dw <x % +v(:z:)> <51, 5%1( )) A <52, g;;(x)> Az§> dH2(x)db

it follows that J; = ), J§7 and Jt—i is recognized as J,(w)?, the boundary of G, 1.,
which by Lemma 4.3 does not depend on the specific surface (St);. In particular we
infer J! = 7,(w)" = J{, so that it follows that J; = Y, J: = 3", J} = J;. The thesis
follows. a

We will now refine Lemma 4.5.

LEMMA 4.9. Let £ € D1(R2) be a closed integral current in Q, let u = (u1,ug, us) €
SBV(Q;R3) N WHP(Q; T3) be the harmonic map satisfying (3.12) with b € Z3, and
let w € WHP(4T) be defined by 2w = u. Let v € W™ (Q;R?) and assume that
(4.40) is satisfied. Let £ decompose as L =Y .o Li, with L; simple Lipschitz closed
curves in ), let {0;};en be the sequence of positive numbers in (4.36), and define D,
by (4.37). Assume that

1
(4.48) lim - |Vo x N|dH?(z) =0
e—0 € S:ND,
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for a.e. t € [0,2m), where N = —lg—zl is the unit normal to the level set Sy = {w = t}.
Then
(4.49) ~Jo(w) = LAbw) = Li Abw)

for all w € D?(Q x T3). As a consequence Gy, is an integral current in Ds(Q x T?3)
whose boundary is L N b.

Proof. From Lemma 4.8 we infer that if (4.49) holds true, then G, 1, is an integral
current whose boundary is G, 4+, = £ A'b. Then we have only to prove that (4.48)
implies (4.49). We will achieve this by means of Lemma 4.5. The current S; can be
decomposed as

(450) S; = U;ﬁo(st)i with 8(8,5)1 =L,

and, thanks to (3.17), (S;); are essentially disjoint surfaces for a.e. t € [0, 27). Hence
we deduce that

(4.51) Tolw) =3 Ti(w),
with

J;'(w);ﬁ/o%r /(St)i <dw <:c Zﬂ(x)) , <51, g:l(x)) A (52, g;(a?)) A5> dM>(z)do

for all w € D?(Q x T3). We will prove that
(4.52) ~Ji=LiNb  forallieN,

which will achieve the thesis. To see (4.52) we estimate, for fixed i € N,

(4.53) / |Vo x N|dH?(x) < / Vo x N|dH?(z),
(8¢)iND; SiND.
and thus, by (4.48),
1
(4.54) 7/ Vo x N|dH?*(z) -0 ase— 0.
€ (8¢)iND;

This allows us to employ the same argument of Lemma 4.5 which provides (4.52), and
the thesis follows. O

Remark 4.10. We emphasize the intrinsic difficulty in checking, from a practical
viewpoint, the assumption (4.48). The surface S; a priori has not a direct physical
interpretation. However, as we will see, condition (4.48) is readily guaranteed as soon
as the cofactor of the deformation F' is at least square integrable. This will be clear
in the following theorem.

We will now prove the following crucial result.

THEOREM 4.11 (main result). Let £ € D1(2) be a closed integral current, and let
u = (u1,uz,uz) € SBV(Q;R3) N WLP(Q;T3) be the harmonic map satisfying (3.12)
with b € 2nZ3. Let v € W2 (;R3) and suppose Vu € LP(Q; R3*3) with
6 —2r
3r

1
+-<1
p
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Finally, let F = Vu + Vv and assume that cof F € L?(Q;R3%3). Then the graph
Guio s an integral current in D3(Q x T?) whose boundary is given by

agu+v() LA b(w)

(4.55) % / <dw( (as)) (51,0) A (52, 0) A5> M2 (2)d6

for all w € D( x TS) and a.e. t € [0,27).

Proof. In order to prove Theorem 4.11 we will show that the property cof F' €
L?(£; R3*3) implies that condition (4.48) holds true, and hence the thesis will follow
by virtue of Lemma 4.9. Let us define the sequence {4; };cn and the set D, as in (4.36)
and (4.37); we write for any j =1,2,3

27 27
— Vv N|d dt =
27re /SmD | v X | # (@) 27T6 /SmD

(4.56)

Vu; x

| e

1

=5 |Vv] x Vwldr < —/ | cof F|dx,
me

where in the second equality we employed the coarea formula, while in the last one we
used that |Vv; x Vw| < |cof F| for any j = 1,2,3. Now, by the Schwarz inequality,

(4.57)
1/2

1/2
1 1
—/ | cof Fldx < —|D|'/? (/ | cof F|2dx> <C’</ | cof F|2dac> ,
2me Jp, 2me D. D

€

with C' := Y——— ZNH ) and where we have used (4.38). Now, since cof F € L?(Q;R3*3)
and |D.| = 0 as e — 0, we conclude that the quantity on the right-hand side of (4.57),

and hence also 5 fo% meDe |Vv x N|dH?(x)dt, by (4.56), vanishes as e — 0. As a
consequence we infer that for a.e. t € [0, 27)

1
lim — |Vu x N|dH?(z) = 0,
e—0 € S.ND.
and the thesis follows. d
Let us go back to (4.1) and (4.8). For regular field v, we have seen that
(4.58)

27 .
Cuto(pdyr Ady;) = |b| / (a: — 4 o(x )) %(a:)d’}—ﬂ(a:)d@, i €{2,3},

for any ¢ € C*°(€ x R3) which is 27-periodic in the second variable. In particular we
get the following corollary.

COROLLARY 4.12. Assume the hypotheses of Lemma 4.9 hold, and suppose v is
of class C1(Q;R3). Then it holds that

(4.59) 3. b=0 onlL.

In particular, this happens under the hypotheses of Theorem 4.11 and v € C'(Q;R3).
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4.5. Main result 2: Characterization of the graph boundary for clusters
with general Burgers vectors. In this section we study generalizations of some
results in the previous section to deformations whose curl is a dislocation measure with
associated Burgers vectors spanning whole 27Z?3. Determining the current associated
to the graph of such deformations is a hard task that we currently consider far from
reach. However, it is possible to prove that this graph is an integral current in some
specific cases.

Let L1, Lo, L3 € D1(R2) be three closed integral currents, and let £ be the regular
dislocation current whose components are £;, i = 1,2, 3, according to (3.20). This is
equivalent to saying that £; is the dislocation cluster associated to the Burgers vector
2me;, i = 1,2,3. In particular we set

3 3
(4.60) Ap=) N=21) Li®e
=1 =1

and assume that u; : Q — T2 is the displacement field generating A, i.e., u; is the
map given by (3.12) with b = 2we; and L replaced by £;, so that
(4.61) — Curl Vu; = AT,

Let us denote u = uy + us + uz. We introduce the currents 7', € D2(Q x T?),
i=1,2,3, for any w € D?(Q x T?):

(4.62)
2m . 7.
i) ;:/ / <dw (@, i+t () (sl,aul(x))/\(s%M(m))/\é}>d?—ﬂ(m)d0,
0 i 0s1 059
where S{ = {w; = t} is any level set of the function w; defined via e;w; = wu;

(i=1,2,3), and where we have set
(4.63) ;i =u+v—u;, i=1{1,2,3}

In (4.62) we have denoted ¢; = (0,¢;) € A;R® as usual.

THEOREM 4.13. Let £; € D1(Q), i = 1,2,3, be closed integral currents whose
supports L; are disjoint. In particular, let us assume that d(L;, Lj) > 0 for i # j; for
i=1,2,3 let u; € WHP(£;T3) be the harmonic map given by (3.12) with L = L; and
b= 2me;, and let v € W2 (Q;R3). Suppose that

12 3 6—2
(4.64) r> - pE (2,2> , and " +

Then Gyt is an integer multiplicity current whose boundary satisfies
3
(4.65) 0Gusv(w) == Ti ()
i=1
for any w € D?(Q x T3).

Proof. This is a straightforward consequence of Lemma 4.8. In fact, let U; D L;,
1 =1,2,3, be three disjoint open sets, neighborhoods of the supports L; (which exist
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thanks to the hypothesis d(L;, L;) > 0 for ¢ # j). Hence the graph of v+ v is the sum
of the restrictions

(466) gu+v - gu+vLU1 +gu+'uLU2 +gu+vLU3 +gu+'uLUc7

with U¢ = Q\ (U_,U;). Let us focus on U; (similarly we will argue for Uy and Us); w
know that us and U3 are smooth in Uy, so that @, = us+uz+v € W2 (Uy; R3). In par-
ticular this function can be extended to a (nonrelabeled) function 4; € W27 (;R?),
and Lemma 4.8 applies, implying that

8gu«H}'—Ul

(o ). B e )

for any w € D?(2 x T?). Since the value of this expression depends only on the value
of w in Uy, the thesis easily follows by (4.66). d

THEOREM 4.14. Under the hypotheses of Theorem 4.13, let us assume in addition
that the tensor field F := Zle Vu; + Vo € WHP(Q; R3*3) satisfies the property that
cof F € L2(;R3*3). Then the graph G, 1., is an integral current in D3(Q x T?) whose
boundary is

Gy (w _2WZ£ A ei(w

2m
- _Z/ / (dw(z, ;0 + 1;(x)), (51,0) A (s2,0) A €;)dH"(x)db

for all w € D3(Q2 x T3).

Proof. This is an easy consequence of Theorem 4.11; indeed, arguing as in The-
orem 4.13, we focus on the open set U; and establish that the boundary of G4,
restricted to U; is exactly 2L A e;. The same holds true on the other sets Us and
Us. Notice that it is crucial here to assume that d(L;, L;) > 0 for i # j. |

5. Minimization problems.

5.1. The minimization setting. The mechanical setting is as follows. We
assume §) to be a bounded and simply connected open set in R® which represents
a single crystal. Let Q) be another bounded open set such that Q cc . We fix a
dislocation density on 92 by prescribing a kinematical boundary condition accordingly
in terms of the deformation tensor F in 2. No other traction boundary condition is
assumed. We then consider dislocation microstructures as resulting from a variational
problem with these boundary conditions in an unloaded regime. Let us emphasize that
the external field F is not necessarily in equilibrium. Indeed this boundary condition
is equivalent to a Dirichlet boundary condition, since we can always write the external
field F as the gradient of a suitable torus-valued map 1, and then fixing F corresponds
to fixing @, as done in [34]. It was shown in [31, sect. 5.4] that (essentially due to the
solenoidal property of the dislocation density) the solution is not the trivial one (i.e.,
the absence of dislocations in 2).

Boundary conditions. We will prescribe Dirichlet boundary conditions for the
deformation field I’ and for the dislocation cluster as follows. We fix a tensor field
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F e LP(Q; R3*3) and a regular dislocation current @ having support in { and such
that

(5.1) —Curl F =AY,

where A4 is the dislocation density measure introduced in Definition 3.9. Then we
say that a field F' € LP(£2;R3*3) is admissible for the boundary condition if

H)F=F onQ\Q

(i) there is a dislocation current a such that o = & on Q\ Q and — Curl F = AL,

Energy. We consider an energy functional which depends on the tensor field
F and on its derivatives as follows. The stored-elastic energy is represented by a
functional Wo(M (F)), with M (F) the vector of minors of F as introduced in (3.2).
The total elastic energy is given by the integral over Q of W (M (F')), namely,

(5.2) We(M(F)) = /Q W (M (F))da.

We assume the following:

(A1) W, is lower semicontinuous with respect to the convergence of F', cof F, and

det F in LP(Q;R3%3), L9(Q;R3*3), and L*(Q), respectively.

We will also assume the following growth condition on W,: there are constants C > 0
and ¢, 0 > 0 such that

(A2) Wo(M(F)) > C(|F|? + | cof F|9+6|det F|*) —c¢
for some coefficient p,q, s > 1 to be specified later. Notice that in order to guarantee
(A1) we can assume that W, is polyconvex, i.e., W, is a convex function of M (F)
(see, e.g., [7, 12]).

The total energy of the system also contains higher-order terms, depending on the
derivatives of F'. The defect part of the energy encodes the quantity of dislocation
singularities. This is an energetic term denoted by Wgisio which depends on the
dislocation density of F, i.e., on Curl F. We will make the following assumption on
Waiislo:

(A3) Wiaislo is lower semicontinuous with respect to the weak-x convergence of
measures.
We make the following growth condition for some constants C' > 0 and ¢ > 0 (not
relabeled):
(A4) Waislo(Az) > ClALI(Q2) —c.
We will also assume that the total energy depends on Div F' via the following high-
order term Wy which satisfies Wq(Div F) = [, Wq(Div F)dz, and
(A5) Wj is lower semicontinuous with respect to the weak convergence of L"(£2; R3);
(A6) Wy(Div F) > C|Div F|" — ¢,
for some positive constants C' and c¢. The total energy of a deformation field F' reads

(5.3) W(F,VF) = W(M(F)) + Waisio( Curl F) + Wq(Div F)
and satisfies the coercivity condition

(5.4)
W(EF,VF) = C(|F|7, + |l cof F|7, + 6| det F|

1e + 1DV Fl[7.) +¢[Acf(2) =~

for suitable constants C,c > 0 and ,§ > 0, depending on the material properties.
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In the case that the dislocation cluster is associated with a single Burgers vector,
by Lemma 3.11 it follows that even if 6 = 0, the energy satisfies the following coercivity
condition with respect to the determinant of F:

(5.5) W(F,VF) > C|det F|}. -7,

with % = Ggfr + % < 1, for some positive constants C' > 0 and 4 > 0. By formula

(5.6) Idet F = FT cof F,

it can be seen that the same coercivity (5.5) holds true also in the case 5227 + 1 =1

ol 1,1 sr
by assuming § := 5+t < 1.

1
P 3

Remark 5.1. The presence of the energetic term Wyjg1o together with the bound-
ary condition & for the dislocation prevents the following minimum problem from
having trivial solutions where the dislocation cluster of the minimizer is null. Indeed
in the definition of admissibility it is required that any competitor for the minimum
problem has a suitable dislocation cluster where Curl F' concentrates. What might
happen is that such dislocation cluster moves, along a minimizing sequence, up to
the boundary of the crystal, hence provoking the minimizer to have a cluster concen-
trated on 0). However, according to the geometry of the crystal, this solution often
is excluded because it is energetically inconvenient. In [32, sect. 5.4] we show that in
the most relevant cases the boundary condition forces the dislocation cluster of the
minimizer to remain inside the crystal.

5.2. Problem 1: Dislocation clusters with linearly dependent Burgers
vectors. In this section we study a minimization problem among a class of defor-
mations around dislocation clusters whose Burgers vectors are all multiples of a fixed
Burgers vector b € 2rZ3. In this case, thanks to the results obtained in section 4.3,
it is seen that under suitable conditions on the coefficients related to the growth of
the energy (5.4), such deformations can all be seen as gradients of suitable maps with
values in the torus T? and whose graph is an integral current in the space Q x T3. As
a consequence we can rely on Theorem 3.3 in order to get compactness of minimizing
sequences in this class of deformations, and hence to show the existence of minimizers.

Introduce the class of admissible deformation fields as follows:

(5.7) Fy = {F € LP($; R3*3) satisfying conditions (1), (2), (3) below}.

(1) cof F e LI(;R3*3), det F € L*(Q), Div F € L"({;R3);
(2) —Curl F =b® L for some integral closed and compactly supported current
LeD (Q),
(3) F=FonQ\Q,
with F' standing for the deformation boundary condition as introduced in (5.1), for
any prescribed dislocation & within Q. First, let us observe that F' can always be
written as

F=Vu+ Vv

for some functions u € WHP(Q;T3) and v € W27 (Q;R3). This can be easily seen
by Helmholtz decomposition, as shown in [33] and discussed in (3.25). We insist on
this point since it is crucial for the proof of our existence results. As described in
(3.22) and (3.24), we first decompose F = Vw + F° with Aw = Div F € L"({;R?)
and Oyw = 0 on 89, and then F° = Vu® + Vu, with u the harmonic function given
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by (3.12), and g being a harmonic function in € with boundary conditions dyug =
FN —0nu = g—0nu. Since by assumption g € C1® and since the dislocation current
L is compactly supported inside €2, it turns out that dyu is of class C> (8Q R3), so

that g — Onyu is of class C1®, and by problem (3.10) it follows that ug € c? O‘(Q,RS).
In particular setting v := w + ug entails v € W27 (Q; R3), with boundary condition

(5.8) Onv =g — Onu.

Now, Theorem 4.11 ensures that if F' € F;, has coefficients satisfying

12
(5.9) r>—, p<2
6 — 2r 1
5.10 - <1
(5.10) > Tp<h
(5.11) s> 1,
5.12) q>2

then F' is such that the graph of u + v, seen as a current G,, € Ds(fl x T3), is
integral. Moreover, its boundary takes the form

Gutv(w) = LA D(w)
(5.13) = —% :ﬂ /S <dw (x, % + v(m)) ,(51,0) A (s2,0) A 5> dH?*(z)do

for all w € D? (Q x T3), where S is the support of the integral 2-current S with S = L,
which is a level set of 4 (defined by %ﬁ := u), and {s1, $2} is an orthonormal basis
for its tangent plane.

The minimum problem we are interested in is then the following: Letting Fer
be fixed, we want to find a solution to

(5.14) Igrél]r__lb W(F,VF),

where W takes the form (5.3). We also make the following technical assumption:

—or 11 1
(5.15) cither & > 0 in (A2) or min{G L } <1
3r PP q

We can state our main result.

THEOREM 5.2. Fizx as dislocation boundary condition a regular dislocation current
& having support in Q. Let F e Fy be fized according to (5.1), and assume that the
coefficients appearing in conditions (1) and (2) satisfy (5.9), (5.10), (5.11), and (5.12).
Assume W is a functional on Fp as in (5.3) and satisfies conditions (A1)—(A6) and
(5.15). Then there exists a minimizer F € Fy, of the problem (5.14).

The proof of Theorem 5.2 is standard and very similar to the one of Theorem 4.1
(see Theorems 6.6 and 6.8 in [33]). For this reason we sketch it here without details.

Proof. Let F, be a minimizing sequence in 7 for the problem (5.14). By (5.4)
we infer the existence of F' € LP(;R3*3), A € LI(;R3*3), G € L"(;R?), and
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Az € My(Q; R3*3) such that

F, — F weakly in LP(Q; R>*?),

cof F,, — A weakly in L(; R*3),
Div F,, — G weakly in L"(Q;R?),
Az, — A weak* in M, (€Q; R3*3),

Moreover, we find D € L™ (£2) such that
(5.20) det F,, = D weakly in L™ (),

withm =s>1id§ >0, andm =1¢>1if § = 0 (by condition (5.5), which in
turn is ensured by (5.15)). Our aim is now to show that A = cof F, D = det F,
G = Div F,and — Curl F = AL, with A being a dislocation density of the form £L®b
for some integral 1-current £. The Dirichlet boundary conditions are easily seen to be
satisfied. In order to see that AL = b® L we follow the argument in [33, Thms. 6.6 and
6.8], which relies on the application of the compactness theorem for integral currents.
The conditions G = Div F and —Curl F = A% follow easily from the theory of
distributions.

In order to prove that A = cof F', D = det F we first show (once again as in [33,
Thms. 6.6 and 6.8]) that F}, = Vo, + Vu, and F = Vo + Vu, with v, € W27 ({;R3)
converging to v € W27 (Q; R3) weakly in this space and u,, € W?(€; T3) converging
weakly to u € Wl’p(fl; T3). Then the conclusion will follow by applying Theorem 3.3,
which can be used thanks to Theorem 4.11, which indeed provides a uniform bound
for the boundaries 9G,,, 44,,- d

5.3. Problem 2: Dislocation clusters with general Burgers vectors. In
this section we address a more general existence result valid for a larger class of defor-
mations, which may show a general regular dislocation density, i.e., with general and
possibly linearly independent Burgers vectors. To obtain compactness of minimizing
sequence, we rely on the closedness of admissible deformations. To this aim, we need
an additional hypothesis on the admissibility, which turns out to be unnecessary in
the case of linearly dependent Burgers vectors, where Theorem 4.11 provides such
closedness, whereas in the case of general clusters, a characterization of admissible
deformation fields in terms of graphs is yet beyond reach.

The class of admissible deformation fields is the following:

(5.21) F:={F e LP({; R®*%) satisfying conditions (1b), (2b), (3b), (4b) below}.

(1b) cof F e LI(;R3*3), det F € L5(Q2), Div F € L"(;R3).
(2b) —Curl F = Az for some regular dislocation current compactly supported in
Q. In particular, by decomposition, this can be written as

—Curl F =A7 +AL +AL, Ar, =2nL;®e;, i=1,2,3.
(3b) F = F on Q\ Q, with F standing for the deformation boundary condition as

introduced in (5.1), for any prescribed dislocation & within €. R
(4b) F = Vu + Vv has the property that G, is an integral current in D5(; T?)
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whose boundary satisfies
3
0Guso(w) =271y Li Aei(w)
i=1

37 27
== Z/o /i<dw(x, e +1;(x)), (s1,0) A (52,0) A &)dH?(x)do

for all w € D(Q x T3).
Let us recall that @; has been defined in (4.63) and S} = {w; = t} with e;w; = ;.
The main result regarding existence of minimizers for (5.14) with general Burgers
vectors is the following.

THEOREM 5.3. Fiz as dislocation boundary condition a regular dislocation current
& having support in Q. Let ' € Fy be fized according to (5.1), and assume that
the coefficients appearing in conditions (1) and (2) satisfy (5.9), (5.11), and ¢ > 1.
Assume W is a functional on F as in (5.3) and satisfying conditions (A1)—(A6) with
either 6 > 0 or % + % < 1. Then there exists a minimizer F € F of the minimum
problem

min W(F,VF).
FeF

We drop the proof since it is a straightforward adaptation of that of Theorem 5.2.
As for the case § = 0, it suffices to observe that the condition % + % =: % < 1 provides

a uniform bound of det F in L*(Q) via the identity I det FF = FT cof F and by the
Holder inequality.

Remark 5.4. Let us emphasize that once we assume (4b) we no longer need the
assumption on the coefficient ¢ > 2. Indeed in the case of the previous section, where
the Burgers vectors are linearly dependent, this condition implies directly expression
(5.13) of 9G, 4+, thanks to Theorem 4.11. In the general case we do not know if this
expression takes place in general, so we have to make the assumption (4b). At the
same time we know that (4b) is satisfied in some specific cases when ¢ > 2 and the
dislocations clusters show particular geometries, as Theorem 4.14 demonstrates.

Remark 5.5 (admissible geometries). Condition (4b) and hence Theorem 5.3 hold
as soon as the dislocation set consists of clusters (in its most general sense of closed
integral currents) lying on glide planes each of which possesses a single Burgers vector.
These structure are known as prismatic loops [23]. The admissible geometries are such
that the glide planes must be disjoint if they are associated to nonparallel Burgers
vectors. Note that there are at most three independent Burgers vectors and hence
three sets of disjoint planes. Obviously the case of screw or edge dislocations, which
are the only straight parallel dislocations [38], does comply with this condition.

5.4. A problem involving F and F~! and modeling discussion. In the
pioneer paper [26] as based on [28], the meaning of F' is that of the elastic part of
the deformation tensor. In contrast, according to Acharya [1, 2, 4], and as specifically
discussed in [3], the physical meaning of F' should be that of the inverse deformation

tensor, i.e., Fj;(t) = gf? (t), with x the position vector in the current configuration §2
J

at time ¢, whereas X stands for the position of the material point in some “reference”
configuration (this standpoint was already considered by the authors in [32]). Indeed,
the dislocation density A has a meaning only in €2, being equal to (the transpose) of
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— Curl F (in [3], the meaning of F' is that of the inverse of the elastic part of the
deformation tensor). It is the purpose of this section to show that our approach fits
the two interpretations. In particular we propose a variant of the aforementioned
minimization problems where the energy involves the variable

G:=F"

The general problem of elasticity with dislocations can be formulated, according to [3,
eqn. (4)] and in the absence of body forces, as follows: Find F' and G such that

A=(=Curl /)T, DivP=0 (+bc), P=PG).

Well-posedness for this system is to the best of our knowledge still an open problem
in its full generality. With our approach, we are able to address existence in the case
of a model of hyperelasticity, i.e., with P = dgW.(G). Specifically, we consider a
general stored-elastic energy density (strain energy per unit volume of the current
configuration) of the type

(5'22) We(Fv G) = We(F) + We(G)v

together with higher-order terms involving DF in the form of its curl, A = —( Curl F)7,
and its divergence, Div F'. Thus, we discuss existence results for a variational problem
where the total energy takes the form

(5.23) W(F, DF,G) := We(F, G) + Waisio( Curl F) + Wq(Div F),

with We(F, G) := [, We(F, G)dx. To achieve this aim, we first observe that G can be
expressed as combinations of entries of the vector M (F'), namely,

(cof F)T
det F °

Moreover, the energy depends on the dislocation density A = —( Curl F). Therefore,
after considering a minimizing sequence (Fy, G} ), we realize that we need a suitable
control of the variable F}, in order to guarantee that at the limit we have

(5.24) if F, ~F, then A, —A=—(Curl F)T.

At the same time we need a sufficiently good control of (cof F)T and det F in order
to guarantee that

(cof F)T

’2 f — th = F_l =
(5.25) if Gy — G, en G ey

Hence, the only assumption we require is coercivity in the following sense: There
exist p1,pa2, P3, P4, ps > 1 chosen appropriately (see subsection 5.2), with in addition

Py > ph = pfﬁl such that

(5.26)
W(F,DF,G) > C (|F||5} + || cof F||P2 + || det F[[E2 + || det G[|b* + || Div F||P?) — ¢,

with 6 > 0 and C,c > 0. Moreover, we assume W, (F,G) as L'-lower semicontinuous
(in particular the energy density depending on M (F), that is, Wo(F'), might still be
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assumed polyconvex, but need not be). Note that the energy density depending on G
can even be nonconvex and nonpolyconvex, provided it results in W,(F, G) being L*-
lower semicontinuous. Further, to avoid matter interpenetration, it is assumed that
W(F,G) — +o0 as det G — 0 (for it suffices that W (F) — +o00 as det F — +00).

The energy term W, (F') should be understood as specific to our variational model
of nonlinear bodies with dislocations, whereas in the absence of the dislocations the
energy reduces to a term depending on the sole deformation gradient G.

Whereas the issue (5.24) is proved as in the previous variational problems, the
main issue to work with is to prove (5.25). We can prove that

_ f Fyp)T (cof F)T
2 _ -t o Leof )T (cof )T
(5.27) G = (Fi) det F}, - det F

weakly in L' as kK — oo. To this aim a strong convergence of either (cof Fj)T or
det Fy, is required. The remaining part of this section is dedicated to proving that,
under a suitable choice of the coefficients p1, ps2,p3,ps,p5 > 1 and in the case of a
dislocation cluster depending on one fixed Burgers vector, condition (5.27) holds true
with

(5.28) cof F, — cof F strongly in LI(€; R3*3) for all ¢ < po.

As we have seen, the deformation tensor is decomposed as the sum of two gradi-
ents, namely,

(5.29) F=Vu+ Vo,
where v € W1P1(Q; T3) and v € W2Ps(Q; R3) satisfy

Div Vu =0, Av = Div F,
—Curl Vu =bR L, —Curl Vo =0,

together with suitable boundary conditions. We have seen that u satisfies ||Vu| 1s/2(q)
< ¢|p|(22). Moreover, it was proved in [25] and [39] that? Vu € WP(Q; R3*3) with
S =22 1<p<3/2,0<s<1, and

(5.30) [Vullweney < clul(@).

Thus by compact embedding theorems [16], any bounded sequence (Vu); in W*P(£;
R3*3) converges up to a subsequence strongly in L'(Q;R3*3).

LEMMA 5.6. In the case of one Burgers vector, assume the growth condition
(5.26), and assume cof Fy — cof F weakly in LP?(Q;R3*3). Then cof Fy — cof F

strongly in L9(Q;R3%3) for every ¢ < pa. As a consequence, (5.27) holds if py > ph =
p2
p2—1"

Proof. Thanks to the control of Div F we know Vv, € W1Ps(Q; R3). By Sobolev
embedding Vv, € L3Ps/(3=Ps)(Q; R3*3), so that by the Holder inequality it is easy to
see that

Vo x Vo € W3ps/(6=ps) (0 R3X3),

2The proof was established with the domain being the whole space € = R3, but can be extended
for bounded simply connected domains with smooth boundary as well, using the techniques of [10].
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By compact embedding, one has
Vi x Vo, — Vo x Vo

strongly in L!(Q;R3*3) for [ < 3ps/(6 — 2p5).

Moreover Vuy — Vu strongly in L™ (Q; R3*3) for all m < 3/2 by virtue of (5.30).
From Vv, — Vo strongly in L*(£2;R3*3) for all s < 3ps/(3—ps) the Holder inequality
yields

Vi x Vup — Vo x Vu

strongly in L!(Q; R**3) with ¢ such that § > 1 + 2.
The proof proceeds by recalling the identity cof F = %F X F (recall the notation
of (2.4)) and by virtue of (5.29), with

cof Fj, — cof F

strongly in L?(Q)) with ¢ := min{l,t}. The assumption of a single Burgers vector
is here crucial, since in the above product we have no occurrence of Vuy X Vuy for
which strong convergence would not hold.

The thesis follows since, by the energy control of cof F in LP2(Q;R3*3), we have
strong convergence in L7(£2;R3*3) for all ¢ < po. d

Due to the presence of both the issues (5.24) and (5.25), at the present stage it
seems a difficult task to deal with a variational problem involving only the variables
Curl F and G. One possibility is to consider an energy depending on M (G) and
Curl F, and using the expression

cof G
5.31 FT = ——
( ) det G
in order to show that Curl F, — Curl F. However, if the bulk energy depends on
cof G and det G, it is a difficult task to show that

(5.32) cof G — cof G, det Gy — det G.

Indeed, these convergences, as for the corresponding convergences of cof F' and det F,
require a suitable regularity on the graph of the displacement w, whenever we can
write G = Vw. This requires a suitable theory on the graphs of such functions, which
is provided in the present paper only for the inverse matrix F = G~!, exploiting
the condition on Curl F being a suitable integral current as related to the density of
dislocations. The problem of the analysis of the graphs related to G will be the topic
of future investigations.
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