Dual de $\mathcal{M}_n(\mathbb{K})$ et applications

Référence : [FGN07] p.329-331.

Théorème 0.1 1. On a un isomorphisme entre $\mathcal{M}_n(\mathbb{K})$ et son dual.

- 2. Soit $f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$ une forme linéaire telle que $\forall X, Y \in \mathcal{M}_n(\mathbb{K})$, f(XY) = f(YX). Alors $\exists \lambda \in \mathbb{K}$ tel que $\forall X \in \mathcal{M}_n(\mathbb{K})$, $f(X) = \lambda tr(X)$.
- 3. $\forall n \geq 2$, tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $GL_n(\mathbb{K})$.

Démonstration

Étape 1 : premier point On note $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$ et on rappelle que $\forall 1 \leq i,j,k,l \leq n, \ E_{ij}E_{kl} = \delta_{jk}E_{il}$ (se démontre en exprimant les coefficients du produit $E_{ij}E_{kl}$).

Soit:

$$f_A: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathbb{K}$$

 $X \longmapsto tr(AX)$

Soit:

$$f: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})^*$$

$$A \longrightarrow f_A$$

Montrons que f est un isomorphisme.

- f est linéaire : soient $X, A, B \in \mathcal{M}_n(\mathbb{K})$, soit $\lambda \in \mathbb{K}$:

$$f_{\lambda A+B}(X) = tr((\lambda A+B)X) = \lambda tr(AX) + tr(BX) = \lambda f_A(X) + f_B(X)$$

Donc $f_{\lambda A+B}(.) = \lambda f_A(.) + f_B(.)$, ie $f(\lambda A+B) = \lambda f(A) + f(B)$.

- Comme dim $\mathcal{M}_n(\mathbb{K}) = \dim \mathcal{M}_n(\mathbb{K})^*$, il suffit de prouver l'injectivité de f. Soit $A = (a_{ij})$ telle que $f_A = 0$. Alors $\forall X \in \mathcal{M}_n(\mathbb{K}), f_A(X) = 0$, donc $\forall 1 \leq i_0, j_0 \leq n$:

$$tr(AE_{i_0j_0}) = 0 = tr(\sum_{1 \le i,j \le n} a_{ij}E_{ij}E_{i_0j_0}) = tr(\sum_{i=1}^n a_{i,i_0}E_{i,i_0}E_{i_0j_0}) = \sum_{i=1}^n a_{i,i_0}tr(E_{ij_0}) = a_{j_0,i_0}$$

D'où A nulle car (E_{ij}) est une base de $\mathcal{M}_n(\mathbb{K})$.

Étape 2 : deuxième point Comme on a un isomorphisme entre $\mathcal{M}_n(\mathbb{K})$ et son dual d'après la forme de cet isomorphisme, on sait qu'il existe $A \in \mathcal{M}_n(\mathbb{K})$ telle que $f = f_A$. Alors $\forall X, Y \in \mathcal{M}_n(\mathbb{K})$, tr(AXY) = tr(AYX).

Comme tr(AYX) = tr(XAY), alors tr((AX - XA)Y) = 0, ceci étant valable pour tout Y, d'après le point 1, on a donc AX = XA.

Ainsi A commute avec toutes les matrices X; il s'agit donc d'une matrice scalaire (se démontre en écrivant AE_{ij} et $E_{ij}A$ et on se rend compte que les seuls coefficients non nuls sont ceux sur la diagonale).

D'où

$$f(X) = f_A(X) = tr(AX) = tr(\sum_{i=1}^n \lambda x_{ii}) = tr(\lambda \sum_{i=1}^n x_{ii}) = \lambda tr(X)$$

Étape 3 : troisième point Soit H un hyperplan de $\mathcal{M}_n(\mathbb{K})$. C'est donc le noyau d'une forme linéaire non nulle, d'après l'isomorphisme qu'on a construit, il existe donc $A \in \mathcal{M}_n(\mathbb{K})$ non nulle telle que $\forall X \in \mathcal{M}_n(\mathbb{K})$, f(X) = tr(AX).

Le problème se ramène donc à montrer que il existe $X \in GL_n(\mathbb{K})$ telle que AX soit de trace nulle. Notons $r \geq 1$ le rang de A. Alors on sait qu'il existe $P, Q \in GL_n(\mathbb{K})$ telles que :

$$PAQ = J_r = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Alors si $X \in \mathcal{M}_n(\mathbb{K})$, $tr(AX) = tr(PJ_rQX) = tr(J_rQXP)$.

Il suffit donc de trouver une matrice inversible Y telle que $tr(J_rY) = 0$ (on pose $X = Q^{-1}YP^{-1}$ qui appartient bien à $GL_n(\mathbb{K})$ et à H).

La matrice de permutation :

$$Y = \begin{pmatrix} 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

convient car J_rY a sa diagonale nulle, donc sa trace nulle!

Lemmes utilisés

Lemme 0.1 Soit $A \in \mathcal{M}_n(\mathbb{K})$ de rang r, alors il exsite $P, Q \in GL_n(\mathbb{R})$ telles que $A = PJ_rQ$.

Démonstration On effectue un algorithme du pivot de Gauss d'abord du côté droit de la matrice pour obtenir des 0 à droite et au-dessus de la diagonale de 1, puis on recommence cet algorithme du côté gauche de la matrice pour obtenir des 0 en dessous de la diagonale de 1 et en bas

Lemme 0.2 Soit E de dimension finie n et $\{e_1, \ldots, e_n\}$ une base de E. Considérons les formes linéaires $\{\theta_1, \ldots, \theta_n\}$ définies par :

$$\theta_i(e_k) = \delta_{ik}$$

Alors $\{\theta_1, \ldots, \theta_n\}$ est une base de E^* dite base duale de $\{e_1, \ldots, e_n\}$. En particulier, on a donc $\dim(E) = \dim(E^*)$.

Démonstration Remarquons qu'une forme linéaire ω est parfaitement déterminée si on connaît l'image des vecteurs d'une base, car d'après la linéarité de ω , on a :

$$\omega(x) = \omega\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i \omega(e_i)$$

Donc si on connaît $\omega(e_1), \ldots, \omega(e_n), \omega$ est connue en tout x.

En particulier, la définition ci-dessus détermine parfaitement les θ_i . Plus précisément, si $x = \sum_{i=1}^n x_i e_i$, on a :

$$\theta_i(x) = \sum_{i=1}^n x_i \theta_i(e_i) = x_i$$

Donc θ_i est l'application qui au vecteur x associe sa i-ème composante dans la base $\{e_1, \ldots, e_n\}$. Montrons que $\{\theta_1, \ldots, \theta_n\}$ est une base de E^* .

- Soient $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$ tels que $\sum_{i=1}^n \lambda_i \theta_i = 0$. Ceci équivaut à dire que pour tout $x \in E$, on

$$\sum_{i=1}^{n} \lambda_i \theta_i(x) = 0$$

En particulier, si $x = e_k$ pour $1 \le k \le n$, on a :

$$\sum_{i=1}^{n} \lambda_i \theta_i(e_k) = \lambda_k = 0$$

D'où la liberté de la famille.

– Cette famille est bien génératrice car $\forall x \in E$:

$$\omega(x) = \sum_{i=1}^{n} x_i \omega(e_i) = \sum_{i=1}^{n} \omega(e_i) \theta_i(x)$$

D'où le résultat.

Références

[FGN07] Serge Francinou, Hervé Gianella, and Serge Nicolas. Oraux x-ens algèbre 1. Cassini, 2007.