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A VARIATIONAL APPROACH TO SINGLE CRYSTALS WITH
DISLOCATIONS\ast 

RICCARDO SCALA\dagger AND NICOLAS VAN GOETHEM\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We study the graphs of maps u : \Omega \rightarrow \BbbR 3 whose curl is an integral 1-current with
coefficients in \BbbZ 3. We characterize the graph boundary of such maps under a suitable summability
property. We apply these results to study a three-dimensional single crystal with dislocations forming
general one-dimensional clusters in the framework of finite elasticity. By virtue of a variational
approach, a free energy depending on the deformation field and its gradient is considered. The
problem we address is the joint minimization of the free energy with respect to the deformation
field and the dislocation lines. We apply closedness results for graphs of torus-valued maps, seen
as integral currents and, from the characterization of their graph boundaries, we are able to prove
existence of minimizers.
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1. Introduction. A longstanding problem in the theory of dislocations is to un-
derstand the three-dimensional configuration of the clusters associated to minimizers
of the elastic energy. One of the main difficulties concerns dealing with the singularity
of the stress and strain in the vicinity of dislocation lines, which implies their non-
square integrability, as opposed to traditional models of elasticity. Indeed, the stan-
dard approach of regularizing the fields by introducing a small tubular neighborhood
of the dislocation core is often adopted in the framework of linear elasticity. A dif-
ferent approach consisting in proposing an energy functional with less than quadratic
growth in the framework of nonlinear elasticity is here adopted, as suggested in the
pioneering paper by M\"uller and Palombaro [26], itself based on the framework pro-
posed by Ortiz in [28]. Even the mere existence of minimizers for such an energy is
a very challenging problem, whose preliminary solutions have been proposed by the
authors in a series of papers [31, 32, 33]. In these contributions the problem has been
generalized as to consider as variables a deformation tensor field and the dislocation
density, in contrast with [26], where the dislocation is a fixed planar circular loop (and
hence not subjected to joint optimization together with the deformation F ). In the
present paper we propose a complete solution of the minimization problem in the case
where the 3d dislocation cluster is generated by one Burgers vector. As a refinement
of the results of [33], where a strong hypothesis related to a regularizing term in the
energy was made, here we relax such hypothesis into a weaker one, which we call
``physical"" (see the subsequent discussion for details; the content of the main results
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can be found in section 5). To prove existence of minimizers, the main mathematical
tool used is Federer's theory of currents [17] (with the aid of Cartesian currents the-
ory as well; see, e.g., [21]) to describe both the deformation and the dislocation lines,
together with Ball's variational approach to finite elasticity [7]. The use of currents
has proven to be very useful recently in the modeling of dislocations. Treating these
objects as integral currents provides strong closedness principles which are not avail-
able for measures, and the notion of convergence for vector-valued measures is too
weak to fit. Furthermore, the theory of currents with coefficients in a group [18, 40] is
used to describe dislocations with Burgers vectors constrained to stay in a prescribed
lattice. A consequence of this constraint, as we will show, is that the displacement
can equivalently be seen as a torus-valued map, and hence the theory of currents on
non-Euclidean spaces [14] turns out to be crucially helpful.

This analysis is a necessary prerequisite to study the evolution of dislocation
clusters, in particular at the quasi-static regime. A first contribution as a sequel of
this work has been given in [34].

The crystal with dislocations in finite elasticity. A single crystal is repre-
sented by a three-dimensional body \Omega \subset \BbbR 3 with a smooth boundary. We denote by
\scrL \subset \=\Omega the set of dislocation lines. The basic kinematic variable is the tensor F \in \BbbR 3\times 3,
which represents the state of deformation of the body. The physical interpretation
of the chosen kinematical variable F in terms of deformation (to or from the current
configuration) is discussed in section 5.4 as based on the physical insight of Acharya
contributions [1, 2, 4] and sometimes in contrast with [28]. In our approach we prefer
not to mention any reference configuration, since this notion is ambiguous in the pres-
ence of dislocation singularities. Following the intrinsic approach of Ciarlet [11], we
rather consider F as an intrinsic quantity, namely, through the differential-geometric
metric tensor C = FTF (Cij = F l

i \delta lkF
k
j ). Further, the basic dislocation variable is

its density tensor, i.e., the finite tensor-valued Radon measure

(1.1) \Lambda \scrL := \tau \otimes b\scrH 1
\lfloor \scrL .

In this formula b is the Burgers vector, a vector defined on \scrL and constant on each
isolated loop of \scrL ; \tau is the unit tangent vector of the Lipschitz curve \scrL defined
\scrH 1

\lfloor \scrL -almost everywhere, where \scrH 1
\lfloor \scrL denotes the one-dimensional Hausdorff measure

restricted to \scrL . In our approach the deformation field F and the dislocation density
are linked by the constraint

 - Curl F = \Lambda T
\alpha .

The main problem we study in this work is the minimization of an energy func-
tional \scrW representing the internal energy of a deformed single crystal in the presence
of dislocations. The available free energy \scrW is assumed to be a function of some in-
variant (under Euclidean transformations) tensors describing the mechanical as well
as the dislocation-induced deformations, the tensor C, and the dislocation density
\Lambda \scrL . Since the dislocation cluster is a microstructure, we will also assume that \scrW 
depends on an appropriate second-order deformation related to C and the gradient
of C, called the material connection \Gamma .1

1This object, following [8] (under the physical interpretation that F is the classical deformation
tensor from a reference to the current configuration), is the correct thermodynamical quantity to
be considered in finite elasticity. The skew-symmetric part of \Gamma is related to the dislocation density
tensor introduced by Noll in the context of continuum bodies with dislocations [27]. We emphasize
that this geometric object has been used for a long time in the literature, since the works of Kr\"oner
in the fifties until recently (see, for instance, [24, 30, 36, 41]).
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The variational problem. The energy \scrW depends on C,\Gamma , and \Lambda \scrL . In order to
address the minimization problem while complying with classical principles of rational
mechanics, we assume that the energy is a function of the first- and second-order in-
variant tensors related to F and DF . It is shown in section 2 how this dependence can
be written in terms of M(F ) := (F, cof F, det F ) (the vector of all subdeterminants
of the matrix F ), Curl F , and Div F . Therefore the energy reads

\scrW (F,DF ) = \scrW e (M(F )) +\scrW d(Div F ) +\scrW dislo(\Lambda \scrL ),(1.2)

where

\scrW e (M(F )) =

\int 
\Omega 

We(F (x), cof F (x), det F (x))dx,

with \scrW e lower semicontinuous with respect to the weak convergence of M(F ); \scrW dislo

is a functional on the space of Radon measures \scrM b(\Omega ,\BbbR 3\times 3) which is lower semicon-
tinuous with respect to the weak- \star convergence, and

\scrW d(Div F ) =

\int 
\Omega 

Wd(Div F (x))dx,

is a weakly lower semicontinuous functional on Lr(\Omega ,\BbbR 3), r \geq 1. Note thatWd(Div F )
can also be seen as a perturbation of the energy \scrW e+\epsilon \scrW dislo for some small parameter
\epsilon related to the microstructure (see [19]). Even if often We is taken polyconvex in
order to supply for weakly lower semicontinuity, we emphasize that in our minimiza-
tion problem it can be general, for it suffices to be L1-lower semicontinuous in M(F ).
Let us also remark that this approach allows us to consider an elastic energy that de-
pends on F and F - 1, as discussed in section 5.4; the quantity F - 1 is indeed of crucial
meaning in many dislocation classical models (see, for instance, [1, 2, 3, 4]) in contrast
with the approach of [26, 28] that we follow. Even though the variable F - 1 can be ex-
pressed as a combination of the entries ofM(F ) (namely, F - 1 = ( cof F )T / det F ), at
the present stage we cannot address the existence of a minimization problem involving
only the variable F - 1 in the stored-elastic part, since we still need some control on
cof F and det F , and hence energy dependence on these variables (see section 5.4).

We will make the following crucial coercivity assumption:

(H) \scrW (F,DF )\geq C (\| F\| pLp +\| cof F\| qLq +\delta \| det F\| sLs +\| Div F\| rLr )+c| \Lambda \scrL | (\Omega ) - \gamma 

for some constitutive positive constants \gamma , C, and c, and \delta \geq 0. We assume 1 < p < 2,
q, r, s > 1 and  - Curl F = \Lambda T

\scrL \in \scrM b(\Omega ), a bounded Radon measure. Note that if \scrW 
is independent of det F (and hence \delta = 0), we can infer boundedness of det F by
control of F and cof F .

Let \Omega \subset \^\Omega , with \Omega and \^\Omega simply connected and smooth. Let b \in 2\pi \BbbZ 3 be a fixed
Burgers vector. We fix a boundary condition \^\alpha for the dislocation (see section 5 for
the specific notation) and a map \^F \in Lp(\^\Omega ;\BbbR 3\times 3) with  - Curl \^F = \Lambda T

\^\alpha = b\otimes \^\alpha on \^\Omega ,

and Div \^F \in Lr(\^\Omega ;\BbbR 3) with r > 1. Then we define the class of admissible functions
as

\scrF b := \{ F \in Lp(\^\Omega ;\BbbR 3\times 3) : cof F \in Lq(\^\Omega ;\BbbR 3\times 3), det F \in Ls(\^\Omega ), Div F \in Lr(\^\Omega ;\BbbR 3),

 - Curl F = \Lambda T
\scrL = b\otimes \scrL for some closed integral 1-current \scrL ,

and F = \^F on \^\Omega \setminus \Omega \} .
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We are interested in the variational problem

min
F\in \scrF b

\scrW (F,DF ).(1.3)

Note that both F and \scrL are unknown. The following theorem was proved in [33].

Theorem 1.1 (existence result with regularization term [33]). Let 1 < p = q =
s < 2, r > 3. There exists a solution F \in \scrF b of the minimum problem (1.3).

We remark that the original problem was formulated in [26] with \scrL fixed, F as-
sumed to be locally the gradient of a Cartesian map away from \scrL , and \scrW d = 0 (and
\scrW dislo constant, the dislocation being fixed). Then, with F and \scrL unknown, the varia-
tional problem was first solved in [32] with \scrW d replaced by an energy term accounting
either for the number and length of generating dislocation loops or, equivalently, the
number of connected components of a 1-set containing \scrL . This kind of assumption
is similar in spirit to that for variational problems in fracture; see, e.g., [13]. The
main novelty in [33] is the replacement of these energetic terms by \scrW d, the latter
having the physical interpretation of a higher-order term related to the invariants of
the gradient of the tensor C. However, the condition r > 3 is hardly justifiable in the
natural ambient space for F is Lp with p < 2.

The existence results. As anticipated, we would like to avoid the rather strong
condition r > 3 in Theorem 1.1, which is presumably too strong with respect to
the singular forces exerted by the dislocations. It turns out that if we consider the
hypothesis cof F \in L2, we are able to weaken considerably the assumption r > 3 and
in particular find a range for the exponent r which accounts, as for p, for the case
r < 2. The first existence result of the present paper (see Theorem 5.2 in section 5)
is the following.

Theorem 1.2 (for general dislocation clusters with one Burgers vector). Let 1 <
p < 2, q \geq 2, s > 1, and r > 12

7 . Under suitable hypotheses on the coefficients (see
Theorem 5.2) there exists a minimizer F \in \scrF b of \scrW .

In section 2 we will see that F can be written as the sum of the gradient of
two maps, u and v, the first one with values in the three-dimensional flat torus \BbbT 3.
The proof of Theorem 1.2 relies on analyzing the graph \scrG u+v of the deformation
maps u and v, seen as an integer-multiplicity current. Then a characterization of the
boundary of the graph of u + v is required. Here the theory of currents in metric
spaces (the flat torus in our case) and its link with the theory of integral currents
with coefficients in \BbbZ 3 become crucial. Specifically, suitable closure and compactness
theorems are required; these can be obtained by application of the theory developed
by Fleming [18] and the rectifiability property of flat chains [40], together with the
adaptation of classical compactness theorems by Federer to the case of metric spaces,
whose solid basis was recently developed by De Pauw and Hardt [14, 15]. Let us here
stress that the use of currents in the space \Omega \times \BbbT 3 is a direct consequence of the choice
\BbbZ 3 for the lattice where the Burgers vectors are constrained. The dislocation currents
are treated as classical flat chains, namely, 1-integral currents with coefficients in the
group \BbbZ 3.

A general expression for the boundary of \scrG u+v is given in Theorem 4.2 of section 4,
and this expression reduces to a current representing the dislocation density, i.e.,

\partial \scrG u+v \equiv \scrL \otimes b,
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in the case q \geq 2. In the latter case, we will show that, due to the high integrability
of cof F , in the region close to the dislocation cluster it must hold that

\nabla u\times \nabla v = 0.(1.4)

In the more general case of linearly independent Burgers vectors, a characterization
of the graphs \scrG u+v is currently far from reach, but can be addressed in some specific
geometric setting. For instance, it is possible to show that if the three dislocation
clusters associated to the Burgers vectors e1, e2, e3 are disjoint (which takes place
in many observed situations, as in the case of parallel dislocation lines, or when the
clusters are constrained to lie on parallel slip planes), then the graph \scrG u+v associated
to the deformation F is an integer-multiplicity current (see Theorem 4.13). Moreover,
also in this setting, if the cofactor is square integrable, then the boundary \partial \scrG u+v

still coincides with the dislocation density (see Theorem 4.14). This allows us to
solve a more general minimization problem. However, since we are not yet able to
characterize \partial \scrG u+v in every geometric setting, we must appeal to an extra hypothesis
on the admissible class of deformations. Specifically, we denote by \scrL i the dislocation
current associated to the Burgers vector ei, i = 1, 2, 3. A deformation showing general
dislocation densities satisfies

 - Curl F = \Lambda T
\scrL 1

+ \Lambda T
\scrL 2

+ \Lambda T
\scrL 3

= e1 \otimes \scrL 1 + e2 \otimes \scrL 2 + e3 \otimes \scrL 3.(1.5)

We then assume the following.
( \star ) The graph \scrG u+v is an integral current, and its boundary is written as

\partial \scrG u+v \equiv \scrL 1 \otimes e1 + \scrL 2 \otimes e2 + \scrL 3 \otimes e3(1.6)

(see section 4). Let us again emphasize that property ( \star ) holds true under some
specific geometric assumptions, but at the present stage we do not know if it also
holds in the general case. The class of admissible deformation fields reads

\scrF  \star =

\biggl\{ 
F \in Lp(\^\Omega ,\BbbR 3\times 3) : cof F \in Lq(\^\Omega ;\BbbR 3\times 3), det F \in Ls(\^\Omega ), Div F \in Lr(\^\Omega ;\BbbR 3),

 - Curl F =

3\sum 
i=1

\Lambda T
\scrL i

for integral 1-currents \scrL i, F = \^F on \^\Omega \setminus \Omega ,

and F satisfies ( \star )

\biggr\} 
.(1.7)

Then our second existence result is the following (see Theorem 5.3 in section 5).

Theorem 1.3 (for general Burgers vectors). Let 1 < p < 2, q > 1, s > 1, and
r > 12

7 . Under suitable hypotheses on the coefficients (see Theorem 5.3) there exists
a minimizer F \in \scrF  \star of \scrW .

Notice that once condition ( \star ) is satisfied, then we can also drop the hypothesis
q \geq 2. We conjecture that condition ( \star ) holds true whenever q \geq 2.

The main result: Characterization of the graph boundary. In order to
prove the two aforementioned existence results, as said, we need to characterize
the boundary of the displacement field u seen as a map with values in the three-
dimensional torus. Hence, the major part of the paper is devoted to this effort,
yielding the following theorem that we believe relevant as a stand-alone result.
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Theorem 1.4 (characterization of the boundary; cf. Theorem 4.11). Let u \in 
SBV (\Omega ;\BbbR 3)\cap W 1,p(\Omega ;\BbbT 3) be the harmonic map given in Theorem 3.4 below, satisfying
(3.12) with b \in 2\pi \BbbZ 3. Let v \in W 2,r(\Omega ;\BbbR 3); if

r >
12

7
, p < 2, and

6 - 2r

3r
+

1

p
\leq 1,(1.8)

then the current given by the graph of u + v with values in \BbbT 3, namely, \scrG u+v \in 
\scrD 3(\Omega \times \BbbT 3), is a rectifiable integer-multiplicity current with finite mass whose boundary
is given by the formula
(1.9)

\partial \scrG u+v(\omega )= - 1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

for all \omega \in \scrD 2(\Omega \times \BbbT 3) and a.e. t \in [0, 2\pi ). Here St is the level set w = t of the map
defined by b

2\pi w = u.
Moreover, if F = \nabla u+\nabla v satisfies cof F \in L2(\Omega ;\BbbR 3\times 3), then the graph \scrG u+v is

integral and its boundary is a two-dimensional integral current given by
(1.10)

\partial \scrG u+v(\omega )=\scrL \wedge b(\omega )= - 1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,(s1,0)\wedge (s2,0)\wedge \vec{}b

\biggr\rangle 
d\scrH 2(x)d\theta 

for all \omega \in \scrD 2(\Omega \times \BbbT 3) and a.e. t \in [0, 2\pi ).

See Lemma 4.8 and Theorem 4.11 for the detailed statement and notation. We
remark that as soon as the field v is sufficiently regular, the condition cof F \in Lq

with q \geq 2 implies that the tangential derivative of v along the dislocation line must
vanish (that is, equivalently, that (1.4) holds true). This condition is crucial, since it
applies on cof F and not on v, which therefore need not be \scrC 1-regular, as was the case
in [33] (see Theorems 4.1 and 4.2). Specifically, a condition on cof F is physically
easier to check, since it is directly related to the growth condition of the bulk energy.
For this reason the relaxed hypothesis r > 12

7 and cof F \in L2 in place of r > 3 is
called ``physical.""

2. Model variables. The model deformation variables being C andDF (through
the observable \Gamma ), we have to consider their invariants (under suitable maps), since it
is natural to assume that the energy must depend only on them. More precisely, the
metric tensor C := FTF is known to be invariant under Euclidean transformations;
namely, it remains unchanged after superimposing a rigid body motion upon the orig-
inal motion. Moreover, also the compatibility connection is such an invariant [8], since
in terms of C it is written as

\Gamma = C - 1DSC

\biggl( 
(DSC)ijk =

1

2
(\partial kCij + \partial jCik  - \partial iCkj)

\biggr) 
.

In order to comply with material frame-invariance, for an isotropic body the
response laws are given in terms of the invariants of C, namely,

\BbbI 1(C) = trC = F \cdot F,(2.1)

\BbbI 2(C) = tr cof C = cof F \cdot cof F,(2.2)

\BbbI 3(C) = det C = (det F )2.(2.3)
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Since in the presence of dislocations F never belongs to L2(\Omega ;\BbbR 3\times 3), the energy has
a less than linear growth with respect to the first invariant. As for \BbbI 2(C), the cofactor
of F is defined as

( cof F )ij = (F \boxtimes F )ij :=
1

2
\epsilon ikm\epsilon jlnFklFmn,(2.4)

and the relation tr cof C = cof F \cdot cof F entails that tr cof C \in L1(\Omega ) if cof F \in 
L2(\Omega ;\BbbR 3\times 3). This means that, heuristically, the natural hypothesis that tr cof C is
a summable function requires that cof F be at least a square-integrable function.
Moreover, by the identity

\delta ij det F = Fki( cof F )kj(2.5)

it follows that, since F \in Lp(\Omega ;\BbbR 3\times 3) with p < 2, the control of cof F \in Lq(\Omega ;\BbbR 3\times 3)
with q > 2 such that 1

p+
1
q \leq 1 yields a control of det F \in L1(\Omega ). The hypothesis that

the energy has a more than linear growth with respect to the second invariant will be
crucial in order to get a control on the determinant and to finally prove existence of
solutions to (1.3).

Let us also observe that it is a classical requirement to assume
\sqrt{} 
\BbbI 3(C) is sum-

mable, a condition on the summability of det F . We will see that in the minimization
problem, this condition will not play a crucial role, and one could easily consider the
incompressible case as well.

As for the higher-order model variable, the only linear invariant of DF is, accord-
ing to [5, eqn. (2.1)],

\BbbI lin(DF ) = \epsilon ijk(DF )
i
jk = \epsilon ijkF

i
m\Gamma m

jk = trCurl F,

while the third quadratic invariant of DF , out of eleven independent invariants [5,
eqn. (2.3)], is

\BbbI quad3 (DF ) = \delta im\delta jk\delta pq(DF )
i
jk(DF )

m
pq = Div F \cdot Div F.

Note that in terms of the invariants C and \Gamma one can write \BbbI quad3 (DF ) = C \cdot tr\Gamma \otimes tr\Gamma .
In the case of gradient hyperelasticity with dislocations, we will consider energies

of the form

\scrW (F,DF ) = \scrW ISO(\BbbI (C), \BbbI (DF )) = \scrW 1
ISO(\BbbI (C)) +\scrW 2

ISO(\BbbI (DF )),

where \BbbI (C) and \BbbI (DF ) are the invariants of C and DF . The energy \scrW 2
ISO(\BbbI (DF ))

contains the term
\scrW dislo( Curl F ),

accounting for anisotropic energy contributions due to the presence of dislocation
loops in the otherwise perfect crystal.

We remark that the gradient of F plays a role through two independent terms:
the deformation part Div F and the defect part Curl F . It is also noticeable that
such a higher-order term Div F is sometimes considered as a regularization term (as,
e.g., in [19]) to first-grade elasticity. Here we regard it simply as the third quadratic
invariant of DF .

Let us discuss the assumptions made on the stored elastic energy. For the sake
of discussion, F is here given the interpretation of the deformation tensor from a
reference to the current configuration. Let vi be the principal stretches of F , i.e., the
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eigenvalues of
\surd 
C. A homogeneous and incompressible Ogden material possesses a

stored-energy function of the form

WOG(F ) =
c1
2

3\sum 
i=1

(v\alpha i  - 3) + c2

3\sum 
i \not =j=1

\bigl( 
(vivj)

\beta  - 3
\bigr) 
,

with \alpha , \beta \geq 1 (see [7]). For \alpha = \beta = 2 this corresponds to the Mooney--Rivlin
material WMR = c1

2 (\BbbI 1(C)  - 3) + c2(\BbbI 2(C)  - 3), originally designed for rubber-like
materials. Nevertheless Ogden-like energies are also considered for dislocations in
finite elasticity (see [42] for practical examples). For \alpha \geq 2 it is known that

\sum 3
i=1 v

\alpha 
i

is not in L1(\Omega ), in the presence of dislocations (the unsuitability of Mooney materials
to describe dislocations was already reported in [42], since it creates the ``paradox on
longitudinal force"").

Therefore, in our model we consider an Ogden material with \alpha = p < 2, with

the identity | F | p = (F \cdot F )p/2 = ( trC)p/2 =
\bigl( \sum 3

i=1 v
2
i

\bigr) p/2 \leq c
\sum 3

i=1 v
p
i for some

c > 0, simply meaning that F \in Lp(\Omega ;\BbbR 3\times 3) as soon as the energy is bounded.

As for the second term, one needs
\sum 3

i\not =j=1(vivj)
\beta \in L1(\Omega ), and this is achieved if

cof F \cdot cof F = tr cof C = \BbbI 2(C) \in L1(\Omega ) and \beta \geq 2. Therefore, we are led to the
assumption

cof F \in Lq(\Omega ;\BbbR 3\times 3),(2.6)

with q \geq 2. This assumption will replace the more artificial one r > 3 made in [33].
It is classically known since Rivlin and Saunders' work [29] that for incompressible

rubber-like materials the bulk energy W satisfies | \partial \BbbI 2W | \ll | \partial \BbbI 1W | ; i.e., the material
response is essentially independent of \BbbI 2. However, for crystals, to the knowledge of
the authors there is no reason to make this assumption. For a compressible material,
the classical approach is to add to the bulk energy the term f( det F ) with f > 0
convex such that f(t) \rightarrow \infty as t \rightarrow 0+ and satisfying f(t) \geq c| t| s for some c > 0 and
s > 1. Since f( det F ) must be in L1(\Omega ), one requires that

det F \in Ls(\Omega ),(2.7)

with s > 1. An example of stored elastic energy \scrW 2
ISO(\BbbI (C)) used for dislocations in a

nonlinear context that shows the simultaneous presence of \BbbI 2 and \BbbI 3 is the Blatz--Ko
material (see [42, eqn. (3.1.17)]).

As for the term \scrW 2
ISO(\BbbI (DF )), it is nowadays a classical approach to consider

gradient models (for instance, the pioneer work in this respect was [35]) to avoid
instabilities in continua submitted to severe loadings and/or large deformations (see
also [19]).

3. Mathematical formalism. One of the crucial points is that the very nature
of the displacement field in the presence of dislocations is multiple-valued, due to the
fact that the value of the displacement field depends on the number of loops made
by a circuit wrapping around the dislocation line and along which the deformation is
integrated (consider the classical Michell--Cesaro formulae [6]). There are two ways to
mathematically address this fact. First, the traditional approach consists in avoiding
any such multiple circuits by ``closing"" the dislocation loop L with a surface S enclosed
by L. Hence we avoid multivaluedness, but deal with a jump of the displacement on
the surface, where it is of constant amplitude. The second approach is to define
the displacement as a map with values in the three-dimensional torus. Then the
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displacement does not ``see"" the jumps when loops are made around L. We consider
these two approaches in [33]. Note that, in addition to their mathematical reason to
be, the surface S may be given a physical meaning. Therefore explicit expressions of
the terms supported by S were also provided in [33].

3.1. Generalities about currents and graphs.

Basic facts. Let \alpha be a multi-index, i.e., an ordered (increasing) subset of
\{ 1, 2, . . . , n\} . We denote by | \alpha | the cardinality (or length) of \alpha , and we denote by \=\alpha the
complementary set of \alpha , i.e., the multi-index given by the ordered set \{ 1, 2, . . . , n\} \setminus \alpha .

For all integers n > 0 and k \geq 0 with k \leq n, we denote by \Lambda k\BbbR n the space of
k-vectors and by \Lambda k\BbbR n the space of k-covectors. We denote by \scrD k(\Omega ) the space of
smooth and compactly supported k-forms, which is a topological vector space. Any
k-form \omega \in \scrD k(\Omega ) can be written in terms of its components, namely,

\omega =
\sum 
| \alpha | =k

\varphi \alpha dx\alpha ,(3.1)

with \varphi \alpha \in \scrC \infty 
c (\Omega ), and dx\alpha denoting the k-covector, k = | \alpha | , dx\alpha = dx\alpha 1 \wedge \cdot \cdot \cdot \wedge dx\alpha k

.
The external derivative of a form \omega \in \scrD k(\Omega ), k < n, is the form d\omega \in \scrD k+1(\Omega ) given
by d\omega =

\sum n
i=1

\sum 
| \alpha | =k

\partial \varphi \alpha 

\partial xi
dxi \wedge dx\alpha , where \omega has the form (3.1). Given a function

F : U \subset \BbbR m \rightarrow V \subset \BbbR n of class \scrC 1 and a k-form \omega \in \scrD k(V ), the pull-back of \omega by F
is the form F \sharp \omega \in \scrD k(U) defined as

\langle F \sharp \omega , v1 \wedge \cdot \cdot \cdot \wedge vk\rangle =
\biggl\langle 
\omega ,
\partial F

\partial v1
\wedge \cdot \cdot \cdot \wedge \partial F

\partial vk

\biggr\rangle 
for any k-vector v \in \Lambda k\BbbR m.

The cofactor form. For any real n\times n matrix A and for \alpha and \beta multi-indices
with | \alpha | + | \beta | = n, M\beta 

\=\alpha (A) denotes the determinant of the submatrix of A obtained
by erasing the ith columns and the jth rows for all i \in \alpha and j \in \=\beta . The symbol
M(A) denotes the n-vector in \Lambda n\BbbR 2n given by

M(A) :=
\sum 

| \alpha | +| \beta | =n

\sigma (\alpha , \=\alpha )M\beta 
\=\alpha (A)e\alpha \wedge \varepsilon \beta ,(3.2)

where \{ ei, \varepsilon i\} i\leq n is the standard Euclidean basis of \BbbR 2n, and \sigma (\alpha , \=\alpha ) is the sign of
the permutation (\alpha , \=\alpha ) \in S(n). Accordingly, we define

| M(A)| :=

\left(    1 +
\sum 

| \alpha | +| \beta | =n
| \beta | >0

| M\beta 
\=\alpha (A)| 2

\right)    
1/2

.

For a matrix A \in \BbbR 3\times 3, the symbols adj A and det A denote the adjugate, i.e., the
transpose of the matrix of the cofactors of A, and the determinant of A, respectively.

Explicitly, M i
j(A) = Aij , M

\=i
j
(A) = ( cof A)ij = ( adj A)ji , M

\{ 1,2,3\} 
\{ 1,2,3\} (A) = det A, for

i, j = 1, 2, 3. Moreover, | M(A)| =
\bigl( 
1 +

\sum 
i,j A

2
ij +

\sum 
i,j cof(A)

2
ij + det(A)2

\bigr) 1/2
.
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Currents. Let \Omega \subset \BbbR n be an open set. The dual space of \scrD k(\Omega ), denoted by
\scrD k(\Omega ), is called the space of k-currents in \Omega . We will usually denote currents with
capital italic letters. A weak convergence in \scrD k(\Omega ) is defined as follows: We say that
\scrT h \rightharpoonup \scrT in the sense of currents if for every \omega \in \scrD k(\Omega ) we have \scrT h(\omega ) \rightarrow \scrT (\omega ). The
boundary of a current \scrT \in \scrD k(\Omega ) is the current \partial \scrT \in \scrD k - 1(\Omega ) defined as

\partial \scrT (\omega ) = \scrT (d\omega ) for all \omega \in \scrD k - 1(\Omega ).

A closed current is a current with null boundary (as is, by definition, every current in
\scrD 0(\Omega )). The mass of \scrT \in \scrD k(\Omega ) is the number M(\scrT ) \in [0,+\infty ] given by M(\scrT ) :=
sup\omega \in \scrD k(\Omega ), | \omega | \leq 1 \scrT (\omega ). If M(\scrT ) < +\infty then \scrT turns out to be a Borel measure in
\scrM b(\Omega ,\Lambda k\BbbR n), and its total variation coincides with M(\scrT ). It is easily seen that the
mass is lower semicontinuous with respect to the weak topology in \scrD k(\Omega ). It is also
convenient to introduce the quantity N(\scrT ) :=M(\scrT ) +M(\partial \scrT ) for every \scrT \in \scrD k(\Omega ).

Let U \subset \BbbR n and V \subset \BbbR m be open sets and F : U \rightarrow V be a smooth map. Then the
push-forward of a current \scrT \in \scrD k(U) by F is defined as F\sharp \scrT (\omega ) := \scrT (\zeta F \sharp \omega ) for \omega \in 
\scrD k(V ), where F \sharp \omega is the standard pull-back of \omega and \zeta is any \scrC \infty -function that is
equal to 1 on spt\scrT \cap sptF \sharp \omega .

Integral currents. Let 0 \leq k \leq n, and let S \subset \BbbR n be an \scrH k-rectifiable set with
approximate tangent space TxS. If \tau : S \rightarrow \Lambda k(\BbbR n) and \theta : S \rightarrow \BbbR are \scrH k-integrable
functions with \tau (x) \in TxS a simple unit k-vector for \scrH k-a.e. x \in S, then we can
define the current \scrT as

(3.3) \scrT (\omega ) =

\int 
S

\langle \omega (x), \tau (x)\rangle \theta (x)d\scrH k(x) for \omega \in \scrD k(\Omega ).

Every current for which there exists such S, \tau , and \theta is said to be rectifiable. If also
its boundary \partial \scrT is rectifiable, then we adopt the following notation:

(3.4) \scrT \equiv \{ S, \tau , \theta \} .

The current \scrT \in \scrD k(\Omega ) is rectifiable with integer multiplicity if it is rectifiable,
has rectifiable boundary, and the function \theta in (3.3) is integer-valued. An integer-
multiplicity current \scrT such that N(\scrT ) < \infty is said to be an integral current. As is
known, the simplest example of an n-dimensional integral current is the integration
over a set of finite perimeter U \subset \BbbR n. This is denoted by 〚U〛 \in \scrD n(\BbbR n) and is defined
as

〚U〛(\omega ) =
\int 
U

\langle \omega (x), \tau \rangle dx for all \omega \in \scrD n(\BbbR n),

where \tau := e1 \wedge \cdot \cdot \cdot \wedge en is the standard orientating vector of \BbbR n.
If S = F (U), where F : U \subset \BbbR n \rightarrow \BbbR m is a map smooth enough, we can define

the push-forward by F of the current 〚U〛, which can be written as F\sharp 〚U〛(\omega ) =
〚U〛(F \sharp \omega ) =

\int 
U
\langle F \sharp \omega , \tau \rangle dx =

\int 
S
\langle \omega , \partial F

\partial x1
\wedge \cdot \cdot \cdot \wedge \partial F

\partial xn
\rangle d\scrH n.

An integral current \scrT \in \scrD M (\BbbR n) is said to be indecomposable if there exists no
integral current \scrR such that \scrR \not = 0 \not = \scrT  - \scrR and

N(\scrT ) = N(\scrR ) +N(\scrT  - \scrR ).

The following theorem provides a decomposition property of every integral current
and the structure characterization of integer-multiplicity indecomposable 1-currents
(see [17, sect. 4.2.25]).
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Theorem 3.1 (Federer). For every integral current \scrT there exists a sequence of
indecomposable integral currents \scrT i such that

\scrT =
\sum 
i

\scrT i and N(\scrT ) =
\sum 
i

N(\scrT i).

Suppose \scrT is an indecomposable integer-multiplicity 1-current on \BbbR n. Then there
exists a Lipschitz function f : \BbbR \rightarrow \BbbR n with Lip(f) \leq 1 such that

f\llcorner [0,M(\scrT )] is injective and \scrT = f\sharp 〚[0,M(\scrT )]〛.

Moreover \partial \scrT = 0 if and only if f(0) = f(M(\scrT )).

In other words, an indecomposable integral 1-current turns out to be a simple
Lipschitz curve.

Graph currents. Let us consider the space \Omega \times \BbbR 3. We will use the Euclidean
coordinates x = (x1, x2, x3) for x \in \Omega and y = (y1, y2, y3) for y \in \BbbR 3. Every 3-form
\omega \in \scrD 3(\Omega \times \BbbR 3) can be decomposed as \omega =

\sum 
\omega \alpha \beta dx

\alpha \wedge dy\beta , with \omega \alpha \beta \in \scrC \infty 
c (\Omega \times \BbbR 3),

where the sum is computed over all multi-indices \alpha and \beta such that | \alpha | + | \beta | = 3.
Let p > 1. We denote by \scrA p(\Omega ,\BbbR 3) the space

\scrA p(\Omega ,\BbbR 3) := \{ u \in L1(\Omega ;\BbbR 3) : u is approx. differentiable a.e. on \Omega , and

M\beta 
\=\alpha (Du) \in Lp(\Omega ) for all | \alpha | + | \beta | = 3\} .

The symbol M\beta 
\=\alpha (Du) was introduced in (3.2) with A = Du. If u \in \scrA p(\Omega ,\BbbR 3), then

\scrG u, the current carried by the graph of u, is defined as follows:

\scrG u := (Id\times u)\sharp 〚\Omega 〛,(3.5)

where Id\times u : \BbbR 3 \rightarrow \BbbR 3 \times \BbbR 3 is given by (Id\times u)(x) = (x, u(x)), viz.,

(3.6) \scrG u(\omega ) =

\int 
\Omega 

\sigma (\alpha , \=\alpha )\omega \alpha \beta (x, u(x))M
\beta 
\=\alpha (Du(x))dx

for all \omega = \omega \alpha \beta dx
\alpha \wedge dy\beta \in \scrD 3(\Omega \times \BbbR 3). Moreover if u \in \scrA p(\Omega ,\BbbR 3), then \scrG u turns

out to be an integer-multiplicity 3-current in \Omega \times \BbbR 3.

3.2. Graphs of maps with values in \bfitT \bfthree . The flat torus \BbbT is defined as T \sim =
\BbbR / \sim , with \sim the equivalent relation given by

a \sim b if and only if a - b \in 2\pi \BbbZ .(3.7)

In [33] (see also [32]) we studied the graphs of maps u : \Omega \rightarrow \BbbT 3 as currents in
\scrD 3(\Omega \times \BbbT 3). This space can be seen as the dual of the topological vector space
\scrD 3(\Omega \times \BbbT 3), consisting of all compactly supported smooth 3-forms in \Omega \times \BbbT 3. By
(3.7) it can be easily deduced that \scrD 3(\Omega \times \BbbT 3) coincides with the class of smooth
3-forms in \Omega \times \BbbR 3 which are 2\pi -periodic in the last three variables. As a consequence,
there is a natural embedding from the space of currents in \scrD 3(\Omega \times \BbbR 3) with compact
support in \=\Omega \times \BbbR 3 to \scrD 3(\Omega \times \BbbT 3), obtained by restricting \scrT \in \scrD 3(\Omega \times \BbbR 3) to the space
of 3-forms in \Omega \times \BbbR 3 which are 2\pi -periodic in the last three variables. More precisely,
if \scrT \in \scrD 3(\Omega \times \BbbR 3) has compact support in \=\Omega \times \BbbR 3, then the current T (\scrT ) \in \scrD 3(\Omega \times \BbbT 3)
is well defined as

T (\scrT ) := \scrT \llcorner \scrD 3(\Omega \times \BbbT 3),
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where \scrD 3(\Omega \times \BbbT 3) denotes the class of 3-forms in \Omega \times \BbbR 3 which are 2\pi -periodic in the
last three variables. Since in general smooth functions in \Omega \times \BbbR 3 are not periodic in
the last three variables, it is easily seen that M(T (\scrT )) \leq M(\scrT ).

The procedure of embedding a current in \scrD 3(\Omega \times \BbbR 3) into \scrD 3(\Omega \times \BbbT 3) can be
applied to graphs of functions u \in \scrA p(\Omega ,\BbbR 3); we define T (u) : \Omega \rightarrow \BbbT 3 using the
projection \pi T : \BbbR \rightarrow \BbbT , namely, T (ui) := \pi T (ui) for i = 1, 2, 3. Since \pi T is a smooth
function, \scrG T (u) turns out to be a 3-rectifiable current in \Omega \times \BbbT 3 whenever \scrG u is a
3-rectifiable current in \Omega \times \BbbR 3. Furthermore it holds that \scrG T (u) = T (\scrG u).

We introduce the space \scrA p(\Omega ,\BbbT 3) as follows:

\scrA p(\Omega ,\BbbT 3) := \{ u \in L1(\Omega ;\BbbT 3) : u is approx. differentiable a.e. on \Omega , and

M\beta 
\=\alpha (Du) \in Lp(\Omega ) for all | \alpha | + | \beta | = 3\} ,(3.8)

where L1(\Omega ;\BbbT 3) coincides with the space of measurable functions u : \Omega \rightarrow \BbbT 3.
A weak convergence is defined on \scrA p(\Omega ,\BbbT 3). Namely, we say that a sequence

uk \in \scrA p(\Omega ,\BbbT 3) weakly converges to u \in \scrA p(\Omega ,\BbbT 3) if uk \rightarrow u strongly in L1(\Omega ;\BbbT 3),

andM\beta 
\=\alpha (Duk)\rightharpoonup M\beta 

\=\alpha (Duk) weakly in Lp(\Omega ) for all multi-indices | \alpha | +| \beta | = 3 (see [21,
sect. 3.3.3]).

Following the classical theory of Cartesian currents (see [20, 21]), it is straight-
forward that if u \in \scrA p(\Omega ,\BbbT 3), then the graph \scrG u is an integer-multiplicity 3-current.
Moreover, since the mass of a current does not increase by composition with T , if
there exists \=u \in \scrA p(\Omega ,\BbbR 3) such that T (\=u) = u and \scrG \=u is an integral current, then \scrG u

is an integral current.

Lemma 3.2. Let uk, u \in \scrA p(\Omega ,\BbbT 3), be such that uk \rightharpoonup u weakly in \scrA p(\Omega ,\BbbT 3);
then \scrG uk

\rightharpoonup \scrG u as currents.

The following closure theorem is a standard adaptation of Theorem 2 of [21, sect.
3.3.2].

Theorem 3.3 (Federer--Fleming). Let uk be a sequence in \scrA p(\Omega ,\BbbT 3) such that

uk \rightarrow u strongly in Lp(\Omega ;\BbbT 3), and suppose that there exist functions v\beta \=\alpha \in Lp(\Omega ) such

that M\beta 
\=\alpha (Duk)\rightharpoonup v\beta \=\alpha weakly for all multi-indices \alpha and \beta with | \alpha | + | \beta | = 3. If

(3.9) M(\partial \scrG uk
) < C < +\infty 

for all k > 0, then u \in \scrA p(\Omega ,\BbbT 3) and v\beta \alpha =M\beta 
\=\alpha (Du).

Let us remark that the original proof of the closure result on which the last theo-
rem is based is due to Federer and Fleming, but that was only established for currents
in Euclidean spaces. The theory for the flat torus can be obtained as adaptation of
the more general theory for G chains developed first by Fleming, and then by White,
De Pauw, and Hardt (see, for instance, [14, 15] and references therein).

3.3. The displacement and the dislocation-induced deformation: Basic
results. Let us start with a technical result. Let \^\Omega be a bounded open set with
smooth boundary, let g \in \scrC 1,\alpha (\partial \^\Omega ;\BbbR 3) be such that

\int 
\partial \^\Omega 
gd\scrH 2 = 0, and let v \in 

\scrC 2,\alpha (\^\Omega ;\BbbR 3) be the zero-average-value solution to\biggl\{ 
\Delta v = 0 in \^\Omega ,

\partial Nv = g on \partial \^\Omega .
(3.10)

Then \| v\| \scrC 2,\alpha \leq C\| g\| \scrC 1,\alpha , with C = C(\^\Omega ) (see [22, Thms. 6.30 and 6.31]).
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Theorem 3.4 (harmonic map [37]). Let L be a Lipschitz closed curve in \BbbR 3 and
S a bounded Lipschitz surface with boundary L and unit normal N . Let b \in \BbbR 3. The
solution of the system\left\{     

\Delta u = 0 in \BbbR 3 \setminus S,
[u] := u+  - u - = b on S,

[\partial Nu] := \partial Nu
+  - \partial Nu

 - = 0 on S

(3.11)

is given by (up to a harmonic map in \BbbR 3)

(3.12) ui(x) =  - bi
\int 
S

\partial N\Phi (x\prime  - x)d\scrH 2(x\prime )

for x \in \BbbR 3 \setminus S, where \Phi is the fundamental solution of the Laplacian in \BbbR 3, namely,
\Delta \Phi = \delta 0.

In the following theorem the symbol BV p denotes the space of functions with
bounded variation whose absolutely continuous part of the gradient belongs to Lp,
p \geq 1.

Theorem 3.5 (nature of the displacement field [33]). Let L be a closed Lipschitz
curve in \Omega , and let b \in 2\pi \BbbZ 3. Then for any Lipschitz surface S with boundary L,
every solution u to (3.11) belongs to BV p(\Omega ;\BbbR 3) with p = 3

2 , satisfies Div \nabla au = 0,
and satisfies  - Curl \nabla au = b\otimes \scrL in the sense of distributions (here \nabla au is the part of
the gradient of u that is absolutely continuous with respect to the Lebesgue measure).
Moreover, if the curve L is of class \scrC 2, then \nabla au \in Lp(\Omega ;\BbbR 3\times 3) for all 1 \leq p < 2.
As a consequence, u can be seen with values in \BbbT 3, in which case it happens that
T (u) \in W 1,p(\Omega ;\BbbT 3), and \nabla T (u) = \nabla au. Furthermore, T (u) does not depend on the
specific surface S enclosing L, but only depends on L.

We will often consider u as torus-valued, thus dropping the symbol T and denoting
T (u) by u as well. As a consequence, in what follows, the identification

\nabla u \equiv \nabla au

will mean that the gradient of the torus-valued map u equals the absolutely continuous
part of the distributional derivative of the vector-valued SBV -map u.

Remark 3.6. Let us emphasize that the integral in (3.12) (and then the content
of Theorem 3.5) can be extended, by Federer decomposition Theorem 3.1, to any
integer-multiplicity 2-current S \subset \BbbR 3. Indeed, if \scrL is an integral 1-current, it can be
decomposed as the sum of simple Lipschitz curves \scrL i, each of which having a surface
Si enclosing it. Then formula (3.12) can be generalized as the sum of the same integral
on all Si. It is easy to see that the absolutely continuous part of the gradient of the
resulting u does not depend on the choice of the surfaces Si.

If S has as boundary an integral 1-current \scrL , then it follows that

 - Curl \nabla u = b\otimes \scrL .

This will be used in our main result (Theorem 4.11).

Theorem 3.7 (Biot--Savart [9, 33]). Let \^\Omega \subset \BbbR 3 be an open, simply connected,
and smooth set. Let \mu be a tensor-valued Radon measure such that \mu \in \scrM div(\^\Omega ;\BbbR 3\times 3)
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(where the label div stands for divergence-free). Then there exists a unique F \in 
L1(\^\Omega ;\BbbR 3\times 3) solution of \left\{   

 - Curl F = \mu in \^\Omega ,

Div F = 0 in \^\Omega ,

FN = 0 on \partial \^\Omega .

(3.13)

Moreover, F belongs to Lp(\^\Omega ;\BbbR 3\times 3) for all p with 1 \leq p \leq 3/2, and for all such p
there exists a constant C > 0 satisfying

(3.14) \| F\| p \leq C| \mu | (\^\Omega ).

In the case that \mu = b \otimes \tau \scrH 1\llcorner \scrL , for some b \in \BbbR 3 and a \scrC 2-closed curve \scrL in \^\Omega 
with unit-oriented tangent vector \tau , then the solution F belongs to Lp(\^\Omega ;\BbbR 3\times 3) for all
p < 2.

Note that improved regularity for F applies, as discussed in section 5.4.

An archetypal result. Let \scrL be a closed loop (or in general a closed integral
1-current), and let \eta be a field defined on \Omega . Let ui be the map introduced in (3.12)
with bi = 2\pi , and consider it as torus-valued, namely, ui \in W 1,p(\Omega ;\BbbT ). To prove
several of the following results we will use the following coarea formula:\int 2\pi 

0

\int 
\{ ui=t\} 

\eta (x)d\scrH 2(x)dt =

\int 
\Omega 

\eta (x)| \nabla ui(x)| dx.(3.15)

Now, if
\int 
\{ ui=t\} \eta (x)d\scrH 

2(x) is proved to be independent of t \in [0, 2\pi ), then one also

has the following identity:\int 
\{ ui=t\} 

\eta (x)d\scrH 2(x) =
1

2\pi 

\int 
\Omega 

\eta (x)| \nabla ui(x)| dx.

The following lemma is proved by means of this formula.

Lemma 3.8. Let \scrL \in \scrD 1(\Omega ) be an integral closed 1-current supported in \Omega , and
let w \in W 1,3/2(\Omega ;\BbbT ) be the harmonic map given by formula (3.12) with bi = 2\pi . Let
St := \{ x \in \Omega : w(x) = t\} . Then for a.e. t \in [0, 2\pi ) the surface St is the support of an
integral 2-current \scrS t in \scrD 2(\Omega ) such that \partial \scrS t = \scrL .

Proof. Let L be the support set of the 1-current \scrL . Letting \varphi \in \scrC \infty 
c (\Omega ;\BbbR 3) be

arbitrary, we have

2\pi 

\int 
L

\varphi \cdot \tau d\scrH 1 =  - 
\int 
\Omega 

Curl \varphi \cdot \nabla wdx =  - 
\int 
\Omega 

Curl \varphi \cdot \nabla w
| \nabla w| 

| \nabla w| dx

=

\int 2\pi 

0

\int 
St

Curl \varphi \cdot Ntd\scrH 2dt =

\int 2\pi 

0

\int 
\partial St

\varphi \cdot \tau td\scrH 1dt,(3.16)

where Nt =  - \nabla w
| \nabla w| is the unit normal to St, and in the last equality we have employed

the Stokes theorem. By arbitrariness of \varphi we deduce that the distribution given by

\varphi \mapsto \rightarrow 
\int 2\pi 

0

\int 
\partial St

\varphi \cdot \tau td\scrH 1dt coincides with 2\pi \tau \scrH 1\llcorner L, which implies the thesis.

As a consequence of the preceding lemma, and adopting the notation in (3.4), it
follows that for a.e. t \in [0, 2\pi ) the integer-multiplicity current

\scrS t = \{ St, \tau = Nt, \theta = 1\} (3.17)

is integral with boundary \partial \scrS t = \scrL . In particular the multiplicity of \scrS t is 1.
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3.4. Preliminaries on dislocations at the continuum scale. We call a dis-
location loop any simple closed curve \scrL in \Omega which has an associated Burgers vector
b \in 2\pi \BbbZ 3. We say that an \BbbR 3\times 3-valued field F is a deformation in the presence of
dislocation \scrL and Burgers vector b if it satisfies the condition

 - Curl F = \Lambda T
\scrL b := b\otimes \tau \scrH 1\llcorner \scrL ,

where \tau is an oriented tangent vector to \scrL defined \scrH 1-a.e. Given any b \in 2\pi \BbbZ 3 we call
a b-dislocation current a closed integral 1-current \scrL b with associated Burgers vector b,
and its corresponding density, denoted by \Lambda \scrL b \in \scrM b(\Omega ,\BbbR 3\times 3), is the divergence-free
measure satisfying

(3.18) \langle \Lambda \scrL b , w\rangle = \scrL b((wb)\ast )

for every w \in \scrC \infty 
c (\Omega ,\BbbR 3\times 3), where on the right-hand side (wb)\ast is the covector writing

(wb)\ast := wkjbjdxk (with Einstein convention on repeated indices). We will employ
the following notation:

(3.19) \Lambda \scrL b = \scrL b \otimes b = \tau b \otimes b\theta b \scrH 1\llcorner \scrL ,

with \theta b the multiplicity of the vector b (see [32] for details). Notice that the dislocation
density can be identified with the dislocation current if seen as integral currents with
coefficients in \BbbZ 3; we prefer, however, to use the label ``dislocation density"" when we
treat it as a Radon measure.

Definition 3.9 (regular dislocation). We denote by \scrB := 2\pi \BbbZ 3 the lattice of ad-
missible Burgers vectors. A regular dislocation is a sequence of b-dislocation currents
\scrL := \{ \scrL b\} b\in \scrB . To each dislocation is associated a dislocation current, still denoted by
\scrL :=

\sum 
b\in \scrB \scrL b, and the associated dislocation density \Lambda \scrL :=

\sum 
b\in \scrB \Lambda \scrL b .

Given a regular dislocation \scrL , it is possible to split it on the canonical basis of
\BbbR 3, \scrL = \scrL 1 + \scrL 2 + \scrL 3, in such a way that \scrL i has 2\pi ei as associated Burgers vector
and satisfies

(3.20) \Lambda \scrL = \Lambda \scrL 1
+ \Lambda \scrL 2

+ \Lambda \scrL 3
= 2\pi 

3\sum 
i=1

\scrL i \otimes ei.

Moreover, as proved in [32], one has | \scrL i| \Omega \leq c| \Lambda \scrL | \scrM b(\Omega ), for some constant c > 0
independent of i and \Omega .

A tensor F \in Lp(\Omega ;\BbbR 3\times 3), with p > 1, is called a deformation field in the presence
of the regular dislocation \scrL if it satisfies

 - Curl F = \Lambda T
\scrL = \Lambda T

\scrL 1
+ \Lambda T

\scrL 2
+ \Lambda T

\scrL 3
= 2\pi 

3\sum 
i=1

ei \otimes \scrL i.(3.21)

3.5. Properties of the dislocation-induced deformation. By Helmholtz
decomposition we can write any deformation field F \in Lp(\Omega ;\BbbR 3\times 3) in the presence of
the regular dislocation \scrL as the sum of a compatible and an incompatible part,

F = \nabla \~v + F 0,(3.22)

where F 0 is the unique solution of\left\{     
 - Curl F 0 = \Lambda T

\scrL in \Omega ,

Div F 0 = 0 in \Omega ,

F 0N = 0 on \partial \Omega .

(3.23)
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By Theorems 3.7, 3.4, and 3.5, it is easy to see that the incompatible field F 0 is, up
to a harmonic map, given by the sum of three fields \nabla aui, i = 1, 2, 3, where ui is the
map given by (3.12) with b = 2\pi ei and S being the support of an arbitrary integral
2-current \scrS \in \scrD 2(\Omega ) with boundary \partial \scrS = \scrL i, i = 1, 2, 3. Namely, there exists a
smooth harmonic map u0 \in \scrC \infty (\=\Omega ;\BbbT 3) such that

F 0 = \nabla u0 +
3\sum 

i=1

\nabla ui,(3.24)

with ui \in W 1,3/2(\Omega ;\BbbT 3) given by (3.12) with b = 2\pi ei, i = 1, 2, 3. Moreover, if
F 0 \in Lp(\Omega ;\BbbR 3\times 3) with p \in (3/2, 2), then, since u0 is regular on \Omega , we infer ui \in 
W 1,p(\Omega ;\BbbT 3) for i = 1, 2, 3. For the compatible part of F , we have that \~v in (3.22)
satisfies  - \Delta \~v =  - Div F , so that if  - Div F \in Lr(\Omega ;\BbbR 3), then \~v \in W 2,r(\Omega ;\BbbR 3). As
for u0, this is harmonic and smooth. We denote v := \~v + u0.

In summary, we can always decompose a deformation field F \in Lp(\Omega ;\BbbR 3\times 3) as
the sum of three gradients,

F = \nabla \~v +\nabla u0 +\nabla u = \nabla v +\nabla u,(3.25)

where the function v = \~v + u0 has values in \BbbR 3 and u in \BbbT 3, with u0 a smooth
harmonic function. Furthermore, by standard projection v can in turn be identified
with a torus-valued map. Starting from this key representation, we can consider the
graph \scrG u+v of the map v + u \in W 1,p(\Omega ;\BbbT 3) as an integer-multiplicity 3-current in
the space \Omega \times \BbbT 3, and, up to characterize its boundary \partial \scrG u+v, it is possible to adapt
standard closure results for Cartesian currents to our case, thus getting compactness
principles for minimizing sequences of the problem (1.3).

It is worth emphasizing here the strict connection between this representation and
the fact that the Burgers vectors are constrained to stay in the lattice \scrB . Actually,
in [32, 33] it was proved that whenever a field F \in Lp(\Omega ;\BbbR 3\times 3) satisfies (3.21), then
it can be decomposed as in (3.25). The fact that u and v can be seen as maps with
values in the flat torus is a direct consequence of (3.21), and such correspondence can
be obtained by the procedure described in section 3.2. This procedure only consists
in identifying the displacement modulo a vector in 2\pi \BbbZ 3; in turn, this identification,
when we look at u and v, consists in restricting their graph currents to the space of 3-
forms which are 2\pi -periodic in the second variable. A complete theory of closedness for
this class of currents is then provided by the corresponding results forG chains [14, 15].

We stress that the domain \Omega \times \BbbT 3 for the graphs associated to u and v is not
a convenient choice but is required by the choice of the lattice \scrB = 2\pi \BbbZ 3, since, as
already mentioned, u and v have values in \BbbT 3 as a consequence of (3.21). A different
choice of the lattice \scrB would give rise to a different target space for u and v.

Let us now focus on the mechanical induced deformation v. A control of the
Lr-norm of Div F provides us with the control of the W 2,r-norm of v. Indeed,
Div F = \Delta v \in Lr(\Omega ;\BbbR 3), so that v \in W 2,r(\Omega ;\BbbR 3), \nabla v \in W 1,r(\Omega ;\BbbR 3\times 3), and \nabla 2v \in 
Lr(\Omega ;\BbbR 3\times 3\times 3). By Sobolev embedding, \nabla v \in Ls(\Omega ;\BbbR 3\times 3) with s = 3r

3 - r . Now, one
has by (2.4) that (Curl cof \nabla v)ij = \epsilon ilk(vl,jvk,nn+vl,jnvk,n), and hence by the H\"older
inequality Curl cof \nabla v \in Lt(\Omega ;\BbbR 3\times 3) with t = 3r

6 - r . Thus Curl Curl cof \nabla v =

 - \Delta cof \nabla v \in W - 1,t(\Omega ;\BbbR 3\times 3) (by the identity Div cof \nabla v = 0) and hence cof \nabla v \in 
W 1,t(\Omega ;\BbbR 3\times 3), that is, once more by Sobolev embedding, cof \nabla v \in Lh(\Omega ;\BbbR 3\times 3)
with h = 3r

6 - 2r . By (2.5) we have I det \nabla v = \nabla T v cof \nabla v, and hence by the H\"older
inequality again det \nabla v \in Lm(\Omega ) with m = r

3 - r . Thus we state the following result.
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Lemma 3.10. Let \Omega \subset \BbbR 3 be a bounded Lipschitz open set. Let v \in W 2,r(\Omega ;\BbbR 3);
then cof \nabla v \in W 1,t(\Omega ;\BbbR 3\times 3) with t = 3r

6 - r .

Owing once again to the decomposition (3.25), and assuming that the dislocation-
induced deformation \nabla u is generated by a single Burgers vector b (which, without
loss of generality, we assume b = 2\pi e1), the term det F can be written as the sum

det F = det (\nabla v +\nabla u) = det

\left(  \nabla v1
\nabla v2
\nabla v3

\right)  + det

\left(  \nabla u1
\nabla v2
\nabla v3

\right)  .(3.26)

Hence, since det \nabla v \in L
r

3 - r (\Omega ) and since cof \nabla v \in L
3r

6 - 2r (\Omega ;\BbbR 3\times 3), in order for
det F \in L1(\Omega ), it suffices, again by the H\"older inequality, that 6 - 2r

3r + 1
p \leq 1, that is,

r \geq 6p

5p - 3
.(3.27)

Since p < 2 this entails the natural requirement r > 12
7 . Note that r may still be less

than 2. In particular, the preceding discussion yields the following lemma.

Lemma 3.11. Let F \in Lp(\Omega ;\BbbR 3\times 3) be such that (3.25) holds true with v \in 
W 2,r(\Omega ;\BbbR 3), and let u \in W 1,p(\Omega ;\BbbT 3) be the solution of (3.11) with b = 2\pi e1. Suppose
p < 2 and r > 12

7 are such that (3.27) holds true. Then det F \in Ls(\Omega ) with

1

s
=

6 - 2r

3r
+

1

p
.(3.28)

4. Boundary of graphs.

4.1. Preliminary results. Let L be a Lipschitz closed and simple curve, let
b \in 2\pi \BbbZ 3 be a fixed Burgers vector, and let v \in \scrC 1(\Omega ;\BbbR 3). We introduce the currents
\scrL \wedge b and \scrC u+v belonging to \scrD 2(\Omega \times \BbbT 3) and defined as follows:

\scrL \wedge b(\omega ) =  - 1

2\pi 

\int 2\pi 

0

\int 
L

\biggl\langle 
\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
, \vec{}\tau (x) \wedge \vec{}b

\biggr\rangle 
d\scrH 1(x)d\theta ,

\scrC u+v(\omega ) =  - 1

2\pi 

\int 2\pi 

0

\int 
L

\biggl\langle 
\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,
\partial \vec{}v

\partial \tau 
(x) \wedge \vec{}b

\biggr\rangle 
d\scrH 1(x)d\theta (4.1)

for all \omega \in \scrD 2(\Omega \times \BbbT 3). Here \tau (x) \in \BbbR 3 is the tangent vector to L at the point x,

\vec{}\tau := (\tau , 0) \in \Lambda 1\BbbR 6, \vec{}b := (0, b) \in \Lambda 1\BbbR 6, \vec{}v = (0, v) \in \Lambda 1\BbbR 6. From this point on we will
use the arrow to distinguish b (and similarly for the other vectors), which belongs to

\BbbR 3, from the 1-vector \vec{}b := (0, b) \in \Lambda 1\BbbR 6.
The following result [33, Thm. 4.1] shows that the boundary of the graph of the

torus-valued displacement field u is related to the dislocation density.

Theorem 4.1 (dislocation density as a graph boundary [33]). Let S be a simple
Lipschitz surface in \Omega whose boundary is L, a simple Lipschitz and closed curve in \Omega .
Let b = (b1, b2, b3) \in 2\pi \BbbZ 3, let u = (u1, u2, u3) : \Omega \rightarrow \BbbR 3 be the map given by (3.12).

Then u \in W 1, 32 (\Omega ;\BbbT 3) and \scrG u is an integral current in \scrD 3(\Omega \times \BbbT 3) whose boundary
is given by

(4.2) \partial \scrG u(\omega ) = \scrL \wedge b(\omega )

for all \omega \in \scrD 2(\Omega \times \BbbT 3). In particular | \partial \scrG u| = | \scrL \wedge b| = | \scrL \otimes b| .
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The following result [33, Thm. 4.6] gives a representation of the boundary of
the graph of a torus-valued displacement field u when it is perturbed by a regular
displacement v (i.e., associated to the compatible deformation \nabla v).

Theorem 4.2. Let S, L, b, and u be as in Theorem 4.1, and let v \in \scrC 1(\=\Omega ,\BbbR 3).
Then \scrG u+v is the integral current in \scrD 3(\Omega \times \BbbT 3) given by

(4.3) \partial \scrG u+v(\omega ) = \scrL \wedge b(\omega ) + \scrC u+v(\omega )

for all \omega \in \scrD 2(\Omega \times \BbbT 3), with \scrC u+v defined in (4.1). In particular, it holds that

(4.4) M(\partial \scrG u+v) \leq C(1 + \| Dv\| L\infty )| \scrL \otimes b| (\Omega )

for some general constant C > 0.

4.2. Weak form of the graph boundaries. The aim here is to express the
graph boundaries in (4.3) as integrals over a suitable current \scrS with boundary \scrL (by
the Stokes theorem or, equivalently, by definition of boundary for currents). This will
provide a weak formulation of (4.1) valid for less regular fields v.

Introducing the map \Phi : \Omega \times [0, 2\pi ] \rightarrow \Omega \times \BbbR 3 given by \Phi (x, \theta ) = (x, b\theta 
2\pi + v(x)),

it is easy to see that the current \scrJ v =  - \scrL \wedge b - \scrC u+v can be written as

\scrJ v(\omega ) =

\int 2\pi 

0

\int 
L

\langle \Phi \sharp \omega ,\vec{}\tau \wedge \vec{}t\rangle d\scrH 1(x)d\theta = 〚L\times [0, 2\pi ]〛(\Phi \sharp \omega )

= \Phi \sharp 〚L\times [0, 2\pi ]〛(\omega ) for all \omega \in \scrD 2(\Omega \times \BbbT 3),(4.5)

where \vec{}t is the tangent vector to the segment [0, 2\pi ) \subset \Omega \times [0, 2\pi ) (and with abuse
of notation now \vec{}\tau is the tangent vector to L \times [0, 2\pi ) \subset \Omega \times [0, 2\pi ), and hence
\vec{}\tau ,\vec{}t \in \Lambda 1\BbbR 4). Using the fact that the form \omega is 2\pi -periodic in the second variable,
this can be rewritten by definition of boundary as

\scrJ v(\omega ) = \partial (\Phi \sharp 〚S \times [0, 2\pi ]〛)(\omega ) = \Phi \sharp 〚S \times [0, 2\pi ]〛(d\omega )

=
1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
, (s1, \partial s1v(x)) \wedge (s2, \partial s2v(x)) \wedge \vec{}b

\biggr\rangle 
d\scrH 2(x)d\theta ,

(4.6)

where S is a Lipschitz simple surface with boundary L and with orienting simple
vector s1 \wedge s2, s1, s2 \in TS and with \partial av := \nabla v \cdot a for a vector a \in \BbbR 3.

Explicitly, we can decompose \scrJ v with respect to a (local) orthonormal coordinate
system: Let us denote s3 = s1 \times s2 so that \{ s1, s2, s3\} is an orthonormal basis of \BbbR 3

with associated coordinates \{ \xi 1, \xi 2, \xi 3\} . Since s3 = N the unit normal to the surface S,
it is evident that this system of coordinates is local; we will still denote by \{ x1, x2, x3\} 
the standard coordinates system associated to the Euclidean basis \{ e1, e2, e3\} . The
nonconstant change-of-basis matrix will be denoted by A \in \BbbR 3\times 3, so that a vector
a \in \BbbR 3 has coordinates aNi := Aijaj with respect to the basis \{ s1, s2, s3\} . The matrix
Aij = Aij(x) depends on x \in S \subset \Omega , and since it is unitary, its L\infty -norm is bounded
in \Omega , namely,

Aij \in L\infty (\Omega ;\BbbR 3\times 3).

Let \{ b/| b| , b\bot 1 , b\bot 2 \} be an orthonormal basis of \BbbR 3 with \{ y1, y2, y3\} as associated Carte-
sian system. Let us first consider the i1-component of \scrJ v for i \in \{ 1, 2, 3\} . Recalling
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that dxi = Aikd\xi k, this is

\scrJ v(\varphi dxi \wedge dy1) = \scrJ i,1
v (\varphi )

=
1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
AjkAild\xi k \wedge d\xi l \wedge dy1, N b

v

\biggr\rangle 
d\scrH 2(x)d\theta 

+
1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
\partial \varphi 

\partial yj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
Aild\xi l \wedge dy1 \wedge dyj , N b

v

\biggr\rangle 
d\scrH 2(x)d\theta ,(4.7)

where
N b

v = (s1, \partial s1v(x)) \wedge (s2, \partial s2v(x)) \wedge \vec{}b.

It is now easy to compute

\langle d\xi k \wedge d\xi l \wedge dy1, N b
v\rangle =

\left\{     
| b| for k = 1, l = 2,

 - | b| for l = 1, k = 2,

0 otherwise,

while

\langle d\xi l \wedge dy1 \wedge dyj , N b
v\rangle =

\Biggl\{ 
( - 1)l| b| \partial vj

\partial \xi lc
for l \in \{ 1, 2\} , j \not = 1,

0 otherwise,

where, in the last expression, lc := \{ 1, 2\} \setminus \{ l\} . Eventually, from (4.7) we have

\scrJ v(\varphi dxi \wedge dy1) = \scrJ i,1
v (\varphi )

| b| 
2\pi 

\int 2\pi 

0

\int 
S

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
(Aj1(x)Ai2(x) - Aj2(x)Ai1(x))d\scrH 2(x)d\theta 

+
| b| 
2\pi 

\int 2\pi 

0

\int 
S

\partial \varphi 

\partial yj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial vj
\partial \xi 1

(x)Ai2(x) - 
\partial vj
\partial \xi 2

(x)Ai1(x)

\biggr) 
d\scrH 2(x)d\theta .

(4.8a)

A similar computation yields the expression

\scrJ v(\varphi dy1 \wedge dyi) = \scrJ 0,1i
v (\varphi )

=
( - 1)i| b| 

2\pi 

\int 2\pi 

0

\int 
S

\partial \varphi 

\partial yic

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)d\theta 

 - | b| 
2\pi 

3\sum 
j=1

\int 2\pi 

0

\int 
S

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
Aj1(x)

\partial vi
\partial \xi 2

(x) - Aj2(x)
\partial vi
\partial \xi 1

(x)

\biggr) 
d\scrH 2(x)d\theta ,

(4.8b)

valid for \omega = \varphi dy1 \wedge dyi (i = 2, 3), \varphi \in \scrC \infty 
c (\Omega \times \BbbT 3). In the expression for \scrJ 0,1i

v ,
i \in \{ 2, 3\} , we have denoted ic = \{ 2, 3\} \setminus \{ i\} . From (4.1) it is evident that the current
\scrJ v is nonzero only if computed on forms of the type \omega = \varphi dxi \wedge dy1 (i = 1, 2, 3) or
\omega = \varphi dy1 \wedge dyi (i = 2, 3), since all the other components turn out to be identically
zero. Namely, we have

\scrJ v(\varphi dxi \wedge dxj) = \scrJ ij,0
v (\varphi ) = 0,

\scrJ v(\varphi dy2 \wedge dy3) = \scrJ 0,23
v (\varphi ) = 0.(4.8c)
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Moreover the currents \scrL \wedge b and \scrC u+v act on different components. More precisely,
from (4.1) we infer the following properties:

\scrL \wedge b(\omega ) = 0 if \omega \not = \varphi dxi \wedge dy1 for some i = 1, 2, 3,

\scrC u+v(\omega ) = 0 if \omega \not = \varphi dy1 \wedge dyj for some j = 2, 3,(4.9)

which implies that

\scrJ v(\varphi dxi \wedge dy1) =  - \scrL \wedge b(\varphi dxi \wedge dy1),
\scrJ v(\varphi dy1 \wedge dyj) =  - \scrC u+v(\varphi dy1 \wedge dyj).(4.10)

4.3. Case of a single dislocation.

Weak expression of the graph boundary. The following lemma gathers some
properties of graph boundary related to a single dislocation loop.

Lemma 4.3. Let L be a simple Lipschitz closed curve in \Omega , and let u = (u1, u2, u3)
\in SBV (\Omega ;\BbbR 3) \cap W 1,p(\Omega ;\BbbT 3) be the harmonic map of Theorem 3.4, satisfying (3.12)
with b \in 2\pi \BbbZ 3. The following assertions hold true:

(a) Let v \in \scrC 1(\=\Omega ;\BbbR 3). Then \scrG u+v is an integral current in \scrD 3(\Omega \times \BbbT 3) whose
boundary is given by

 - \partial \scrG u+v(\omega )=\scrJ v(\omega )

=
1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

for all \omega \in \scrD 2(\Omega \times \BbbT 3).
(b) The current \scrJ v does not depend on the Lipschitz surface S in the formula

in (a) which encloses L. Moreover, the value \scrJ v(\omega ) does depend only on the
value of \omega \in \scrD 2(\Omega \times \BbbT 3) in a neighborhood of L. In particular, if \omega and \~\omega 
coincide in such a neighborhood, then \scrJ v(\omega  - \~\omega ) = 0.

(c) Let r > 12
7 and p < 2 be such that

6 - 2r

3r
+

1

p
\leq 1,(4.11)

and assume \nabla u \in Lp(\Omega ;\BbbR 3\times 3). Let v \in W 2,r(\Omega ;\BbbR 3), and let vn \in \scrC \infty (\=\Omega ;\BbbR 3)
be a sequence of functions such that vn \rightarrow v strongly in W 2,r(\Omega ;\BbbR 3). Then
for all \omega \in \scrD 2(\Omega \times \BbbT 3) we have

\scrJ vn(\omega ) \rightarrow \scrJ v(\omega ),(4.12)

where

\scrJ v(\omega )

:=
1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

=
1

(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b| \nabla w(x)| 

\biggr\rangle 
dxd\theta ,
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where w has values in \BbbT and is defined by w b
2\pi := u, and St := \{ w = t\} is

an arbitrary level set of w, t \in [0, 2\pi ) (notice that the last expression is well
defined thanks to the fact that \nabla v \in W 1,r has pointwise meaning \scrH 2-a.e. on
St since r > 1). In particular, the value of \scrJ v(\omega ) does not depend on the
specific surface St, namely, does not depend on t \in [0, 2\pi ), and depends only
on the values of \omega in a neighborhood of L\times \BbbT 3.

Proof. Step 0. Statement (a) is the content of Theorem 4.2. The expression of
the boundary is obtained by application of the Stokes theorem as in (4.5) and (4.6),
where S is an arbitrary simple Lipschitz surface enclosed by L. Thanks to the fact
that \scrJ v =  - \scrL \wedge b - \scrC u+v has the expression given in (4.1), also statement (b) follows
straightforwardly.

Let us prove assertion (c). To demonstrate (4.12) we will show that any compo-
nent of \scrJ vn as in (4.8a) converges to the corresponding component of \scrJ v. We have
to treat the two components in (4.8a) and (4.8b).

Step 1. Convergence of (4.8b). We have to prove that

\scrJ 0,12
vn (\varphi ) \rightarrow \scrJ 0,12

v (\varphi )(4.13)

for any \varphi \in \scrC \infty 
c (\Omega \times \BbbR 3) that is 2\pi -periodic in the second variable. First we observe

that, thanks to point (b), the value of \scrJ 0,12
vn (\varphi ) does not depend on the specific surface

S chosen in (4.8b). Thanks to Lemma 3.8 we can take S = St, a level surface of the
function w \in W 1,p(\Omega ;\BbbT ), which is defined in such a way that u = b

2\pi w (note that u,
by (3.12), is always parallel to b, namely, St := \{ x \in \Omega : w(x) = t \in [0, 2\pi )\} . By
(4.8b) it holds that
(4.14)

\scrJ 0,12
vn

(\varphi )=
| b| 
2\pi 

\biggl( \int 2\pi 

0

\int 
St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) \biggl( 
\partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - 
\partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)d\theta 

 - 
3\sum 

j=1

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) \biggl( 
\partial (vn)1
\partial \xi 2

(x)Aj1(x) - 
\partial (vn)2
\partial \xi 1

(x)Aj2(x)

\biggr) 
d\scrH 2(x)d\theta 

\biggr) 
.

Since this expression does not depend on t \in [0, 2\pi ), we also have
(4.15)

\scrJ 0,12
vn

(\varphi )=
1

2\pi 

\int 2\pi 

0

\scrJ 0,12
vn (\varphi )dt

=
| b| 

(2\pi )2

\biggl( \int 2\pi 

0

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) \biggl( 
\partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - 
\partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)d\theta dt

 - 
3\sum 

j=1

\int 2\pi 

0

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) \biggl( 
\partial (vn)1
\partial \xi 2

(x)Aj1(x) - 
\partial (vn)2
\partial \xi 1

(x)Aj2(x)

\biggr) 
d\scrH 2(x)d\theta dt

\biggr) 
.

Let us show the convergence of the second line, which is the most involved (the other
line is treated similarly; see the following remark). For all \theta \in [0, 2\pi ), we observe that
the quantity

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ vn(x)

\biggr) \biggl( 
\partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - \partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)dt

(4.16)

coincides, by the coarea formula, with\int 
\Omega 

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ vn(x)

\biggr) \biggl( 
\partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - \partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\biggr) 
(x)| \nabla w(x)| dx.(4.17)
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We now observe that the term Dn :=
\bigl( \partial (vn)2

\partial \xi 1

\partial (vn)3
\partial \xi 2

 - \partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\bigr) 
| \nabla w| coincides with

Dn =  - 2\pi 

| b| 
det

\left(  \nabla \xi u1
\nabla \xi (vn)2
\nabla \xi (vn)3

\right)  ,(4.18)

with \nabla \xi standing for the gradient in the local basis. Note also that

det

\left(  \nabla xu1
\nabla x(vn)2
\nabla x(vn)3

\right)  = det

\left(  \left(  \nabla \xi u1
\nabla \xi (vn)2
\nabla \xi (vn)3

\right)  At

\right)  = det

\left(  \nabla \xi u1
\nabla \xi (vn)2
\nabla \xi (vn)3

\right)  .

Hence, recalling that u1, (vn)2, and (vn)3 are expressed in the basis \{ b/| b| , b\bot 1 , b\bot 2 \} , it
follows that the value of Dn does not depend on the local basis \{ s1, s2, s3\} . To prove

(4.18), observe that Pn := \partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - \partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

=( cof \nabla vn)13=
\bigl( 
( cof \nabla vn)s3

\bigr) 
1
,

where s3 corresponds to the vector N . Moreover \nabla u1 = | b| 
2\pi \nabla w and \nabla w =  - | \nabla w| N ,

so that Dn =  - ( cof \nabla vn)1 \cdot \nabla w, from which (4.18) follows. Now, by Lemma 3.10
we have cof \nabla vn \in W 1,t(\Omega ;\BbbR 3\times 3) with t = 3r

6 - r ; by Sobolev embedding cof \nabla vn \in 
Lq(\Omega ;\BbbR 3\times 3) with q \leq 3r

6 - 2r , and since u1 \in Lp(\Omega ;\BbbR 3), by (4.11) we infer that

Dn \rightarrow D :=  - 2\pi 

| b| 
det

\left(  \nabla u1
\nabla v2
\nabla v3

\right)  in L1(\Omega ).

From this we conclude that the quantity in (4.17) converges to\int 
\Omega 

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)| \nabla w(x)| dx,(4.19)

thanks to the fact that \partial \varphi 
\partial y3

is of class \scrC \infty (the component with coordinate y3 is not

local), and vn converges to v in L\infty (\Omega ;\BbbR 3) (since r > 3/2). Moreover, by the H\"older
inequality, it is easy to see that the quantity in (4.17) is bounded by a constant
independent of \theta \in [0, 2\pi ). We have hence proved, by the dominated convergence
theorem, that the first line in (4.15) converges to

| b| 
(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)| \nabla w(x)| dxd\theta .(4.20)

The second line in (4.15) can be proved to converge to

 - | b| 
(2\pi )2

3\sum 
j=1

\int 2\pi 

0

\int 
\Omega 

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ vn(x)

\biggr) \biggl( 
\partial v1
\partial \xi 2

(x)Aj1(x) - 
\partial v2
\partial \xi 1

(x)Aj2(x)

\biggr) 
dxd\theta .

(4.21)

Since the argument is very similar to the previous one, we omit the details here
and refer to Remark 4.4 below. Summarizing, we have shown that the term in (4.15)

converges to the sum of (4.20) and (4.21), which we denote by
\int 2\pi 

0

\int 
\Omega 
Q\theta | \nabla w(x)| dxd\theta .

It remains to show that\int 2\pi 

0

\int 
\Omega 

Q\theta | \nabla w(x)| dxd\theta = 2\pi 

\int 2\pi 

0

\int 
St

Q\theta d\scrH 2(x)d\theta (4.22)
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for any t \in [0, 2\pi ). This will conclude the proof of (4.13) together with the fact that
\scrJ 0,12
v (\varphi ) does not depend on t \in [0, 2\pi ). We will prove that the first line in (4.14)

converges to

| b| 
2\pi 

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)d\theta .

The argument above allows us to use the dominated convergence theorem, so it suffices
to show that for every fixed \theta \in [0, 2\pi ),\int 

St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ vn(x)

\biggr) \biggl( 
\partial (vn)2
\partial \xi 1

\partial (vn)3
\partial \xi 2

 - 
\partial (vn)3
\partial \xi 1

\partial (vn)2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)

tends to \int 
St

\partial \varphi 

\partial y3

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x).

We recall that Pn = ( cof \nabla vn)N \cdot s1. Since by Lemma 3.10 cof \nabla vn \in W 1,t(\Omega ;\BbbR 3\times 3)

with t = 3r
6 - r by a trace theorem on St, we have Pn \in W 1 - 1

t ,t(St;\BbbR 3\times 3), and by

Sobolev embedding, Pn \in Lq(St;\BbbR 3\times 3) for any q \leq 9r
24 - 7r . Moreover, \partial \varphi 

\partial y3
(\cdot , b\theta 

2\pi +vn(\cdot ))
converges to \partial \varphi 

\partial y3
(\cdot , b\theta 

2\pi + v(\cdot )) in W 2 - 1
r ,r(St;\BbbR ) and hence in Ls(St;\BbbR ) with s = 3r

4 - 2r .

Now the claim follows by the H\"older inequality since r > 12
7 > 18

11 .
The treatment of the second line in (4.14) is similar (see also Remark 4.4).
Step 2. Convergence of (4.8a). We have to prove that for all \varphi \in \scrC \infty 

c (\Omega \times \BbbT 3) it
holds that

\scrJ i,1
vn (\varphi ) \rightarrow \scrJ i,1

v (\varphi ).(4.23)

As for the previous step, we claim that

\scrJ i,1
vn

(\varphi ) =
| b| 
2\pi 

\biggl( \int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) \bigl( 
Aj1(x)Ai2(x) - Aj2(x)Ai1(x)

\bigr) 
d\scrH 2(x)d\theta 

+

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial yj

\biggl( 
x,
b\theta 

2\pi 
+ vn(x)

\biggr) \biggl( 
\partial (vn)j
\partial \xi 1

(x)Ai2(x) - 
\partial (vn)j
\partial \xi 2

(x)Ai1(x)

\biggr) 
d\scrH 2(x)d\theta 

\biggr) 
converges to

| b| 
(2\pi )2

\biggl( \int 2\pi 

0

\int 
\Omega 

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \bigl( 
Aj1(x)Ai2(x) - Aj2(x)Ai1(x)

\bigr) 
| \nabla w(x)| dxd\theta 

+

\int 2\pi 

0

\int 
\Omega 

\partial \varphi 

\partial yj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial vj
\partial \xi 1

(x)Ai2(x) - 
\partial vj
\partial \xi 2

(x)Ai1(x)

\biggr) 
| \nabla w(x)| dxd\theta 

\biggr) 
.

(4.24)

Emulating the arguments of Step 1, the convergence of the first line is straightforward.

To treat the second line, we observe that the quantity (En)ij :=
\partial (vn)j
\partial \xi 2

(x)Ai1(x)  - 
\partial (vn)j
\partial \xi 1

(x)Ai2(x) satisfies the relation

(En)ij = (ei \times \nabla (vn)j) \cdot N = (\nabla (vn)j \times N) \cdot ei.(4.25)
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Indeed it suffices to recall that ei = Aiksk, i.e., ei has coordinates Aik in the basis
\{ s1, s2, s3\} , and notice that (En)ij is equal to the third component of the vector
ei \times \nabla (vn)j in the basis (s1, s2, s3) with s3 = N .

To prove the desired convergence it now suffices to argue as in Step 1. Moreover,
(4.24) is seen to coincide with

\scrJ i,1
v (\varphi ) =

| b| 
2\pi 

\biggl( \int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \bigl( 
Aj1(x)Ai2(x) - Aj2(x)Ai1(x)

\bigr) 
d\scrH 2(x)d\theta 

+

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial yj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial vj
\partial \xi 1

(x)Ai2(x) - 
\partial vj
\partial \xi 2

(x)Ai1(x)

\biggr) 
d\scrH 2(x)d\theta 

\biggr) (4.26)

for any t \in [0, 2\pi ).
Step 3. Let us finally see that the value of \scrJ v(\varphi ) does depend only on the value

of \varphi in a neighborhood of L\times \BbbT 3. This also follows from point (b) and the fact that
if \~\varphi coincides with \varphi in a neighborhood of L\times \BbbT 3, then

\scrJ v(\varphi  - \~\varphi ) = lim
n\rightarrow +\infty 

\scrJ vn(\varphi  - \~\varphi ) = 0.

Remark 4.4. To see the convergence of the second line in (4.15) the argument is
very similar to the one adopted for the first line, with the difference being that this
term has to be treated as for the last line in (4.24). Indeed the term

\partial (vn)2
\partial \xi 2

Aj1  - 
\partial (vn)2
\partial \xi 1

Aj2

is recognized as the quantity (\nabla (vn)2\times N) \cdot ej . Then it suffices to follow the argument
in the proof of Step 1 considering that \nabla (vn)2 \in W 1,r(\Omega ;\BbbR 3) and \nabla \varphi (\cdot , \theta b

2\pi + vn(\cdot )) \in 
W 2,r(\Omega ;\BbbR 3) thanks to the regularity of vn.

The fundamental lemma. In order to prove the following lemma we need
to introduce some additional notation. Let L be a simple Lipschitz loop in \Omega and
introduce the distance function d(x) := dist(x, L), which is a Lipschitz function whose
differential satisfies, for a.e. x \in \Omega , | \nabla d(x)| = 1. Given a function v \in W 2,r(\Omega ;\BbbR 3),
we also introduce the current \scrL \wedge b \in \scrD 2(\Omega \times \BbbT 3) defined as

\scrL \wedge b(\omega ) =  - 1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
, (s1, 0) \wedge (s2, 0) \wedge \vec{}b

\biggr\rangle 
d\scrH 2(x)d\theta (4.27)

for all \omega \in \scrD 2(\Omega \times \BbbT 3). In the formula above, S is an arbitrary Lipschitz surface

enclosing \scrL , while, as usual, \vec{}b = (0, b) \in \Lambda 1\BbbR 6.

Lemma 4.5. Let L be a closed simple Lipschitz loop, and let u = (u1, u2, u3) \in 
SBV (\Omega ;\BbbR 3) \cap W 1,p(\Omega ;\BbbT 3) be the harmonic map satisfying (3.12) with b \in 2\pi \BbbZ 3.
Let w \in W 1,p(\Omega ;\BbbT ) be defined by w b

2\pi = u. Let v \in W 2,r(\Omega ;\BbbR 3) and assume that
\nabla u \in Lp(\Omega ;\BbbR 3\times 3), with 6 - 2r

3r + 1
p \leq 1. If the condition

lim
\epsilon \rightarrow 0

1

\epsilon 

\int 
St\cap \{ d\leq \epsilon \} 

| \nabla v \times N | dx = 0 for a.e. t \in [0, 2\pi ),(4.28)

where N =  - \nabla w
| \nabla w| is the unit normal to St, holds true, then

\scrJ v(\omega ) =  - \scrL \wedge b(\omega ).(4.29)
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Proof. We shall prove that condition (4.28) has the property of nullifying some
components of \scrJ v(\omega ). In particular, using the coordinates system introduced in (4.8),
we will show that \scrJ 0,1i

v (\varphi ) = \scrJ v(\varphi dy1 \wedge dyi) = 0 for all \varphi \in \scrC \infty 
c (\Omega \times \BbbT 3), for i = 2, 3.

This will imply the thesis, thanks to the fact that the only nonzero components of \scrJ v

are those in (4.10) (compare with (4.9)). Let us recall that

\scrJ v(\varphi dy1 \wedge dyi) = \scrJ 0,1i
v (\varphi )

=
| b| 
2\pi 

\biggl( 
( - 1)i

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial yic

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
\partial v2
\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\biggr) 
(x)d\scrH 2(x)d\theta 

 - 
3\sum 

j=1

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \biggl( 
Aj1(x)

\partial vi
\partial \xi 2

(x) - Aj2(x)
\partial vi
\partial \xi 1

(x)

\biggr) 
d\scrH 2(x)d\theta 

\biggr) (4.30)

for an arbitrary t \in [0, 2\pi ). Thanks to Lemma 4.3(c) this expression does not depend
on the value of \varphi outside the neighborhood \{ d \leq \epsilon \} \times \BbbT 3 of L\times \BbbT 3. Hence we consider
a smooth cut-off function \eta \epsilon : \BbbR \rightarrow [0,\infty ) which is even and such that \eta \epsilon = 1 in
[0, \epsilon /2], \eta \epsilon vanishes in [\epsilon ,\infty ), and its derivatives satisfies | \eta \prime \epsilon | < 3/\epsilon . Then we set
\varphi (x, y) = \psi (x, y)\eta \epsilon (d(x)) with \psi \in \scrC \infty 

c (\Omega \times \BbbT 3) in the expression above and estimate
(4.31)
| \scrJ 0,1j

v (\varphi )| 

\leq | b| 
2\pi 

\int 2\pi 

0

\int 
St

\eta \epsilon (d(x))

\bigm| \bigm| \bigm| \bigm| \partial \psi \partial yic
\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \partial v2\partial \xi 1

\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\bigm| \bigm| \bigm| \bigm| (x)d\scrH 2(x)d\theta 

+

3\sum 
j=1

| b| 
2\pi 

\int 2\pi 

0

\int 
St

\eta \epsilon (d(x))

\bigm| \bigm| \bigm| \bigm| \partial \psi \partial xj
\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Aj1(x)
\partial vi
\partial \xi 2

(x) - Aj2(x)
\partial vi
\partial \xi 1

(x)

\bigm| \bigm| \bigm| \bigm| d\scrH 2(x)d\theta 

+

3\sum 
j=1

3| b| 
2\pi \epsilon 

\int 2\pi 

0

\int 
St\cap \{ d<\epsilon \} 

\bigm| \bigm| \bigm| \bigm| \psi \biggl( x, b\theta 2\pi +v(x)

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| Aj1(x)
\partial vi
\partial \xi 2

(x) - Aj2(x)
\partial vi
\partial \xi 1

(x)

\bigm| \bigm| \bigm| \bigm| d\scrH 2(x)d\theta .

The first term tends to 0 since | J | :=
\bigm| \bigm| \partial v2

\partial \xi 1
\partial v3
\partial \xi 2

 - \partial v3
\partial \xi 1

\partial v2
\partial \xi 2

\bigm| \bigm| belongs to L1(St), while \eta \epsilon \downarrow 0

\scrH 2-a.e. and \nabla \psi is bounded. Indeed, J is recognized as the determinant of the matrix

\left(  0 0 1
\nabla v2
\nabla v3

\right)  = ( cof \nabla v)N \cdot s1.

By the regularity of the cofactor we find ( cof \nabla v)N \in L1(St) by the standard theorem
of traces for Sobolev spaces.

As for the other terms in (4.31), they also tend to zero, taking into account
condition (4.28). The product Aj1(x)

\partial vi
\partial \xi 2

(x)  - Aj2(x)
\partial vi

\partial \xi 1
(x) coincides with (\nabla vi \times 

N) \cdot ej , so the claim follows by the fact that the latter belongs to L1(St) and by
(4.28).

In a similar way it is possible to prove that also the second line in (4.8a) vanishes.
Hence we arrive at the following characterization of the current \scrJ v; namely, written
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in components, this reads

\scrJ v(\varphi dxi \wedge dy1)

=
| b| 
2\pi 

\int 2\pi 

0

\int 
St

\partial \varphi 

\partial xj

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) \bigl( 
Aj1(x)Ai2(x) - Aj2(x)Ai1(x)

\bigr) 
d\scrH 2(x)d\theta ,

\scrJ v(\varphi dxi \wedge dxj) = \scrJ v(\varphi dy1 \wedge dyi) = \scrJ v(\varphi dy2 \wedge dy3) = 0.(4.32)

Now it suffices to recognize that this expression entails that \scrJ v coincides with the
expression in (4.27), by definition.

Looking back at (4.10) we find out that \scrL \wedge b is exactly \scrL \wedge b when v is of class
\scrC 1. Arguing by approximation of v by smooth maps vn we easily infer that the current
(4.29) is well defined and its mass does not increase after approximation, since for
every n it coincides with | \scrL | | b| , i.e.,

M(\scrL \wedge b) = | \scrL | | b| .(4.33)

So as not to overburden notation, we will still denote \scrL \wedge b by \scrL \wedge b itself. We have
obtained the following corollary.

Corollary 4.6. In the hypotheses of Lemma 4.5, it holds that

M(\partial \scrG u+v) =M(\scrL \wedge b).

As a consequence \scrG u+v is an integral current in \scrD 3(\Omega \times \BbbT 3).

Remark 4.7. From a physical viewpoint, condition (4.28) seems to be difficult
to check. However, as we will see in the next section, this is strictly related to the
summability of the cofactor of \nabla u.

4.4. Main result 1: Characterization of the graph boundary for clusters
with a single Burgers vector. In this section, instead of a single line, we study
dislocation clusters associated with a single Burgers vector b \in 2\pi \BbbZ 3. Let L be a
Lipschitz closed loop in \Omega . We know that the Minkowski content of L tends to the
one-dimensional Hausdorff measure of L, that is,

| \{ x \in \Omega : d(x, L) < r\} | 
\pi r2

\rightarrow \scrH 1(L) as r \rightarrow 0.(4.34)

Now let L be a countable union of closed Lipschitz curves Li \subset \Omega such that \scrH 1(L) =\sum \infty 
i=1 \scrH 1(Li) < +\infty . For any i \in \BbbN , by (4.34), there is a positive real number ri such

that if r < ri, then it holds true

| \{ x \in \Omega : d(x, Li) < r\} | 
\pi r2

< 2\scrH 1(Li).(4.35)

Now, choose a sequence of positive real numbers \delta i, i \in \BbbN , as

\delta i := min\{ 2 - 1 - i, ri\} < 1,(4.36)

so that
\sum \infty 

i=0 \delta i \leq 1. For \epsilon > 0, let us define the open set D\epsilon as

D\epsilon := \cup i\in \BbbN D
i
\epsilon , Di

\epsilon = \{ x \in \Omega : d(x, Li) < \epsilon \delta i\} .(4.37)
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By (4.35), one has

| Di
\epsilon | 

\pi \epsilon 2\delta 2i
< 2\scrH 1(Li) for all i \in \BbbN ,

| D\epsilon | \leq 
\infty \sum 
i=0

| Di
\epsilon | \leq 2\pi \epsilon 2

\Biggl( \infty \sum 
i=0

\delta 2i\scrH 1(Li)

\Biggr) 
\leq 2\pi \epsilon 2\scrH 1(L),

| D\epsilon | \rightarrow 0 as \epsilon \rightarrow 0.(4.38)

Let \scrL be a closed integral current in \scrD 1(\Omega ). By Theorem 3.1 we infer that there is
a sequence of indecomposable 1-currents \scrL i supported on Lipschitz loops Li such that
\scrL =

\sum \infty 
i=0 \scrL i. Moreover there exists an integral 2-current \scrS \in \scrD 2(\Omega ) with \partial \scrS = \scrL 

that, again by the decomposition theorem, can be written as \scrS =
\sum \infty 

i=0 \scrS i with \scrS i

indecomposable integral 2-currents with \partial \scrS i = \scrL i. We will now analyze the boundary
of the graph of deformations of the form \nabla u+\nabla v, with u being the solution to (3.12)
with the cluster \scrL in place of the simple loop L. It will be easy to see, in the case
where v is of class \scrC 1, that the boundary \partial \scrG u+v will take the form

\scrJ v(\omega ) =
1

2\pi 

\int 2\pi 

0

\int 
\scrS 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

(4.39)

for all \omega \in \scrD 2(\Omega \times \BbbT 3) (see Lemma 4.8 below). Moreover we will see that the integral
(4.39) does not depend on the specific current \scrS . Indeed, if v is of class \scrC 1, we can
apply the Stokes theorem as in (4.5) and (4.6).

Let us now characterize the boundary of \scrG u+v for general fields v \in W 2,r(\Omega ;\BbbR 3).

Lemma 4.8. Let \scrL \in \scrD 1(\Omega ) be a closed integral 1-current in \Omega , and let u \in 
SBV (\Omega ;\BbbR 3) \cap W 1,p(\Omega ;\BbbT 3) be the harmonic map of Theorem 3.4, satisfying (3.12)
with b \in 2\pi \BbbZ 3. Let v \in W 2,r(\Omega ;\BbbR 3) and assume

r >
12

7
, p < 2, and

6 - 2r

3r
+

1

p
\leq 1.(4.40)

Then the current given by the graph of u + v with values in \BbbT 3, namely, \scrG u+v \in 
\scrD 3(\Omega \times \BbbT 3), is an integer-multiplicity current with finite mass and with boundary
given by

 - \partial \scrG u+v(\omega )

=
1

2\pi 

\int 2\pi 

0

\int 
\scrS t

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

(4.41)

for all \omega \in \scrD 2(\Omega \times \BbbT 3) and a.e. t \in [0, 2\pi ). Here \scrS t \in \scrD 2(\Omega ) is an integral 2-current
whose boundary is \scrL and whose support is St, the level set of the map w \in W 1,p(\Omega ;\BbbT ),
which, as in Lemma 4.3, is defined by b

2\pi w = u.

Proof. The fact that the current \scrG u+v is rectifiable with integer multiplicity is an
easy consequence of the fact that the graph

Gu+v = \{ (x, y) \in \Omega \times \BbbT 3 : y = u(x) + v(x)\} 
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is a 3-rectifiable set (see Theorem 4 in [21, sect. 3.1.5] and Proposition 1 in [21,
sect. 3.2.1]). Moreover it has finite mass since all the minors of \nabla u+\nabla v are integrable,
as a consequence of condition (4.40), taking into account that \nabla u is of rank 1.

Let us prove that the boundary of \scrG u+v takes the form (4.41). Let vn \in \scrC \infty (\=\Omega ;\BbbR 3)
be a sequence such that vn \rightarrow v strongly inW 2,r(\Omega ;\BbbR 3). Let us write \scrL as a countable
sum of indecomposable components, \scrL =

\sum 
i \scrL i, where \scrL i is a simple closed Lipschitz

curve in \Omega for all i. Accordingly let us decompose \scrS t in indecomposable components
(\scrS t)i in such a way that \partial (\scrS t)i = \scrL i (we recall that by Lemma 3.8 it holds that
\partial \scrS t = \scrL for a.e. t \in [0, 2\pi ) and that, moreover, the multiplicity of \scrS t is 1 for a.e.
t \in [0, 2\pi )). We will first show that for all n > 0 the graph \scrG u+vn has boundary given
by
(4.42)

\scrJ vn(\omega ):=
1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) 
,

\biggl( 
s1,

\partial vn
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial vn
\partial s2

(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta ,

where St = \{ w = t \in [0, 2\pi )\} is an arbitrary level set of w. To see this we proceed as

follows. Let ui be the function in SBV (\Omega ;\BbbR 3)\cap W 1, 32 (\Omega ;\BbbT 3) given by (3.12) with St

replaced by (St)i, whose boundary is Li, so that  - Curl (\nabla ui) = b\otimes \scrL i. It is easy to

see that um :=
\sum m

i=0 ui converges to u strongly in W 1, 32 (\Omega ;\BbbT 3), as m \rightarrow \infty ; indeed
we easily see that

\nabla um \rightarrow \nabla u in L
3
2 (\Omega ;\BbbR 3\times 3),(4.43)

and thus, by Poincar\'e's inequality for torus-valued maps, um \rightarrow u strongly in L
3
2 (\Omega ;\BbbT 3)

as m\rightarrow \infty .
Furthermore it is easy to see that \scrG um+vn converges to \scrG u+vn in the sense of

currents as m \rightarrow \infty , thanks to the fact that vn is smooth and that \nabla um has rank 1
(i.e., that the cofactors and determinants are null) and to the strong convergence of
um. Defining
(4.44)

\scrJ m
vn
(\omega ):=

1

2\pi 

\int 2\pi 

0

\int 
Sm
t

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) 
,

\biggl( 
s1,

\partial vn
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial vn
\partial s2

(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta ,

where Sm
t = \{ wm = t\} (wm is defined via b

2\pi w
m = um), we claim that \scrJ m

vn
(\omega )

converges to \scrJ vn(\omega ) in (4.42) for all \omega \in \scrD 2(\Omega \times \BbbT 3) as m\rightarrow +\infty . Indeed, using the
coarea formula as in (4.16) and (4.17) we see that
(4.45)

\scrJ m
vn
(\omega )=

1

2\pi 

\int 2\pi 

0

\scrJ m
vn(\omega )dt

=
1

(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) 
,

\biggl( 
s1,

\partial vn
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial vn
\partial s2

(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
| \nabla wm(x)| dxd\theta .

Thanks to convergence (4.43), the smoothness of vn, and (4.40), this converges as
m\rightarrow \infty to
(4.46)

1

(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) 
,

\biggl( 
s1,

\partial vn
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial vn
\partial s2

(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
| \nabla w(x)| dxd\theta 

=
1

2\pi 

\int 2\pi 

0

\scrJ vn
(\omega )dt=\scrJ vn(\omega ),
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where in the first equality we have used again the coarea formula and in the last
equality the fact that the integral in (4.42) does not depend on t \in [0, 2\pi ), thanks
to the regularity of vn (we can apply the Stokes theorem together with Lemma 3.8).
Now we want to pass to the limit \scrJ vn(\omega ) as n tends to \infty . Using again the coarea
formula, as in the last expression we have

\scrJ vn(\omega )

=
1

(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+vn(x)

\biggr) 
,

\biggl( 
s1,

\partial vn
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial vn
\partial s2

(x)

\biggr) 
\wedge \vec{}b| \nabla w| 

\biggr\rangle 
dxd\theta .

Thanks to the condition on the coefficients (4.40), this tends to

1

(2\pi )2

\int 2\pi 

0

\int 
\Omega 

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b| \nabla w| 

\biggr\rangle 
dxd\theta ,

which again by the coarea formula equals
(4.47)
\scrJ v(\omega )

:=
1

(2\pi )2

\int 2\pi 

0

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)dtd\theta ,

where St := \{ w = t\} , t \in [0, 2\pi ).
Let us now show that the quantity

Jt :=

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

does not depend on t \in [0, 2\pi ). This will demonstrate that

\scrJ v(\omega )=
1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

for a.e. t \in [0, 2\pi ).
For a.e. \=t \in [0, 2\pi ), by Lemma 3.8 the surface S\=t has boundary L, and by decom-

position is written as S\=t =
\sum 

i(S\=t)i with \partial (S\=t)i = Li. Setting

J i
\=t :=

\int 2\pi 

0

\int 
(S\=t)i

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta ,

it follows that J\=t =
\sum 

i J
i
\=t , and J i

\=t is recognized as \scrJ v(\omega )
i, the boundary of \scrG ui+v,

which by Lemma 4.3 does not depend on the specific surface (S\=t)i. In particular we
infer J i

\=t = \scrJ v(\omega )
i = J i

t , so that it follows that J\=t =
\sum 

i J
i
\=t =

\sum 
i J

i
t = Jt. The thesis

follows.

We will now refine Lemma 4.5.

Lemma 4.9. Let \scrL \in \scrD 1(\Omega ) be a closed integral current in \Omega , let u = (u1, u2, u3) \in 
SBV (\Omega ;\BbbR 3) \cap W 1,p(\Omega ;\BbbT 3) be the harmonic map satisfying (3.12) with b \in \BbbZ 3, and
let w \in W 1,p(\Omega ;\BbbT ) be defined by b

2\pi w = u. Let v \in W 2,r(\Omega ;\BbbR 3) and assume that
(4.40) is satisfied. Let \scrL decompose as \scrL =

\sum \infty 
i=0 \scrL i, with \scrL i simple Lipschitz closed

curves in \Omega , let \{ \delta i\} i\in \BbbN be the sequence of positive numbers in (4.36), and define D\epsilon 

by (4.37). Assume that

lim
\epsilon \rightarrow 0

1

\epsilon 

\int 
St\cap D\epsilon 

| \nabla v \times N | d\scrH 2(x) = 0(4.48)
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for a.e. t \in [0, 2\pi ), where N =  - \nabla w
| \nabla w| is the unit normal to the level set St = \{ w = t\} .

Then

 - \scrJ v(\omega ) = \scrL \wedge b(\omega ) =
\sum 
i

\scrL i \wedge b(\omega )(4.49)

for all \omega \in \scrD 2(\Omega \times \BbbT 3). As a consequence \scrG u+v is an integral current in \scrD 3(\Omega \times \BbbT 3)
whose boundary is \scrL \wedge b.

Proof. From Lemma 4.8 we infer that if (4.49) holds true, then \scrG u+v is an integral
current whose boundary is \partial \scrG u+v = \scrL \wedge b. Then we have only to prove that (4.48)
implies (4.49). We will achieve this by means of Lemma 4.5. The current \scrS t can be
decomposed as

\scrS t = \cup \infty 
i=0(\scrS t)i with \partial (\scrS t)i = \scrL i,(4.50)

and, thanks to (3.17), (\scrS t)i are essentially disjoint surfaces for a.e. t \in [0, 2\pi ). Hence
we deduce that

\scrJ v(\omega ) =

\infty \sum 
i=0

\scrJ i
v (\omega ),(4.51)

with

\scrJ i
v (\omega )=

1

2\pi 

\int 2\pi 

0

\int 
(\scrS t)i

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+v(x)

\biggr) 
,

\biggl( 
s1,

\partial v

\partial s1
(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial v

\partial s2
(x)

\biggr) 
\wedge \vec{}b
\biggr\rangle 
d\scrH 2(x)d\theta 

for all \omega \in \scrD 2(\Omega \times \BbbT 3). We will prove that

 - \scrJ i
v = \scrL i \wedge b for all i \in \BbbN ,(4.52)

which will achieve the thesis. To see (4.52) we estimate, for fixed i \in \BbbN ,\int 
(\scrS t)i\cap Di

\epsilon 

| \nabla v \times N | d\scrH 2(x) \leq 
\int 
\scrS t\cap D\epsilon 

| \nabla v \times N | d\scrH 2(x),(4.53)

and thus, by (4.48),

1

\epsilon 

\int 
(\scrS t)i\cap Di

\epsilon 

| \nabla v \times N | d\scrH 2(x) \rightarrow 0 as \epsilon \rightarrow 0.(4.54)

This allows us to employ the same argument of Lemma 4.5 which provides (4.52), and
the thesis follows.

Remark 4.10. We emphasize the intrinsic difficulty in checking, from a practical
viewpoint, the assumption (4.48). The surface \scrS t a priori has not a direct physical
interpretation. However, as we will see, condition (4.48) is readily guaranteed as soon
as the cofactor of the deformation F is at least square integrable. This will be clear
in the following theorem.

We will now prove the following crucial result.

Theorem 4.11 (main result). Let \scrL \in \scrD 1(\Omega ) be a closed integral current, and let
u = (u1, u2, u3) \in SBV (\Omega ;\BbbR 3) \cap W 1,p(\Omega ;\BbbT 3) be the harmonic map satisfying (3.12)
with b \in 2\pi \BbbZ 3. Let v \in W 2,r(\Omega ;\BbbR 3) and suppose \nabla u \in Lp(\Omega ;\BbbR 3\times 3) with

6 - 2r

3r
+

1

p
\leq 1.
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Finally, let F = \nabla u + \nabla v and assume that cof F \in L2(\Omega ;\BbbR 3\times 3). Then the graph
\scrG u+v is an integral current in \scrD 3(\Omega \times \BbbT 3) whose boundary is given by

\partial \scrG u+v(\omega ) = \scrL \wedge b(\omega )

=  - 1

2\pi 

\int 2\pi 

0

\int 
St

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
, (s1, 0) \wedge (s2, 0) \wedge \vec{}b

\biggr\rangle 
d\scrH 2(x)d\theta (4.55)

for all \omega \in \scrD 2(\Omega \times \BbbT 3) and a.e. t \in [0, 2\pi ).

Proof. In order to prove Theorem 4.11 we will show that the property cof F \in 
L2(\Omega ;\BbbR 3\times 3) implies that condition (4.48) holds true, and hence the thesis will follow
by virtue of Lemma 4.9. Let us define the sequence \{ \delta i\} i\in \BbbN and the set D\epsilon as in (4.36)
and (4.37); we write for any j = 1, 2, 3

1

2\pi \epsilon 

\int 2\pi 

0

\int 
\scrS t\cap D\epsilon 

| \nabla vj \times N | d\scrH 2(x)dt =
1

2\pi \epsilon 

\int 2\pi 

0

\int 
\scrS t\cap D\epsilon 

\bigm| \bigm| \bigm| \bigm| \nabla vj \times \nabla w
| \nabla w| 

\bigm| \bigm| \bigm| \bigm| d\scrH 2(x)dt

=
1

2\pi \epsilon 

\int 
D\epsilon 

| \nabla vj \times \nabla w| dx \leq 1

2\pi \epsilon 

\int 
D\epsilon 

| cof F | dx,

(4.56)

where in the second equality we employed the coarea formula, while in the last one we
used that | \nabla vj \times \nabla w| \leq | cof F | for any j = 1, 2, 3. Now, by the Schwarz inequality,

1

2\pi \epsilon 

\int 
D\epsilon 

| cof F | dx \leq 1

2\pi \epsilon 
| D\epsilon | 1/2

\biggl( \int 
D\epsilon 

| cof F | 2dx
\biggr) 1/2

\leq C

\biggl( \int 
D\epsilon 

| cof F | 2dx
\biggr) 1/2

,

(4.57)

with C :=

\surd 
2\pi \scrH 1(L)

2\pi and where we have used (4.38). Now, since cof F \in L2(\Omega ;\BbbR 3\times 3)
and | D\epsilon | \rightarrow 0 as \epsilon \rightarrow 0, we conclude that the quantity on the right-hand side of (4.57),

and hence also 1
2\pi \epsilon 

\int 2\pi 

0

\int 
\scrS t\cap D\epsilon 

| \nabla v \times N | d\scrH 2(x)dt, by (4.56), vanishes as \epsilon \rightarrow 0. As a

consequence we infer that for a.e. t \in [0, 2\pi )

lim
\epsilon \rightarrow 0

1

\epsilon 

\int 
\scrS t\cap D\epsilon 

| \nabla v \times N | d\scrH 2(x) = 0,

and the thesis follows.

Let us go back to (4.1) and (4.8). For regular field v, we have seen that

\scrC u+v(\varphi dy1 \wedge dyi) =  - | b| 
2\pi 

\int 2\pi 

0

\int 
L

\varphi 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
\partial vi
\partial \tau 

(x)d\scrH 2(x)d\theta , i \in \{ 2, 3\} ,

(4.58)

for any \varphi \in \scrC \infty (\Omega \times \BbbR 3) which is 2\pi -periodic in the second variable. In particular we
get the following corollary.

Corollary 4.12. Assume the hypotheses of Lemma 4.9 hold, and suppose v is
of class \scrC 1(\=\Omega ;\BbbR 3). Then it holds that

\partial v

\partial \tau 
\times b = 0 on L.(4.59)

In particular, this happens under the hypotheses of Theorem 4.11 and v \in \scrC 1(\=\Omega ;\BbbR 3).
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4.5. Main result 2: Characterization of the graph boundary for clusters
with general Burgers vectors. In this section we study generalizations of some
results in the previous section to deformations whose curl is a dislocation measure with
associated Burgers vectors spanning whole 2\pi \BbbZ 3. Determining the current associated
to the graph of such deformations is a hard task that we currently consider far from
reach. However, it is possible to prove that this graph is an integral current in some
specific cases.

Let \scrL 1, \scrL 2, \scrL 3 \in \scrD 1(\Omega ) be three closed integral currents, and let \scrL be the regular
dislocation current whose components are \scrL i, i = 1, 2, 3, according to (3.20). This is
equivalent to saying that \scrL i is the dislocation cluster associated to the Burgers vector
2\pi ei, i = 1, 2, 3. In particular we set

\Lambda \scrL :=

3\sum 
i=1

\Lambda i = 2\pi 

3\sum 
i=1

\scrL i \otimes ei(4.60)

and assume that ui : \Omega \rightarrow \BbbT 3 is the displacement field generating \Lambda i, i.e., ui is the
map given by (3.12) with b = 2\pi ei and L replaced by \scrL i, so that

 - Curl \nabla ui = \Lambda T
i .(4.61)

Let us denote u = u1 + u2 + u3. We introduce the currents \scrJ i
v+u \in \scrD 2(\Omega \times \BbbT 3),

i = 1, 2, 3, for any \omega \in \scrD 2(\Omega \times \BbbT 3):

\scrJ i
v+u(\omega ) :=

\int 2\pi 

0

\int 
Si
t

\biggl\langle 
d\omega (x, ei\theta +\^ui(x)) ,

\biggl( 
s1,

\partial \^ui
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial \^ui
\partial s2

(x)

\biggr) 
\wedge \vec{}ei
\biggr\rangle 
d\scrH 2(x)d\theta ,

(4.62)

where Si
t = \{ wi = t\} is any level set of the function wi defined via eiwi = ui

(i = 1, 2, 3), and where we have set

\^ui := u+ v  - ui, i = \{ 1, 2, 3\} .(4.63)

In (4.62) we have denoted \vec{}ei = (0, ei) \in \Lambda 1\BbbR 6 as usual.

Theorem 4.13. Let \scrL i \in \scrD 1(\Omega ), i = 1, 2, 3, be closed integral currents whose
supports Li are disjoint. In particular, let us assume that d(Li, Lj) > 0 for i \not = j; for
i = 1, 2, 3 let ui \in W 1,p(\Omega ;\BbbT 3) be the harmonic map given by (3.12) with L = Li and
b = 2\pi ei, and let v \in W 2,r(\Omega ;\BbbR 3). Suppose that

r >
12

7
, p \in 

\biggl( 
3

2
, 2

\biggr) 
, and

6 - 2r

3r
+

1

p
\leq 1.(4.64)

Then \scrG u+v is an integer multiplicity current whose boundary satisfies

\partial \scrG u+v(\omega ) =  - 
3\sum 

i=1

\scrJ i
v+u(\omega )(4.65)

for any \omega \in \scrD 2(\Omega \times \BbbT 3).

Proof. This is a straightforward consequence of Lemma 4.8. In fact, let Ui \supset Li,
i = 1, 2, 3, be three disjoint open sets, neighborhoods of the supports Li (which exist
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thanks to the hypothesis d(Li, Lj) > 0 for i \not = j). Hence the graph of u+v is the sum
of the restrictions

\scrG u+v = \scrG u+v\llcorner U1
+\scrG u+v\llcorner U2

+\scrG u+v\llcorner U3
+\scrG u+v\llcorner Uc ,(4.66)

with U c = \Omega \setminus (\cup 3
i=1Ui). Let us focus on U1 (similarly we will argue for U2 and U3); we

know that u2 and u3 are smooth in \=U1, so that \^u1 = u2+u3+v \in W 2,r(U1;\BbbR 3). In par-
ticular this function can be extended to a (nonrelabeled) function \^u1 \in W 2,r(\Omega ;\BbbR 3),
and Lemma 4.8 applies, implying that

\partial \scrG u+v\llcorner U1
(\omega )

=  - 
\int 2\pi 

0

\int 
S1
t\cap U1

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ \^u1(x)

\biggr) 
,

\biggl( 
s1,

\partial \^u1
\partial s1

(x)

\biggr) 
\wedge 
\biggl( 
s2,

\partial \^u1
\partial s2

(x)

\biggr) 
\wedge \vec{}e1

\biggr\rangle 
d\scrH 2(x)d\theta 

for any \omega \in \scrD 2(\Omega \times \BbbT 3). Since the value of this expression depends only on the value
of \omega in U1, the thesis easily follows by (4.66).

Theorem 4.14. Under the hypotheses of Theorem 4.13, let us assume in addition
that the tensor field F :=

\sum 3
i=1 \nabla ui +\nabla v \in W 1,p(\Omega ;\BbbR 3\times 3) satisfies the property that

cof F \in L2(\Omega ;\BbbR 3\times 3). Then the graph \scrG u+v is an integral current in \scrD 3(\Omega \times \BbbT 3) whose
boundary is

\partial \scrG u+v(\omega ) = 2\pi 

3\sum 
i=1

\scrL i \wedge ei(\omega )

=  - 
3\sum 

i=1

\int 2\pi 

0

\int 
Si
t

\langle d\omega (x, ei\theta + \^ui(x)), (s1, 0) \wedge (s2, 0) \wedge \vec{}ei\rangle d\scrH 2(x)d\theta 

for all \omega \in \scrD 3(\Omega \times \BbbT 3).

Proof. This is an easy consequence of Theorem 4.11; indeed, arguing as in The-
orem 4.13, we focus on the open set U1 and establish that the boundary of \scrG u+v

restricted to U1 is exactly 2\pi \scrL 1 \wedge e1. The same holds true on the other sets U2 and
U3. Notice that it is crucial here to assume that d(Li, Lj) > 0 for i \not = j.

5. Minimization problems.

5.1. The minimization setting. The mechanical setting is as follows. We
assume \Omega to be a bounded and simply connected open set in \BbbR 3 which represents
a single crystal. Let \^\Omega be another bounded open set such that \Omega \subset \subset \^\Omega . We fix a
dislocation density on \partial \Omega by prescribing a kinematical boundary condition accordingly
in terms of the deformation tensor \^F in \^\Omega . No other traction boundary condition is
assumed. We then consider dislocation microstructures as resulting from a variational
problem with these boundary conditions in an unloaded regime. Let us emphasize that
the external field \^F is not necessarily in equilibrium. Indeed this boundary condition
is equivalent to a Dirichlet boundary condition, since we can always write the external
field \^F as the gradient of a suitable torus-valued map \~u, and then fixing \^F corresponds
to fixing \~u, as done in [34]. It was shown in [31, sect. 5.4] that (essentially due to the
solenoidal property of the dislocation density) the solution is not the trivial one (i.e.,
the absence of dislocations in \Omega ).

Boundary conditions. We will prescribe Dirichlet boundary conditions for the
deformation field F and for the dislocation cluster as follows. We fix a tensor field
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\^F \in Lp(\^\Omega ;\BbbR 3\times 3) and a regular dislocation current \^\alpha having support in \^\Omega and such
that

 - Curl \^F = \Lambda T
\^\alpha ,(5.1)

where \Lambda \^\alpha is the dislocation density measure introduced in Definition 3.9. Then we
say that a field F \in Lp(\^\Omega ;\BbbR 3\times 3) is admissible for the boundary condition if

(i) F = \^F on \^\Omega \setminus \Omega ;
(ii) there is a dislocation current \alpha such that \alpha = \^\alpha on \^\Omega \setminus \Omega and  - Curl F = \Lambda T

\alpha .

Energy. We consider an energy functional which depends on the tensor field
F and on its derivatives as follows. The stored-elastic energy is represented by a
functional We(M(F )), with M(F ) the vector of minors of F as introduced in (3.2).
The total elastic energy is given by the integral over \Omega of We(M(F )), namely,

\scrW e(M(F )) =

\int 
\Omega 

We(M(F ))dx.(5.2)

We assume the following:
(A1) \scrW e is lower semicontinuous with respect to the convergence of F , cof F , and

det F in Lp(\Omega ;\BbbR 3\times 3), Lq(\Omega ;\BbbR 3\times 3), and Ls(\Omega ), respectively.
We will also assume the following growth condition on We: there are constants C > 0
and c, \delta \geq 0 such that

(A2) We(M(F )) \geq C(| F | p + | cof F | q + \delta | det F | s) - c
for some coefficient p, q, s > 1 to be specified later. Notice that in order to guarantee
(A1) we can assume that \scrW e is polyconvex, i.e., We is a convex function of M(F )
(see, e.g., [7, 12]).

The total energy of the system also contains higher-order terms, depending on the
derivatives of F . The defect part of the energy encodes the quantity of dislocation
singularities. This is an energetic term denoted by \scrW dislo which depends on the
dislocation density of F , i.e., on Curl F . We will make the following assumption on
\scrW dislo:

(A3) \scrW dislo is lower semicontinuous with respect to the weak- \star convergence of
measures.

We make the following growth condition for some constants C > 0 and c \geq 0 (not
relabeled):

(A4) \scrW dislo(\Lambda \scrL ) \geq C| \Lambda \scrL | (\Omega ) - c.
We will also assume that the total energy depends on Div F via the following high-
order term \scrW d which satisfies \scrW d(Div F ) =

\int 
\Omega 
Wd(Div F )dx, and

(A5) \scrW d is lower semicontinuous with respect to the weak convergence of Lr(\Omega ;\BbbR 3);
(A6) Wd(Div F ) \geq C| Div F | r  - c,

for some positive constants C and c. The total energy of a deformation field F reads

\scrW (F,\nabla F ) = \scrW e(M(F )) +\scrW dislo( Curl F ) +\scrW d(Div F )(5.3)

and satisfies the coercivity condition

\scrW (F,\nabla F ) \geq C (\| F\| pLp + \| cof F\| qLq + \delta \| det F\| sLs + \| Div F\| rLr ) + c| \Lambda \scrL | (\Omega ) - \gamma 
(5.4)

for suitable constants C, c > 0 and \gamma , \delta \geq 0, depending on the material properties.
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In the case that the dislocation cluster is associated with a single Burgers vector,
by Lemma 3.11 it follows that even if \delta = 0, the energy satisfies the following coercivity
condition with respect to the determinant of F :

\scrW (F,\nabla F ) \geq \~C\| det F\| tLt  - \~\gamma ,(5.5)

with 1
t := 6 - 2r

3r + 1
p < 1, for some positive constants \~C > 0 and \~\gamma \geq 0. By formula

I det F = FT cof F,(5.6)

it can be seen that the same coercivity (5.5) holds true also in the case 6 - 2r
3r + 1

p = 1,
by assuming 1

t := 1
p + 1

q < 1.

Remark 5.1. The presence of the energetic term \scrW dislo together with the bound-
ary condition \^\alpha for the dislocation prevents the following minimum problem from
having trivial solutions where the dislocation cluster of the minimizer is null. Indeed
in the definition of admissibility it is required that any competitor for the minimum
problem has a suitable dislocation cluster where Curl F concentrates. What might
happen is that such dislocation cluster moves, along a minimizing sequence, up to
the boundary of the crystal, hence provoking the minimizer to have a cluster concen-
trated on \partial \Omega . However, according to the geometry of the crystal, this solution often
is excluded because it is energetically inconvenient. In [32, sect. 5.4] we show that in
the most relevant cases the boundary condition forces the dislocation cluster of the
minimizer to remain inside the crystal.

5.2. Problem 1: Dislocation clusters with linearly dependent Burgers
vectors. In this section we study a minimization problem among a class of defor-
mations around dislocation clusters whose Burgers vectors are all multiples of a fixed
Burgers vector b \in 2\pi \BbbZ 3. In this case, thanks to the results obtained in section 4.3,
it is seen that under suitable conditions on the coefficients related to the growth of
the energy (5.4), such deformations can all be seen as gradients of suitable maps with
values in the torus \BbbT 3 and whose graph is an integral current in the space \Omega \times \BbbT 3. As
a consequence we can rely on Theorem 3.3 in order to get compactness of minimizing
sequences in this class of deformations, and hence to show the existence of minimizers.

Introduce the class of admissible deformation fields as follows:

\scrF b := \{ F \in Lp(\^\Omega ;\BbbR 3\times 3) satisfying conditions (1), (2), (3) below\} .(5.7)

(1) cof F \in Lq(\^\Omega ;\BbbR 3\times 3), det F \in Ls(\^\Omega ), Div F \in Lr(\^\Omega ;\BbbR 3);
(2)  - Curl F = b\otimes \scrL for some integral closed and compactly supported current

\scrL \in \scrD 1(\^\Omega );
(3) F = \^F on \^\Omega \setminus \Omega ,

with \^F standing for the deformation boundary condition as introduced in (5.1), for
any prescribed dislocation \^\alpha within \^\Omega . First, let us observe that F can always be
written as

F = \nabla u+\nabla v

for some functions u \in W 1,p(\^\Omega ;\BbbT 3) and v \in W 2,r(\^\Omega ;\BbbR 3). This can be easily seen
by Helmholtz decomposition, as shown in [33] and discussed in (3.25). We insist on
this point since it is crucial for the proof of our existence results. As described in
(3.22) and (3.24), we first decompose F = \nabla w + F 0 with \Delta w = Div F \in Lr(\Omega ;\BbbR 3)
and \partial Nw = 0 on \partial \^\Omega , and then F 0 = \nabla u0 +\nabla u, with u the harmonic function given
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by (3.12), and u0 being a harmonic function in \^\Omega with boundary conditions \partial Nu0 =
FN - \partial Nu = g - \partial Nu. Since by assumption g \in \scrC 1,\alpha and since the dislocation current
\scrL is compactly supported inside \^\Omega , it turns out that \partial Nu is of class \scrC \infty (\partial \^\Omega ;\BbbR 3), so

that g  - \partial Nu is of class \scrC 1,\alpha , and by problem (3.10) it follows that u0 \in \scrC 2,\alpha (
\=\^\Omega ;\BbbR 3).

In particular setting v := w + u0 entails v \in W 2,r(\^\Omega ;\BbbR 3), with boundary condition

\partial Nv = g  - \partial Nu.(5.8)

Now, Theorem 4.11 ensures that if F \in \scrF b has coefficients satisfying

r >
12

7
, p < 2,(5.9)

6 - 2r

3r
+

1

p
\leq 1,(5.10)

s > 1,(5.11)

q \geq 2,(5.12)

then F is such that the graph of u + v, seen as a current \scrG u+v \in \scrD 3(\^\Omega \times \BbbT 3), is
integral. Moreover, its boundary takes the form

\partial \scrG u+v(\omega ) = \scrL \wedge b(\omega )

=  - 1

2\pi 

\int 2\pi 

0

\int 
S

\biggl\langle 
d\omega 

\biggl( 
x,
b\theta 

2\pi 
+ v(x)

\biggr) 
, (s1, 0) \wedge (s2, 0) \wedge \vec{}b

\biggr\rangle 
d\scrH 2(x)d\theta (5.13)

for all \omega \in \scrD 2(\^\Omega \times \BbbT 3), where S is the support of the integral 2-current \scrS with \partial \scrS = \scrL ,
which is a level set of \~u (defined by b

2\pi \~u := u), and \{ s1, s2\} is an orthonormal basis
for its tangent plane.

The minimum problem we are interested in is then the following: Letting \^F \in \scrF b

be fixed, we want to find a solution to

min
F\in \scrF b

\scrW (F,\nabla F ),(5.14)

where \scrW takes the form (5.3). We also make the following technical assumption:

either \delta > 0 in (A2) or min

\biggl\{ 
6 - 2r

3r
+

1

p
,
1

p
+

1

q

\biggr\} 
< 1.(5.15)

We can state our main result.

Theorem 5.2. Fix as dislocation boundary condition a regular dislocation current
\^\alpha having support in \^\Omega . Let \^F \in \scrF b be fixed according to (5.1), and assume that the
coefficients appearing in conditions (1) and (2) satisfy (5.9), (5.10), (5.11), and (5.12).
Assume \scrW is a functional on \scrF b as in (5.3) and satisfies conditions (A1)--(A6) and
(5.15). Then there exists a minimizer F \in \scrF b of the problem (5.14).

The proof of Theorem 5.2 is standard and very similar to the one of Theorem 4.1
(see Theorems 6.6 and 6.8 in [33]). For this reason we sketch it here without details.

Proof. Let Fn be a minimizing sequence in \scrF b for the problem (5.14). By (5.4)
we infer the existence of F \in Lp(\^\Omega ;\BbbR 3\times 3), A \in Lq(\^\Omega ;\BbbR 3\times 3), G \in Lr(\^\Omega ;\BbbR 3), and
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\Lambda \scrL \in \scrM b(\^\Omega ;\BbbR 3\times 3) such that

Fn \rightharpoonup F weakly in Lp(\^\Omega ;\BbbR 3\times 3),(5.16)

cof Fn \rightharpoonup A weakly in Lq(\^\Omega ;\BbbR 3\times 3),(5.17)

Div Fn \rightharpoonup G weakly in Lr(\^\Omega ;\BbbR 3),(5.18)

\Lambda \scrL n
\rightharpoonup \Lambda \scrL weak* in \scrM b(\^\Omega ;\BbbR 3\times 3).(5.19)

Moreover, we find D \in Lm(\^\Omega ) such that

det Fn \rightharpoonup D weakly in Lm(\^\Omega ),(5.20)

with m = s > 1 if \delta > 0, and m = t > 1 if \delta = 0 (by condition (5.5), which in
turn is ensured by (5.15)). Our aim is now to show that A = cof F , D = det F ,
G = Div F , and  - Curl F = \Lambda T

\scrL , with \Lambda \scrL being a dislocation density of the form \scrL \otimes b
for some integral 1-current \scrL . The Dirichlet boundary conditions are easily seen to be
satisfied. In order to see that \Lambda T

\scrL = b\otimes \scrL we follow the argument in [33, Thms. 6.6 and
6.8], which relies on the application of the compactness theorem for integral currents.
The conditions G = Div F and  - Curl F = \Lambda T

\scrL follow easily from the theory of
distributions.

In order to prove that A = cof F , D = det F we first show (once again as in [33,
Thms. 6.6 and 6.8]) that Fn = \nabla vn +\nabla un and F = \nabla v+\nabla u, with vn \in W 2,r(\^\Omega ;\BbbR 3)
converging to v \in W 2,r(\^\Omega ;\BbbR 3) weakly in this space and un \in W 1,p(\^\Omega ;\BbbT 3) converging
weakly to u \in W 1,p(\^\Omega ;\BbbT 3). Then the conclusion will follow by applying Theorem 3.3,
which can be used thanks to Theorem 4.11, which indeed provides a uniform bound
for the boundaries \partial \scrG vn+un

.

5.3. Problem 2: Dislocation clusters with general Burgers vectors. In
this section we address a more general existence result valid for a larger class of defor-
mations, which may show a general regular dislocation density, i.e., with general and
possibly linearly independent Burgers vectors. To obtain compactness of minimizing
sequence, we rely on the closedness of admissible deformations. To this aim, we need
an additional hypothesis on the admissibility, which turns out to be unnecessary in
the case of linearly dependent Burgers vectors, where Theorem 4.11 provides such
closedness, whereas in the case of general clusters, a characterization of admissible
deformation fields in terms of graphs is yet beyond reach.

The class of admissible deformation fields is the following:

\scrF := \{ F \in Lp(\^\Omega ;\BbbR 3\times 3) satisfying conditions (1b), (2b), (3b), (4b) below\} .(5.21)

(1b) cof F \in Lq(\^\Omega ;\BbbR 3\times 3), det F \in Ls(\^\Omega ), Div F \in Lr(\^\Omega ;\BbbR 3).
(2b)  - Curl F = \Lambda T

\scrL for some regular dislocation current compactly supported in
\^\Omega . In particular, by decomposition, this can be written as

 - Curl F = \Lambda T
\scrL 1

+ \Lambda T
\scrL 2

+ \Lambda T
\scrL 3
, \Lambda \scrL i

= 2\pi \scrL i \otimes ei, i = 1, 2, 3.

(3b) F = \^F on \^\Omega \setminus \Omega , with \^F standing for the deformation boundary condition as
introduced in (5.1), for any prescribed dislocation \^\alpha within \^\Omega .

(4b) F = \nabla u+\nabla v has the property that \scrG u+v is an integral current in \scrD 3(\^\Omega ;\BbbT 3)
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whose boundary satisfies

\partial \scrG u+v(\omega ) = 2\pi 

3\sum 
i=1

\scrL i \wedge ei(\omega )

=  - 
3\sum 

i=1

\int 2\pi 

0

\int 
Si
t

\langle d\omega (x, ei\theta + \^ui(x)), (s1, 0) \wedge (s2, 0) \wedge \vec{}ei\rangle d\scrH 2(x)d\theta 

for all \omega \in \scrD 2(\Omega \times \BbbT 3).
Let us recall that \^ui has been defined in (4.63) and Si

t = \{ wi = t\} with eiwi = ui.
The main result regarding existence of minimizers for (5.14) with general Burgers

vectors is the following.

Theorem 5.3. Fix as dislocation boundary condition a regular dislocation current
\^\alpha having support in \^\Omega . Let \^F \in \scrF b be fixed according to (5.1), and assume that
the coefficients appearing in conditions (1) and (2) satisfy (5.9), (5.11), and q > 1.
Assume \scrW is a functional on \scrF as in (5.3) and satisfying conditions (A1)--(A6) with
either \delta > 0 or 1

p + 1
q < 1. Then there exists a minimizer F \in \scrF of the minimum

problem

min
F\in \scrF 

\scrW (F,\nabla F ).

We drop the proof since it is a straightforward adaptation of that of Theorem 5.2.
As for the case \delta = 0, it suffices to observe that the condition 1

p +
1
q =: 1

s < 1 provides

a uniform bound of det F in Ls(\Omega ) via the identity I det F = FT cof F and by the
H\"older inequality.

Remark 5.4. Let us emphasize that once we assume (4b) we no longer need the
assumption on the coefficient q \geq 2. Indeed in the case of the previous section, where
the Burgers vectors are linearly dependent, this condition implies directly expression
(5.13) of \partial \scrG u+v thanks to Theorem 4.11. In the general case we do not know if this
expression takes place in general, so we have to make the assumption (4b). At the
same time we know that (4b) is satisfied in some specific cases when q \geq 2 and the
dislocations clusters show particular geometries, as Theorem 4.14 demonstrates.

Remark 5.5 (admissible geometries). Condition (4b) and hence Theorem 5.3 hold
as soon as the dislocation set consists of clusters (in its most general sense of closed
integral currents) lying on glide planes each of which possesses a single Burgers vector.
These structure are known as prismatic loops [23]. The admissible geometries are such
that the glide planes must be disjoint if they are associated to nonparallel Burgers
vectors. Note that there are at most three independent Burgers vectors and hence
three sets of disjoint planes. Obviously the case of screw or edge dislocations, which
are the only straight parallel dislocations [38], does comply with this condition.

5.4. A problem involving \bfitF and \bfitF  - \bfone and modeling discussion. In the
pioneer paper [26] as based on [28], the meaning of F is that of the elastic part of
the deformation tensor. In contrast, according to Acharya [1, 2, 4], and as specifically
discussed in [3], the physical meaning of F should be that of the inverse deformation
tensor, i.e., Fij(t) =

\partial Xi

\partial xj
(t), with x the position vector in the current configuration \Omega 

at time t, whereas X stands for the position of the material point in some ``reference""
configuration (this standpoint was already considered by the authors in [32]). Indeed,
the dislocation density \Lambda has a meaning only in \Omega , being equal to (the transpose) of
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 - Curl F (in [3], the meaning of F is that of the inverse of the elastic part of the
deformation tensor). It is the purpose of this section to show that our approach fits
the two interpretations. In particular we propose a variant of the aforementioned
minimization problems where the energy involves the variable

G := F - 1.

The general problem of elasticity with dislocations can be formulated, according to [3,
eqn. (4)] and in the absence of body forces, as follows: Find F and G such that

\Lambda = ( - Curl F )T , Div \BbbP = 0 (+b.c.), \BbbP = \^\BbbP (G).

Well-posedness for this system is to the best of our knowledge still an open problem
in its full generality. With our approach, we are able to address existence in the case
of a model of hyperelasticity, i.e., with \BbbP = \partial G \~We(G). Specifically, we consider a
general stored-elastic energy density (strain energy per unit volume of the current
configuration) of the type

\=We(F,G) =We(F ) + \~We(G),(5.22)

together with higher-order terms involvingDF in the form of its curl, \Lambda =  - ( Curl F )T ,
and its divergence, Div F . Thus, we discuss existence results for a variational problem
where the total energy takes the form

\=\scrW (F,DF,G) := \=\scrW e(F,G) +\scrW dislo( Curl F ) +\scrW d(Div F ),(5.23)

with \=\scrW e(F,G) :=
\int 
\Omega 

\=We(F,G)dx. To achieve this aim, we first observe that G can be
expressed as combinations of entries of the vector M(F ), namely,

G =
( cof F )T

det F
.

Moreover, the energy depends on the dislocation density \Lambda =  - ( Curl F )T . Therefore,
after considering a minimizing sequence (Fk, Gk), we realize that we need a suitable
control of the variable Fk in order to guarantee that at the limit we have

if Fk \rightharpoonup F, then \Lambda k \rightharpoonup \Lambda =  - ( Curl F )T .(5.24)

At the same time we need a sufficiently good control of ( cof F )T and det F in order
to guarantee that

if Gk \rightharpoonup G, then G = F - 1 =
( cof F )T

det F
.(5.25)

Hence, the only assumption we require is coercivity in the following sense: There
exist p1, p2, p3, p4, p5 > 1 chosen appropriately (see subsection 5.2), with in addition
p4 > p\prime 2 = p2

p2 - 1 such that

\=\scrW (F,DF,G) \geq C
\bigl( 
\| F\| p1

p1
+ \| cof F\| p2

p2
+ \delta \| det F\| p3

p3
+ \| det G\| p4

p4
+ \| Div F\| p5

p5

\bigr) 
 - c,

(5.26)

with \delta \geq 0 and C, c > 0. Moreover, we assume \=\scrW e(F,G) as L
1-lower semicontinuous

(in particular the energy density depending on M(F ), that is, We(F ), might still be
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assumed polyconvex, but need not be). Note that the energy density depending on G
can even be nonconvex and nonpolyconvex, provided it results in \=\scrW e(F,G) being L

1-
lower semicontinuous. Further, to avoid matter interpenetration, it is assumed that
\=W (F,G) \rightarrow +\infty as det G\rightarrow 0 (for it suffices that We(F ) \rightarrow +\infty as det F \rightarrow +\infty ).

The energy termWe(F ) should be understood as specific to our variational model
of nonlinear bodies with dislocations, whereas in the absence of the dislocations the
energy reduces to a term depending on the sole deformation gradient G.

Whereas the issue (5.24) is proved as in the previous variational problems, the
main issue to work with is to prove (5.25). We can prove that

Gk = (Fk)
 - 1 =

( cof Fk)
T

det Fk
\rightarrow G =

( cof F )T

det F
(5.27)

weakly in L1 as k \rightarrow \infty . To this aim a strong convergence of either ( cof Fk)
T or

det Fk is required. The remaining part of this section is dedicated to proving that,
under a suitable choice of the coefficients p1, p2, p3, p4, p5 > 1 and in the case of a
dislocation cluster depending on one fixed Burgers vector, condition (5.27) holds true
with

cof Fk \rightarrow cof F strongly in Lq(\Omega ;\BbbR 3\times 3) for all q < p2.(5.28)

As we have seen, the deformation tensor is decomposed as the sum of two gradi-
ents, namely,

F = \nabla u+\nabla v,(5.29)

where u \in W 1,p1(\Omega ;\BbbT 3) and v \in W 2,p5(\Omega ;\BbbR 3) satisfy\biggl\{ 
Div \nabla u = 0,
 - Curl \nabla u = b\otimes \scrL ,

\biggl\{ 
\Delta v = Div F,
 - Curl \nabla v = 0,

together with suitable boundary conditions. We have seen that u satisfies \| \nabla u\| L3/2(\Omega )

\leq c| \mu | (\Omega ). Moreover, it was proved in [25] and [39] that2 \nabla u \in W s,p(\Omega ;\BbbR 3\times 3) with
1
p = 2+s

3 , 1 < p < 3/2, 0 < s < 1, and

\| \nabla u\| W s,p(\Omega ) \leq c| \mu | (\Omega ).(5.30)

Thus by compact embedding theorems [16], any bounded sequence (\nabla u)k in W s,p(\Omega ;
\BbbR 3\times 3) converges up to a subsequence strongly in L1(\Omega ;\BbbR 3\times 3).

Lemma 5.6. In the case of one Burgers vector, assume the growth condition
(5.26), and assume cof Fk \rightharpoonup cof F weakly in Lp2(\Omega ;\BbbR 3\times 3). Then cof Fk \rightarrow cof F
strongly in Lq(\Omega ;\BbbR 3\times 3) for every q < p2. As a consequence, (5.27) holds if p4 > p\prime 2 =
p2

p2 - 1 .

Proof. Thanks to the control of Div F we know \nabla vk \in W 1,p5(\Omega ;\BbbR 3). By Sobolev
embedding \nabla vk \in L3p5/(3 - p5)(\Omega ;\BbbR 3\times 3), so that by the H\"older inequality it is easy to
see that

\nabla vk \times \nabla vk \in W 1,3p5/(6 - p5)(\Omega ;\BbbR 3\times 3).

2The proof was established with the domain being the whole space \Omega = \BbbR 3, but can be extended
for bounded simply connected domains with smooth boundary as well, using the techniques of [10].
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By compact embedding, one has

\nabla vk \times \nabla vk \rightarrow \nabla v \times \nabla v

strongly in Ll(\Omega ;\BbbR 3\times 3) for l < 3p5/(6 - 2p5).
Moreover \nabla uk \rightarrow \nabla u strongly in Lm(\Omega ;\BbbR 3\times 3) for all m < 3/2 by virtue of (5.30).

From \nabla vk \rightarrow \nabla v strongly in Ls(\Omega ;\BbbR 3\times 3) for all s < 3p5/(3 - p5) the H\"older inequality
yields

\nabla vk \times \nabla uk \rightarrow \nabla v \times \nabla u

strongly in Lt(\Omega ;\BbbR 3\times 3) with t such that 1
t >

1
s + 2

3 .
The proof proceeds by recalling the identity cof F = 1

2F \boxtimes F (recall the notation
of (2.4)) and by virtue of (5.29), with

cof Fk \rightarrow cof F

strongly in Lq(\Omega ) with q := min\{ l, t\} . The assumption of a single Burgers vector
is here crucial, since in the above product we have no occurrence of \nabla uk \boxtimes \nabla uk for
which strong convergence would not hold.

The thesis follows since, by the energy control of cof F in Lp2(\Omega ;\BbbR 3\times 3), we have
strong convergence in Lq(\Omega ;\BbbR 3\times 3) for all q < p2.

Due to the presence of both the issues (5.24) and (5.25), at the present stage it
seems a difficult task to deal with a variational problem involving only the variables
Curl F and G. One possibility is to consider an energy depending on M(G) and
Curl F , and using the expression

FT =
cof G

det G
,(5.31)

in order to show that Curl Fk \rightarrow Curl F . However, if the bulk energy depends on
cof G and det G, it is a difficult task to show that

cof Gk \rightarrow cof G, det Gk \rightarrow det G.(5.32)

Indeed, these convergences, as for the corresponding convergences of cof F and det F ,
require a suitable regularity on the graph of the displacement \~w, whenever we can
write G = \nabla \~w. This requires a suitable theory on the graphs of such functions, which
is provided in the present paper only for the inverse matrix F = G - 1, exploiting
the condition on Curl F being a suitable integral current as related to the density of
dislocations. The problem of the analysis of the graphs related to G will be the topic
of future investigations.
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