Exercice 1

Une urne contient n boules blanches et n boules noires. On effectue des tirages successifs d'une boule.

- 1. On suppose que les tirages sont avec remise.
 - a. Déterminer la probabilité que la k-ième boule tirée soit blanche sachant que les (k-1) premières boules obtenues étaient blanches.
 - b. Quelle est la probabilité que les k premières boules tirées soient blanches?
- 2. Reprendre les questions précédentes dans le cas où les tirages se font sans remise.

Exercice 2

On considère une suite de lancers indépendants d'une pièce pour laquelle la probabilité d'obtenir pile est p et la probabilité d'obtenir face est q = 1 - p avec $p \in]0, 1[$.

- 1. On considère l'événement A_n "la séquence PF apparaît pour la première fois aux lancers (n-1) et n". En notant P_k l'événement "obtenir pile au k-ième lancer" et F_k l'événement "obtenir face au k-ième lancer", exprimer A_n en fonction des événements P_k et F_k pour $k \leq n$, puis calculer la probabilité de A_n .
- 2. On considère l'événement B "la séquence PP apparaît sans qu'il n'y ait eu de séquence PF auparavant". Calculer la probabilité de B.

Exercice 3

Un pion évolue sur les trois sommets d'un triangle ABC. À l'instant t=0, il se trouve en A puis il se déplace de façon aléatoire sur les sommets de la façon suivante :

- s'il est en A ou en B à l'instant t = k, il va sur l'un des deux autres sommets de façon équiprobable à l'instant k + 1;
- -s'il est en ${\cal C}$ à l'instant t=k,il y reste à l'instant k+1.

On pose A_n (respectivement B_n , C_n) l'événement "à l'instant t = n, le pion est en A" (respectivement B, C) et $u_n = \mathbb{P}(A_n)$, $v_n = \mathbb{P}(B_n)$ et $w_n = \mathbb{P}(C_n)$.

- 1. a. Montrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}u_n$.
 - b. Exprimer de même v_{n+1} et w_{n+1} en fonction de u_n , v_n , w_n .
- 2. a. On pose $s_n = u_n + v_n$. Déterminer l'expression de s_n en fonction de n.
 - b. En déduire que pour tout $n \in \mathbb{N}$, $w_n = 1 \left(\frac{1}{2}\right)^n$.
- 3. Soit E l'événement " le pion atteint le sommet C". Déterminer la probabilité de E.

Exercice 1

Sur un stock de 100 dés, il y en a 25 qui sont pipés. La probabilité d'obtenir 6 avec un dé pipé est de $\frac{1}{2}$.

- 1. On choisit un dé et on le lance. Quelle est la probabilité d'avoir lancé un dé pipé sachant qu'on a obtenu 6?
- 2. On le relance et on obtient à nouveau 6. Quelle est la probabilité que le dé soit pipé?

Exercice 2

On considère trois urnes. L'urne U_1 contient 4 boules noires et 5 boules rouges; l'urne U_2 contient 2 boules noires et 5 boules rouges; l'urne U_3 contient 3 boules noires et 4 boules rouges. On tire une boule dans U_1 et une boule dans U_2 , on les met dans U_3 , puis on tire une boule de U_3 . On constate que cette boule est noire.

Calculer la probabilité que la boule tirée dans U_1 ait été rouge.

Exercice 3

Soit $p \in]0,1[$. Une personne lance une pièce avec la probabilité p d'obtenir pile et q=1-p d'obtenir face. Elle gagne dès que le nombre de pile est égal au nombre de face plus deux. Elle perd dès que le nombre de face est égal au nombre de pile plus deux.

- 1. Quelle est la probabilité pour que la partie dure plus de 2n coups?
- 2. Quelle est la probabilité pour que la personne gagne?

Exercice 1

On dispose de trois pièces équilibrées. Une pièce ayant ses deux côtés blancs, les deux autres ayant une face blanche et une face noire. On prend une pièce au hasard et on effectue des lancers indépendants de cette pièce.

- 1. Quelle est la probabilité d'obtenir "blanc" au premier lancer?
- 2. Quelle est la probabilité d'obtenir "blanc" aux n premiers lancers?
- 3. Sachant qu'on a obtenu n fois "blanc" de suite, quelle est la probabilité qu'on ait pris la pièce unicolore?

Exercice 2

Deux personnes A et B jouent aux dés. A lance le dé : s'il fait 1 ou 2 il gagne, sinon B lance le dé, s'il fait 3, 4 ou 5 il gagne, sinon A relance le dé et ainsi de suite.

- 1. Pour $k \ge 1$, calculer la probabilité des événements : A_{2k-1} "A gagne au (2k-1)-ième lancer" et B_{2k} "B gagne au 2k-ième lancer".
- 2. La partie pouvant durer indéfiniment, calculer la probabilité des événements G_A "A gagne la partie" et G_B "B gagne la partie".

Exercice 3

Une urne contient n boules numérotées de 1 à n, on tire les n boules les unes après les autres sans remise. On note E_i l'événement "la boule numéro i est obtenue au tirage numéro i" et E l'événement "au cours du tirage il n'y a aucune coïncidence entre le numéro de la boule tirée et le numéro du tirage".

- 1. Exprimer E à l'aide des E_i .
- 2. Calculer la probabilité de l'événement E.