Exercice 1 Relation de Vandermonde

Soient $n, n_1, n_2 \in \mathbb{N}^*$.

1. Monter que pour $n \leq n_1 + n_2$, on a :

$$\sum_{k=0}^{n} \binom{n_1}{k} \binom{n_2}{n-k} = \binom{n_1+n_2}{n}$$

2. En déduire la valeur de :

$$\sum_{k=0}^{n} \binom{n}{k}^2$$

Exercice 2

Déterminer la nature des séries de terme général :

1.
$$u_n = \frac{ln(n)}{n^5}$$
;

$$2. \ v_n = \ln\left(\frac{3+\sin(\frac{1}{n})}{3-\sin(\frac{1}{n})}\right).$$

Exercice 3 Critère de d'Alembert

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à termes strictement positifs.

- 1. Monter que s'il existe $K \in]0,1[$ et $n_0 \in \mathbb{N}$ tels que $\forall n \geq n_0, \frac{u_{n+1}}{u_n} \leq K$, alors la série de terme général u_n converge.
- 2. Monter que s'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \frac{u_{n+1}}{u_n} \geq 1$, alors la série de terme général u_n diverge.
- 3. Montrer que si lim $\frac{u_{n+1}}{u_n}=l$ avec $l\in]0,1[$, alors la série de terme général u_n converge.
- 4. Montrer que si lim $\frac{u_{n+1}}{u_n} = +\infty$, alors la série de terme général u_n diverge.

Exercice 1

On dispose quatre pions numérotés de 1 à 4 sur trois cases (une case pouvant contenir plusieurs pions). De combien de façon peut-on opérer :

- 1. de sorte qu'au moins une case soit vide?
- 2. de sorte qu'aucune case ne soit vide?

Exercice 2

Déterminer la nature des séries de terme général :

1.
$$u_n = \frac{1}{n^2 + (\sin n)^6}$$
;

2.
$$v_n = (\sqrt{n^2 - 1}) - n$$
;

3.
$$w_n = \frac{1}{e^{(2+\frac{3}{n})ln(n)}}$$
.

Exercice 3 Séries alternées

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels qui tend vers 0. Montrer que la série de terme général $(-1)^n u_n$ converge.

Exercice 1

Soit E un ensemble fini de cardinal $n \ge 2$. Soient a et b deux éléments de E distincts. Soit p tel que $2 \le p \le n-2$. En classant d'une certaine manière certaines parties de E, montrer que :

$$\binom{n}{p} = \binom{n-2}{p} + 2\binom{n-2}{p-1} + \binom{n-2}{p-2}$$

Exercice 2

Soit $b \in \mathbb{R}_+^*$. Déterminer en fonction de b la nature de la série de terme général :

$$u_n = \frac{2^n + (\ln(n))^{\sqrt{n}}}{b^n + (\sqrt{n})^{\ln(n)}}$$

Exercice 3

Soit $(u_n)_{n\in\mathbb{N}}$ une suite vérifiant :

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \frac{1}{3}$$

et $\forall n \in \mathbb{N}, u_n > 0.$

- 1. Montrer qu'il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, \frac{u_{n+1}}{u_n} \leq \frac{2}{3}$. En déduire que $\forall n \in \mathbb{N}, \exists \lambda \in \mathbb{R}$ tel que $u_n \leq \left(\frac{2}{n}\right)^n \lambda$.
- 2. En déduire la nature de la série de terme général u_n .