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Abstrat. In this paper, we give a desription of the spetrum of a lass of

non-selfadjoint perturbations of selfadjoint ~-pseudo-di�erential operators in

dimension one and we show that it is given by Bohr-Sommerfeld quantization

onditions. To ahieve this, we make use of previous work by Mihael Hitrik,

Anders Melin and Johannes Sjöstrand. We also give an appliation of our

result in the ase of PT -symmetri pseudo-di�erential operators.

Introdution

The objet of this paper is to desribe the spetrum of a lass of pseudo-

di�erential operators in the semi-lassial limit. Semi-lassial analysis is a rigorous

mathematial framework that allows to relate lassial mehanis and quantum me-

hanis in the regime where the Plank onstant ~ goes to zero, using the miroloal

analysis of pseudo-di�erential operators as its basi tools. In quantum mehanis to

eah observable we assoiate an operator and the possible values of this observable

orrespond to the spetrum of the operator. Most of the papers on quantum me-

hanis are devoted to the study of selfadjoint operators whih orresponds to real

observables. However, the spetral analysis of non-selfadjoint operators, whih is

the subjet of this paper, is very useful in the modelling of damping or for the study

of resonanes [Dav02℄. Moreover, PT-symmetri operators, whih are not neessar-

ily selfadjoint but may have, under some onditions, a real spetrum, have been

reently onsidered as a natural generalization of quantum observables, see [Ben05℄.

Bohr-Sommerfeld quantization onditions were introdued in the study of ele-

troni levels of atoms to determine whih lassial trajetories were relevant. More

preisely, Niels Bohr proposed that the eletrons in atoms ould only exist in ertain

well-de�ned stable orbits satisfying the following ondition:

1

2π

∮

p.dq = n~, for some n ∈ N,

where the pair (q, p) are the position and momentum oordinates of an eletron

and where the integral is omputed over some losed orbit in the phase spae.

Further experiments showed that Bohr's model of the atom seemed too simple to

desribe some heavier elements, so Arnold Sommerfeld expanded the original model

to explain these phenomenons by suggesting that eletrons travel in elliptial orbits

around a nuleus instead of irular orbits.

Mathematially, Bohr-Sommerfeld quantization onditions give a desription of

the spetrum of some lass of selfadjoint operators. These onditions are established
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in the one-dimensional ase and in that of ompletely integrable systems. More

preisely, we say that a one-dimensional selfadjoint pseudo-di�erential operator P~

satis�es the Bohr-Sommerfeld onditions if its eigenvalues are the real numbers E
suh that:

∫

γE

α0 + ~

∫

γE

κ+ ~
π

2
µ(γE) +O(~2) ∈ 2π~Z,

where:

• γE is a spei� loop in the level set ΛE = {p−1(E)} where p is the prinipal
symbol of the operator P~;

• µ(γE) is the Maslov index of the urve γE ;
• α0 is the Liouville 1-form;

• κ is the subprinipal 1-form.

The ase of regular energy urves in dimension one has been investigated by Bernard

Hel�er and Didier Robert in [HR84℄ and that of ompletely integrable systems by

Anne-Marie Charbonnel in [Cha88℄ and by San V�u Ngo

.

 in [VN00℄ (where the sub-

prinipal 1-form was de�ned). In the ase of non-selfadjoint operators, these ondi-

tions are not satis�ed; however if we onsider a non-selfadjoint pseudo-di�erential

operator lose to a selfadjoint one, several results have been reently obtained. More

preisely, these onditions have been extended in the ase of non-selfadjoint pertur-

bations of selfadjoint operators in dimension two by Anders Melin and Johannes

Sjöstrand in [MS02, MS03℄ and then by Mihael Hitrik and Johannes Sjöstrand in

[HS04℄. The ase of non-selfadjoint perturbations of selfadjoint operators in dimen-

sion one has not yet been treated, so that is the ase that we investigate here.

More preisely, we give a desription of the spetrum of a family of ~-pseudo-

di�erential operators of the form F ǫ
~
(x, ~Dx) + iǫQǫ

~
(x, ~Dx) where F

ǫ
~
and Qǫ

~
are

selfadjoint operators depending smoothly on a parameter ǫ. The result states that
any eigenvalue of suh objet an be written as a funtion of ~ times an integer.

This funtion is analyti, depending on the small parameter ǫ and admits an as-

ymptoti expansion in powers of ~. Moreover, the �rst term in the asymptoti

expansion of this funtion is the inverse of a omplex ation integral. Then, we

give an appliation of our result for PT -symmetri pseudo-di�erential operators in

dimension one.

Struture of the paper:

• in Setion 1, we state our result;

• in Setion 2, we prove the result in two main steps. The �rst one onsists

in establishing the result in the ase of an operator ating on L2(S1) and
to prove it by using tehniques developed by Mihael Hitrik, Anders Melin,

Johannes Sjöstrand and San V�u Ngo

.

 in the following papers [MS02, MS03,

HS04, HSN07, Sjö02℄. More preisely, we use omplex miroloal analysis

and Grushin problems. Afterwards, in the seond step, we generalize the

result obtained in the �rst step to obtain our result;

• in Setion 3, we give an appliation of our result for PT -symmetri opera-

tors;

• in Setion 4, we give some numerial illustrations of our result.
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1. Result

1.1. Assumptions. Let 0 < ~ ≤ 1 be the semi-lassial parameter. Reall the

de�nition of the Weyl quantization.

De�nition 1.1.1. Let p~(x, ξ) ∈ S(R2) be a funtion in the Shwartz spae de�ned

on the otangent spae T ∗
R ≃ R

2
and admitting an asymptoti expansion in powers

of ~. We de�ne the Weyl quantization of the symbol p~, denoted by P~(x, ~Dx)
(where Dx = −i∂x), by the following formula, for u ∈ L2(R):

P~(x, ~Dx)u(x) =
1

2π~

∫

R

∫

R

e(i/~)(x−y)ξp~

(

x+ y

2
, ξ

)

u(y)dydξ.

P~(x, ~Dx) is a pseudo-di�erential operator ating on L
2(R) and we alled the fun-

tion p~(x, ξ) the symbol of the operator P~(x, ~Dx).

Let ǫ be a positive real number. Let P ǫ
~
= P ǫ

~
(x, ~Dx) be the Weyl quantization on

R
2
of some symbol pǫ

~
:= f ǫ

~
+ iǫqǫ

~
depending smoothly on ǫ and satisfying:

(A) pǫ
~
is a holomorphi funtion on a tubular neighbourhood of R× R and on

this tubular neighbourhood we have:

(1) ∃C > 0, |pǫ~(x, ξ)| ≤ Cm(ℜ(x, ξ)),

where m is an order funtion on R
2
, i.e.

1. m ≥ 1;
2. there exists some onstants C0 ≥ 0 and N0 ≥ 0 suh that, for all

X, X̂ ∈ R2
:

m(X) ≤ C0〈X − X̂〉N0m(X̂),

where 〈X〉 = (1 + |X |2)1/2.
(B) pǫ

~
admits an asymptoti expansion in powers of ~ in the spae of holomor-

phi funtions satisfying the bound (1) of the form:

pǫ~(x, ξ) ∼
∞
∑

j=0

pǫj(x, ξ)~
j ;

(C) the prinipal symbol, denoted by pǫ:

pǫ(x, ξ) := pǫ0(x, ξ) = f ǫ(x, ξ) + iǫqǫ(x, ξ),

with (x, ξ) ∈ R2
, is ellipti at in�nity, i.e. for (x, ξ) in a tubular neighbour-

hood of R
2
, there exists C > 0 suh that:

|pǫ(x, ξ)| ≥ 1

C
m(ℜ(x, ξ)), for |(x, ξ)| ≥ C;

(D) the symbols f ǫ
~
and qǫ

~
are R-valued analyti funtions on R2

depending

smoothly on ǫ.
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Therefore, we onsider a pseudo-di�erential operator P ǫ
~
ating on L2(R) satisfying

the previous hypotheses, so we have:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~
and Qǫ

~
are selfadjoint pseudo-di�erential operators depending smoothly

on ǫ.
In order to use the ation-angle oordinates theorem, we onsider, for E0 ∈ R a

�xed real number, the level set:

ΛE0
= {(x, ξ) ∈ R

2; pǫ(x, ξ)|ǫ=0 = E0}.
We assume that:

(E) ΛE0
is ompat, onneted and regular, i.e. d(pǫ|ǫ=0) = d(f ǫ|ǫ=0) 6= 0 on

ΛE0
.

Remark 1.1.2. Beause of the elliptiity assumption, we already know that the

level set ΛE0
is ompat for small E0.

Notation: TubNeigh(R2) denotes a tubular neighbourhood of R2
in C2

.

Assume, for C > 0 a onstant, that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We onsider the following omplex neighbourhood of the level set ΛE0
:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2); pǫ(x, ξ) = E}.
This level set is onneted and df ǫ 6= 0 on ΛǫE for ǫ small enough (aording to

Assumption (E)). In what follows, we de�ne an ation integral I(E) of the form:

I(E) =
1

2π

∫

γE

ξdx,

where γE is a spei� loop in the level set ΛǫE (see Setion 2.3). We will show that

under our assumptions the map E 7−→ I(E) is invertible.

Under the assumptions (A) to (D), the spetrum of the operator P ǫ
~
is disrete in

some �xed neighbourhood of the real number E0.

1.2. Main result.

Theorem A. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ and ating on L2(R). Let E0 ∈ R suh that the assumptions (A)

to (E) are satis�ed, in partiular the operator P ǫ
~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~
and Qǫ

~
are selfadjoint pseudo-di�erential operators. Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a onstant.

Then the spetrum of the operator P ǫ
~
in the retangle RC,ǫ is given by:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),
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where gǫ
~
is an analyti funtion admitting an asymptoti expansion in powers of ~

and depending smoothly on ǫ. Moreover, the �rst term in the asymptoti expansion

of gǫ
~
, denoted by gǫ0, is the inverse of the ation oordinate E 7−→ 1

2π

∫

γE
ξdx.

Remark 1.2.1. This result gives a desription of the spetrum in a retangle RC,ǫ
whih does not depend on the semi-lassial parameter ~ ontrary to the result

obtained in the two-dimensional ase by Mihael Hitrik and Johannes Sjöstrand in

[HS04℄ in whih the parameters ǫ and ~ are related. Therefore, we obtain a slightly

�ner result in the one-dimensional ase.

Remark 1.2.2. We assume that the level set ΛE0
is onneted. However, it should

be possible to state a similar result in the ase of several onneted omponents using

the same basi outline (in this ase, we would have to onsider Bohr-Sommerfeld

quantization onditions for eah omponent and onsider the union of these om-

ponents).

2. Proof

The proof of our result is divided into two parts:

1. we onsider a pseudo-di�erential operator P ǫ
~
ating on L2(S1) of the form

P ǫ
~
(θ, ~Dθ) = F ǫ

~
(θ, ~Dθ) + iǫQǫ

~
(θ, ~Dθ), where F

ǫ
~
(θ, ~Dθ) = F ǫ(~Dθ) + O(~)

and we prove the same type of result (Theorem B) for this operator;

2. we generalize Theorem B to the ase of an operator ating on L2(R) and satis-

fying the assumptions (A) to (E).

2.1. Result in the L2(S1)-ase. In this paragraph, we present our result in the

ase of a pseudo-di�erential operator ating on L2(S1).

Notation:

• S1 is the real torus R/2πZ;
• (T ∗

S
1)C is the omplex otangent spae of S

1
: (S1 + iR)× C;

• L2(S1) is the set of 2π-periodi measurable funtions f suh that:

1

2π

∫ 2π

0

|f(θ)|2 dθ <∞;

• TubNeigh(S1 × R) is a tubular neighbourhood of S1 × R in (T ∗S1)C;
• Neigh(A;B) is a neighbourhood of the spae A in the spae B.

We onsider a pseudo-di�erential operator P ǫ
~
depending smoothly on ǫ and ating

on L2(S1) of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where Qǫ
~
is a selfadjoint pseudo-di�erential operator depending smoothly on ǫ and

F ǫ
~
is a selfadjoint pseudo-di�erential operator depending smoothly on ǫ of the form:

F ǫ~(θ, ~Dθ) = F ǫ(~Dθ) +O(~).

More preisely, P ǫ
~
is theWeyl quantization of the symbol pǫ

~
(θ, I) = f ǫ

~
(θ, I)+iǫqǫ

~
(θ, I)

whih is a periodi funtion in θ satisfying the following onditions:

(A') pǫ
~
is a holomorphi funtion on a tubular neighbourhood of S1 × R suh

that on this neighbourhood:

(2) ∃C > 0, |pǫ~(θ, I)| ≤ Cm(ℜ(I)),
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where m is an order funtion on R;

(B') pǫ
~
admits an asymptoti expansion in powers of ~ in the spae of holomor-

phi funtions satisfying the bound (2):

pǫ~(θ, I) ∼
∞
∑

j=0

pǫj(θ, I)~
j ,

(C') the prinipal symbol, denoted by pǫ:

pǫ(θ, I) := pǫ0(θ, I) = f ǫ(I) + iǫqǫ(θ, I),

for (θ, I) ∈ S1 × R, is ellipti at in�nity, i.e. for (θ, I) in a tubular neigh-

bourhood of S1 × R, there exists C > 0 suh that:

|pǫ(θ, I)| ≥ 1

C
m(ℜ(I)), for |(θ, I)| ≥ C;

(D') the symbols f ǫ
~
and qǫ

~
are R-valued analyti funtions on S1×R depending

smoothly on ǫ.

For E0 ∈ R a �xed real number, we onsider the level set:

ΛE0
= {(θ, I) ∈ S

1 × R; pǫ(θ, I)|ǫ=0 = E0}.
We assume that:

(E') ΛE0
is regular, i.e. d(pǫ|ǫ=0) = (f ǫ|ǫ=0)

′ 6= 0 on ΛE0
.

Assume, for C > 0 a onstant, that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We onsider the following omplex neighbourhood of the level set ΛE0
:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
Aording to Assumption (E'), this level set ΛǫE is onneted and (f ǫ)′ 6= 0 on ΛǫE
for ǫ small enough (f ǫ is a loal di�eomorphism on ΛǫE).
Let γE be a loop in ΛǫE generating π1(Λ

ǫ
E) (the fundamental group of ΛǫE), we

de�ne an ation integral Ĩ (we will explain later why this integral is well-de�ned

and invertible) by:

Ĩ(E) =
1

2π

∫

γE

Idθ.

To desribe the spetrum of the operator P ǫ
~
, we have the following result.

Theorem B. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ and ating on L2(S1). Let E0 ∈ R suh that the hypotheses (A')

to (E') are satis�ed, in partiular the operator P ǫ
~
is of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where F ǫ
~
(θ, ~Dθ) = F ǫ(~Dθ) +O(~). Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a onstant.

Then, we have:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),
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where gǫ
~
is an analyti funtion admitting an asymptoti expansion in powers of ~

and depending smoothly on ǫ. Moreover, the �rst term in the asymptoti expansion

of gǫ
~
, denoted by gǫ0, is the inverse of the ation oordinate Ĩ.

2.2. Proof of Theorem B. To prove Theorem B, we proeed as follows.

Step 1: we onstrut a anonial transformation κ and omplex ation-angle oor-

dinates (θ̃, Ĩ), where :

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

suh that:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Step 2: we quantize the anonial transformation κ, by following this proedure:

1. we onjugate, by a unitary transform, the operator P ǫ
~
ating on L2(S1)

in an operator P̃ ǫ
~
ating on some Bargmann spae, therefore their

spetra are equal;

2. we onstrut a unitary operator Ũ0 suh that miroloally:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~);

then, by an iterative proedure, we onstrut a unitary operator Ũ
suh that miroloally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞).

Step 3: we determine the spetrum of the operator P ǫ
~
by using two Grushin prob-

lems, one for the operator P̃ ǫ
~
and one for the operator gǫ

~

(

~

i

∂

∂θ̃

)

obtained

in Step 2.

2.2.1. Constrution of the anonial transformation κ. This onstrution is analo-

gous to what is done in [HS04℄.

We onsider:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
Notie that the funtion pǫ − E is holomorphi and that:

∂pǫ

∂I
(θ, I) =

df ǫ

dI
(I) + iǫ

∂qǫ

∂I
(θ, I) 6= 0,

for ǫ su�iently small beause (f ǫ)′ 6= 0 and ∂Iq
ǫ
is bounded on ΛǫE . Therefore

by applying the holomorphi impliit funtion theorem, we obtain that ΛǫE an be

written as:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); I = lǫ(θ, E)},
where lǫ is a holomorphi funtion depending smoothly on ǫ.
We an now de�ne an ation oordinate Ĩ by integrating the 1-form Idθ. Sine

ΛǫE is homotopy equivalent to S1, then there exists a unique loop γE in ΛǫE whose

homotopy lass generates π1(Λ
ǫ
E) (up to orientation), and we de�ne the oordinate

Ĩ by:

Ĩ(E) =
1

2π

∫

γE

Idθ.
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We an hoose the loop γE de�ned by the following parametrization, for t ∈ [0, 2π[:
{

θ(t) = t;

I(t) = lǫ(θ(t), E).

Therefore, we an rewrite Ĩ(E) as:

Ĩ(E) =
1

2π

∫ 2π

0

lǫ(θ(t), E)dt.

Sine the 1-form Idθ|Λǫ
E
is losed, by applying Stokes formula we obtain that Ĩ(E)

depends only on the homotopy lass of the loop γE in ΛǫE .
Moreover, notie that (sine f ǫ is a loal di�eomorphism):

dĨ

dE
(E) =

1

2π

∫ 2π

0

∂lǫ

∂E
(θ(t), E)dt,

=
1

2π

∫ 2π

0

(

d(f ǫ)−1

dE
(E) +O(ǫ)

)

dt,

=
d(f ǫ)−1

dE
(E) +O(ǫ) 6= 0.

Therefore by using the holomorphi inverse funtion theorem, we see that the map

E 7−→ Ĩ(E) is a loal di�eomorphism.

We are now able to onstrut the anonial transformation κ.

Proposition 2.2.1. There exists a anonial transformation:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

suh that:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Hene, the funtion gǫ is the inverse of the ation integral Ĩ.

Proof. Let δ0 be a positive real number and let S
1+ i]−δ0, δ0[ be the projetion (on

the �rst oordinate) of the tubular neighbourhood of S1 ×R used in the de�nition

of the level set ΛǫE . Let π : R+ i]− δ0, δ0[−→ S1 + i]− δ0, δ0[ be the projetion. We

denote by θ̂ some omplex number suh that θ = π(θ̂) with θ ∈ S1 + i]− δ0, δ0[.

We are going to prove that there exists a holomorphi funtion h(θ, Ĩ) suh that

loally we have:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(

θ,
∂h

∂θ

)

7−→
(

∂h

∂Ĩ
, Ĩ

)

.

Reall that E is a �xed omplex number; we onsider the 1-form:

ω = Idθ|Λǫ
E
= lǫ(θ, E)dθ.

lǫ is a holomorphi funtion, so we have: dω = 0 on ΛǫE .
Thus, sine ΛǫE is homotopi to S

1
, there exists a funtion h(θ, E) de�ned on ΛǫE
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suh that dh = ω if and only if:

1

2π

∫

γE

ω = 0,

where γE is the loop previously de�ned.

Therefore, there exists a funtion h(θ, E) on ΛǫE suh that:

dh = ω − 1

2π

∫

γE

ω = ω − 1

2π

∫

γE

Idθ = ω − Ĩ(E).

Moreover, there also exists a funtion ĥ(θ̂, E) on (R + i] − δ0, δ0[) × C suh that

dĥ = ω̂ = π∗ω. We an hoose:

ĥ(θ̂, E) = h(π(θ̂), E) + θ̂Ĩ(E).

Then:

dĥ = π∗dh+ Ĩ = ω̂.

Sine E 7−→ Ĩ(E) is a loal di�eomorphism, then we de�ne a funtion ȟ(θ̂, Ĩ) by:

ȟ(θ̂, Ĩ) = ĥ(θ̂, E(Ĩ)) = h(π(θ̂), E(Ĩ)) + θ̂Ĩ ,

where E(Ĩ) is the inverse funtion of Ĩ(E).

By de�nition of ȟ, there exists a funtion h̃(θ, Ĩ) de�ned by:

h̃(θ, Ĩ) = ȟ(π∗θ, Ĩ).

Let:

κ(θ, I) =

(

∂h̃

∂Ĩ
(θ, Ĩ), Ĩ

)

.

This funtion is well-de�ned beause it does not depend on the hoie of the lass

representative of θ. Besides, for (θ, I) ∈ ΛǫE , by onstrution we have:

I = lǫ(θ, E) =
∂h̃

∂θ
(θ, Ĩ).

Therefore κ is loally a holomorphi sympleti transformation whih sends ΛǫE on

{Ĩ = cst} (beause Ĩ depends only on E), thus:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ),

beause

∂

∂θ̃
the tangent vetor �eld to {Ĩ = cst} is sent by κ−1

on the tangent

vetor �eld to ΛǫE , in other words:

∂

∂θ̃
(pǫ ◦ κ−1(θ̃, Ĩ)) = 0 ⇒ pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Moreover, we an dedue from this equation that gǫ is the inverse of the ation

integral Ĩ beause:

gǫ(Ĩ(E)) = p ◦ κ−1(θ̃, Ĩ(E)) = E.

�

Remark 2.2.2. If ǫ = 0, κ is the identity (of generating funtion h(θ, Ĩ) = θĨ).



10 OPHÉLIE ROUBY

2.2.2. Quantization of the anonial transformation κ. We want to onstrut an

operator U0 assoiated with the anonial transformation κ. In this ase, we an

not apply Egorov's theorem, therefore we are going to write the anonial trans-

formation κ as a omposition of anonial transformations that will be easier to

quantize. Before doing so, reall that one an quantize a anonial transformation

if it omes from some FBI transform (see for example [Zwo12, Chapter 13℄).

Notation: Let Φ be a stritly plurisubharmoni R-valued quadrati form on C.

We introdue the following notation:

• L(dz) is the Lebesgue measure

i

2
dz ∧ dz;

• L2(C,Φ) = L2(C, e−2Φ/~L(dz)) is the set of measurable funtions f suh

that:

∫

C

|f(z)|2e−2Φ(z)/~L(dz) < +∞;

• L2(C,Φ,m) = L2(C,m2e−2Φ/~L(dz)) is the set of measurable funtions f
suh that:

∫

C

|f(z)|2m(z)2e−2Φ(z)/~L(dz) < +∞;

where m is a funtion (from now one, m will denote the order funtion

assoiated with the operator P ǫ
~
in Assumption (A));

• H(C,Φ) = Hol(C)∩L2(C,Φ) is the set of holomorphi funtions in L2(C,Φ);
• H(C,Φ,m) = Hol(C) ∩ L2(C,Φ,m) is the set of holomorphi funtions in

L2(C,Φ,m).

Remark 2.2.3. Sine the order funtion m is suh that m ≥ 1, we have:

H(C,Φ,m) ⊂ H(C,Φ).

Reall the de�nition of the FBI (Fourier-Bros-Iagoniltzer) transform in dimension

one (see for example [Zwo12, Chapter 13℄).

De�nition 2.2.4 (FBI transform and its anonial transformation). Let φ(z, x) be
a holomorphi quadrati funtion on C× C suh that:

1. ℑ
(

∂2φ

∂x2

)

is a positive real number;

2.

∂2φ

∂x∂z
6= 0.

The FBI transform assoiated with the funtion φ is the operator Tφ de�ned on

S(R) by:
Tφu(z) =

cφ
~3/4

∫

R

e(i/~)φ(z,x)u(x)dx,

where:

cφ =
1

21/2π3/4

| det ∂x∂zφ|
(detℑ(∂2xφ))1/4

.

We de�ne a anonial transformation assoiated with Tφ by:

κφ : C× C −→ C× C,

(x,−∂xφ(z, x)) 7−→ (z, ∂zφ(z, x)).

We have the following property on FBI transform (see for example [Zwo12, p.309℄).
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Proposition 2.2.5. Let, for z ∈ C:

Φ(z) = sup
x∈R

(−ℑ(φ(z, x))) .

Then Tφ : L2(R) −→ H(C,Φ) is a unitary transformation.

Moreover, if T ∗
φ : L2(C,Φ) −→ L2(R) is the adjoint of Tφ, then:

T ∗
φv(x) = cφh

−3/4

∫

C

e(i/~)φ(z,x)e−2Φ(z)/~v(z)L(dz).

And we have:

1. TφT
∗
φ = 1 on H(C,Φ);

2. T ∗
φTφ = 1 on L2(R).

Remark 2.2.6. The anonial transformation κφ sends R2
on the IR-manifold (I-

Lagrangian and R-sympleti) ΛΦ =

{(

z,
2

i

∂Φ

∂z
(z)

)

; z ∈ C

}

where Φ is a stritly

plurisubharmoni R-valued quadrati form assoiated with φ in the sense of Propo-

sition 2.2.5.

First, we have the following results (see for example [Sjö02, p.139-142℄ or [MS03℄).

Proposition 2.2.7. Let P ǫ
~
be a pseudo-di�erential operator ating on L2(R) and

satisfying the hypothesis (A) to (D). Let Φ0 be a stritly plurisubharmoni R-valued

quadrati form on C (we an assoiate with Φ0 a holomorphi quadrati funtion

φ0 in the sense of Proposition 2.2.5). Let P̃ ǫ
~
= Tφ0

◦ P ǫ
~
◦ T ∗

φ0
. Then:

1. P̃ ǫ
~
: H(C,Φ0, m̃) −→ H(C,Φ0) is uniformly bounded in ~ and ǫ (for ~ < 1

and ǫ < ǫ0 where ǫ0 is a �xed positive real number), where m̃ = m ◦ κ−1
φ0

is

an order funtion on ΛΦ0
=

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂y
(y)

}

(reall that m is

the order funtion assoiated with the operator P ǫ
~
in Hypothesis (A));

2. P̃ ǫ
~
is given by the ontour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂x

(

x+ y

2

)}

and where the symbol p̃ǫ
~

is given by p̃ǫ
~
= pǫ

~
◦ κ−1

φ0
.

Sine p̃ǫ
~
is a holomorphi funtion and is bounded by the order funtion m̃ in a

tubular neighbourhood of ΛΦ0
, we an perform a ontour deformation of Γ(x) and

onsider other weight funtions as follows.

Proposition 2.2.8. With the notation of Proposition 2.2.7, let Φ ∈ C1,1(C,R)
(the spae of C1

funtions with Lipshitz gradient) be a funtion lose to Φ0 in the

following sense:

1. Φ− Φ0 is bounded;

2. there exists a onstant C > 0 suh that: sup

∣

∣

∣

∣

∂Φ

∂x
− ∂Φ0

∂x

∣

∣

∣

∣

<
1

2C
, where C

is large enough, so that:

ΓC(x) =

{

(y, η) ∈ C
2; η =

2

i

∂Φ0

∂x

(

x+ y

2

)

+
i

C

x− y

〈x − y〉

}

⊂ ΛΦ.
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Then P̃ ǫ
~
: H(C,Φ, m̃) −→ H(C,Φ) is uniformly bounded in ~ and ǫ (for ~ < 1 and

ǫ < ǫ0 where ǫ0 is a �xed positive real number).

We now introdue the following stritly plurisubharmoni quadrati form :

Φ1 : C −→ R

x 7−→ 1

2
|ℑ(x)|2

This quadrati form is assoiated in the sense of Proposition 2.2.5 with the holo-

morphi quadrati funtion φ1 de�ned by, for all z, x ∈ C:

φ1(z, x) =
i

2
(z − x)2.

The anonial transformation κφ1
is given by:

κφ1
: C× C −→ C× C,

(x, ξ) 7−→ (x− iξ, ξ).

Notie that, for (x, ξ) ∈ C2
, we have:

κφ1
(x+ 2π, ξ) = κφ1

(x, ξ) + (2π, 0).

Therefore, there exists a map κφ1
: (S1 + iR) × C −→ (S1 + iR) × C suh that

π ◦ κφ1
= κφ1

◦ π where π : (R+ iR)× C −→ (S1 + iR)× C is the projetion.

We onsider the following transformations:

1. κφ1
: (T ∗S1)C −→ (T ∗S1)C whih sends S1 × R to ΛΦ1

where:

ΛΦ1
=

{

(x, ξ) ∈ (T ∗
S
1)C, ξ =

2

i

∂Φ1

∂x
(x) = −ℑ(x)

}

;

2. κ̃−1
de�ned by:

κ̃−1 = κ−1
φ1

◦ κ−1 ◦ κφ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

whih does not preserve ΛΦ1
(beause κ is not a real transformation) but

sends it to another IR-manifold denoted by ΛΦ2
, where Φ2 is a smooth

funtion lose to Φ1.

To summarize, we onsider the following ommutative diagram on the phase spaes:

S1 × R ⊂ (T ∗S1)C
(θ,I)

κ
//

κφ1

��

(T ∗S1)C ⊃ S1

(θ̃,Ĩ)

× R

κφ1

��
ΛΦ1

⊂(T∗

S
1)C

ΛΦ2
⊂ (T ∗S1)C
(y,η)

(T ∗
S
1)C ⊃ ΛΦ1

(x,ξ)

κ̃−1

oo

We want to quantize the previous transformations. First, we show how to on-

strut a unitary operator assoiated with the transformation κ̃, following [MS03℄

(note that their ase is the two dimensional one). For the sake of ompleteness, we

reall the one dimension theory. We onsider:

κ̃−1 = κφ1
◦ κ−1 ◦ κ−1

φ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

(x, ξ) 7−→ (y, η).
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First, we an show that there exists a smooth funtion Φ2 suh that the transfor-

mation κ̃−1
sends the IR-manifold ΛΦ1

to ΛΦ2
.

Proposition 2.2.9. There exists a smooth funtion Φ2 suh that:

1. Φ2 is uniformly stritly plurisubharmoni;

2. Φ2 is lose to Φ1 in the sense of Proposition 2.2.8;

3. κ̃−1(ΛΦ1
) = ΛΦ2

=

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂y
(y)

}

.

Proof. Sine κ̃−1
is the omposition of three holomorphi sympleti transforma-

tions, then κ̃−1(ΛΦ1
) is an IR-manifold. Thus, by using the fat that κ is lose to

the identity map when ǫ is small, we an show that κ̃−1(ΛΦ1
) an be written as ΛΦ2

with Φ2 some smooth funtion. Besides, sine ǫ is small, κ̃−1
is lose to the identity,

therefore ΛΦ2
is lose to ΛΦ1

, so ∂xΦ2(x) is lose to ∂xΦ1(x). Besides, sine Φ1

is a uniformly stritly plurisubharmoni funtion, κ̃ is holomorphi and ∂xΦ2(x) is
lose to ∂xΦ1(x), then Φ2 is also a uniformly plurisubharmoni funtion. �

Let graph(κ̃) = {(x, ξ; y, η) ∈ ΛΦ1
× ΛΦ2

; (x, ξ) = κ̃(y, η)}. Following [MS03℄,

we an onstrut a funtion ψ(x, y), de�ned in a neighbourhood of eah point of

πx,y(graph(κ̃)) (the projetion of the set graph(κ̃)), suh that:

1. ∂xψ(x, y) and ∂yψ(x, y) vanish to in�nite order on π(x,y)(graph(κ̃));

2. ∂xψ(x, y) =
2

i

∂Φ1

∂x
(x) and ∂yψ(x, y) =

2

i

∂Φ2

∂y
(y), ∀(x, y) ∈ π(x,y)(graph(κ̃));

3. Φ1(x) + Φ2(y) + ℑ(ψ(x, y)) ∼ dist((x, y), π(x,y)(graph(κ̃))
2
.

Remark 2.2.10. We an onsider the set πx,y(graph(κ̃)) beause ΛΦ1
and ΛΦ2

are

parametrized by x and y respetively, so ΛΦ1
× ΛΦ2

too. Therefore πx,y(graph(κ̃))
is a regular submanifold of ΛΦ1

× ΛΦ2
.

Aording to Conditions 1. and 2. we have:

dψ =
2

i

∂Φ1

∂x
(x)dx +

2

i

∂Φ2

∂y
(y)dy on π(x,y)(graph(κ̃)).

If we restrit ψ to π(x,y)(graph(κ̃)) and identify it with a funtion on graph(κ̃), we
obtain:

d(ψ|graph(κ̃)) = ξdx− ηdy for (x, ξ; y, η) ∈ graph(κ̃).

We want to study the analyti ontinuation of the funtion ψ along a loop γ in

graph(κ̃).
First, notie that:

ℑ(ξdx)|ΛΦ1

= ℑ
(

2

i

∂Φ1

∂x
dx

)

,

=
1

2i

(

2

i

∂Φ1

∂x
dx− 2

i

∂Φ1

∂x
dx

)

,

= −
(

∂Φ1

∂x
dx+

∂Φ1

∂x
dx

)

,

= −dΦ1.

So the form ℑ(ξdx)|ΛΦ1

is exat. Similarly ℑ(ηdy)|ΛΦ2

is exat.

Let γ̂ = {(κ̃(ρ), ρ); ρ ∈ γ} where γ is any loop in the domain of κ̃ restrited to ΛΦ2
.
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We have:

∫

γ̂

dψ =

∫

(κ̃◦γ,γ)
(ξdx− ηdy) ,

=

∫

κ̃◦γ
ξdx −

∫

γ

ηdy,

=

∫

κ̃◦γ
(ℜ(ξdx) + iℑ(ξdx))−

∫

γ

(ℜ(ηdy) + iℑ(ηdy)) ,

=

∫

κ̃◦γ
ℜ(ξdx) −

∫

γ

ℜ(ηdy),

:= −J(γ).
Therefore along a loop, ψ hanges by a real onstant sine it is the di�erene of two

real ations. We all this di�erene the Floquet index, this number depends only

on κ̃.

Notation:

• L2
J(S

1) is the spae of Floquet periodi measurable funtions f suh that:

1

2π

∫ 2π

0

|f(x)|2dx < +∞,

suh a funtion f satis�es the following Floquet periodiity ondition:

f(x+ 2π) = e−(i/~)Jf(x).

• L2
J(S

1 + iR,Φ) is the spae of multi-valued Floquet periodi funtions f
suh that:

∫ 2π

0

∫

R

|f(z)|2e−2Φ(z)/~L(dz) < +∞,

• HJ (S
1 + iR,Φ) is the spae of holomorphi funtions in L2

J(S
1 + iR,Φ).

We an now quantize the transformation κ̃.

Proposition 2.2.11 ([MS03℄). Let A be the operator de�ned by:

Au(x) =
1

~

∫

C

e(i/~)ψ(x,y)a(x, y)χ(x, y)u(y)e−(2/~)Φ2(y)L(dy),

where a(x, y) is a symbol satisfying:

1. a(x, y) ∼∑ aj(x, y)~
j
in C∞(Neigh(π(x,y)(graph(κ̃))));

2. aj ∈ C∞
;

3. ∂xaj = O((dist((x, y), π(x,y)graph(κ̃)))
∞ + ~∞);

4. ∂yaj = O((dist((x, y), π(x,y)graph(κ̃)))
∞ + ~∞);

5. a ellipti, i.e. a0 does not vanish;

and where χ is a ut-o� equal to 1 in a neighbourhood of π(x,y)(graph(κ̃)).
Let U ⊂ ΛΦ2

and let V ⊂ ΛΦ1
suh that κ̃(U) = V . Then:

1. A = L2(π(U), e−2Φ2/~L(dy)) −→ L2
J
(π(V ), e−2Φ1/~L(dx)) is a bounded

operator;

2. ‖(∂ ◦A)u‖L2

J

≤ O(~∞)‖u‖L2
.

Remark 2.2.12. Let A∗
be the adjoint of A. Then, A∗

is assoiated with the

transformation κ̃−1
and we an hoose the symbol a suh that, up to O(~∞) (with

the notations of Proposition 2.2.11):
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• A∗A is the orthogonal projetor L2(π(U), e−2Φ2/~L(dy)) −→ H(π(U),Φ2);
• AA∗

is the orthogonal projetor L2
J
(π(V ), e−2Φ1/~L(dx)) −→ HJ (π(V ),Φ1).

Therefore, we obtained a unitary operator A miroloally de�ned on the L2(Φ)-
spaes assoiated with the transformation κ̃, whih sends the set of holomorphi

funtions on itself up to O(~∞). We also have an Egorov theorem in this ase, as

follows.

Proposition 2.2.13 ([MS03℄). With the notation of Proposition 2.2.11, there exists

an operator P̂ ǫ
~
depending smoothly on ǫ de�ned by:

P̂ ǫ~(x, ~Dx)u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)η(χp̂ǫ~)

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂x

(

x+ y

2

)}

and where χ is a suitable

ut-o�, suh that:

1. the prinipal symbol p̂ǫ of P̂ ǫ
~
satis�es the equation p̂ǫ = p̃ǫ ◦ κ̃−1

;

2. P̂ ǫ
~
A = AP̃ ǫ

~
and A∗P̂ ǫ

~
= P̃ ǫ

~
A∗

up to O(~∞) in the sense that:

‖(P̂ ǫ~A−AP̃ ǫ~)u‖L2

J
(Ṽ ,Φ1)

≤ O(~∞)‖u‖H(U,Φ),

‖(A∗P̂ ǫ~ − P̃ ǫ~A
∗)u‖L2(Ũ,Φ) ≤ O(~∞)‖u‖HJ (V,Φ1),

where Ṽ is a ompat subset of π(V ) and Ũ is a ompat subset of π(U).

We previously de�ned an operator Tφ1
: L2(R) −→ H(C,Φ1) assoiated with

the anonial transformation Tφ1
. We now want to onstrut an operator ating on

the Floquet spaes assoiated with the anonial transformation κφ1
, thus we are

looking for an operator B suh that:

B : HJ (S
1 + iR,Φ1) −→ L2

J (S
1).

Notation: We denote by k the kernel of the FBI transform Tφ1
: L2(R) −→ H(C,Φ1)

assoiated with φ1, i.e.:

Tφ1
u(z) = cφ1

~
−3/4

∫

R

e−(1/2~)(z−x)2u(x)dx =

∫

R

k(z − x; ~)u(x)dx,

with cφ1
≥ 0 the onstant given by De�nition 2.2.4.

The omplex adjoint T ∗
φ1

: L2(C,Φ1) −→ L2(R) an be rewritten as:

T ∗
φ1
v(x) = cφ1

~
−3/4

∫

C

e−(1/2~)(z−x)2e−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

We identify the funtions in L2
J
(S1) with the Floquet periodi loally square inte-

grable funtions on R and similarly for the funtions in HJ (S
1 + iR,Φ1).

Proposition 2.2.14 ([MS03℄).

1. Tφ1
indues an operator B∗ : L2

J
(S1) −→ HJ (S

1 + iR,Φ1) given by:

B∗u(z) =

∫

R

k(z − x; ~)u(x)dx =

∫

E

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνu(x)dx,
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where E ⊂ R is a fundamental domain for 2πZ.
2. The omplex adjoint of B∗

is de�ned by:

Bv(x) =

∫

E+iR

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνe−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

Therefore B oinides with the inverse of the FBI transform T ∗
φ1
.

Sine the FBI transform Tφ1
is a unitary operator aording to Proposition 2.2.5,

then we an dedue that B∗
is also a unitary operator.

Proposition 2.2.15 ([MS03℄).

1. BB∗ = 1 on L2
J
(S1);

2. B∗B = 1 on HJ (S
1 + iR,Φ1).

We also have an Egorov theorem in the L2(S1)-ase that we dedue from Proposition

2.2.7.

Proposition 2.2.16. Let P ǫ
~
be a pseudo-di�erential operator ating on L2

J
(S1)

and satisfying the hypothesis (A') to (D'). Let P̃ ǫ
~
= B∗ ◦ P ǫ

~
◦B. Then:

1. P̃ ǫ
~
: HJ (S

1 + iR,Φ1, m̃) −→ HJ (S
1 + iR,Φ1) is uniformly bounded in ~

and ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a �xed positive real number), where

m̃ = m ◦ κ−1
φ1

is an order funtion on:

ΛΦ1
=

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂y
(y)

}

;

2. P̃ ǫ
~
is given by the ontour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ1

∂x

(

x+ y

2

)}

and where the sym-

bol p̃ǫ
~
is given by p̃ǫ

~
= pǫ

~
◦ κ−1

φ1
.

Proposition 2.2.17. With the notation of Proposition 2.2.16, let Φ2 be a funtion

of lass C1,1
lose to Φ1 in the following sense:

1. Φ2 − Φ1 is bounded;

2. sup

∣

∣

∣

∣

∂Φ2

∂x
− ∂Φ1

∂x

∣

∣

∣

∣

is su�iently small.

Then P̃ ǫ
~
: HJ (S

1 + iR,Φ2, m̃) −→ HJ(S
1 + iR,Φ2) is uniformly bounded in ~ and

ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a �xed positive real number).

Remark 2.2.18. Propositions 2.2.16 and 2.2.17 hold in the L2(S1)-ase.
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To summarize, we have the following diagram (with the notations of Propositions

2.2.11 and 2.2.16):

L2(S1)
U0

//

B∗

��

L2
J
(S1)

B∗

��
H(S1+iR,Φ1)

H(π(U),Φ2) A
// HJ (π(V ),Φ1)

We an apply Proposition 2.2.17 in the L2(S1)-ase and obtain an operator:

P̃ ǫ~ = B∗P ǫ~B : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Then, if Ũ0 = BA miroloally we have by omposition:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where gǫ is the funtion given by Proposition 2.2.1 and where gǫ
(

~

i

∂

∂θ̃

)

is the

Weyl quantization of the symbol gǫ(Ĩ) on L2
J(S

1).

We an sum up what we have done in this paragraph by the following proposition.

Proposition 2.2.19. There exists a unitary operator Ũ0 : H(π(U),Φ2) −→ L2
J
(S1)

suh that miroloally we have:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ is an

analyti funtion depending smoothly on ǫ whose inverse is the ation integral Ĩ.

We an improve this proposition by using an iterative proedure.

Proposition 2.2.20. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

suh that miroloally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ
~
is

an analyti funtion admitting an asymptoti expansion in powers of ~, depending

smoothly on ǫ and whose �rst term gǫ0 := gǫ is the inverse of the ation integral Ĩ.

Proof. Let Ũ0 be the operator de�ned in Proposition 2.2.19, if S0 := gǫ
(

~

i

∂

∂θ̃

)

then we have:

(3) Ũ0P̃
ǫ
~ = S0Ũ0 +O(~) := (S0 + ~R1)Ũ0.

We want to modify Ũ0 to obtain our result. More preisely, we �rst look for a

unitary operator V suh that:

(4) V (Ũ0P̃
ǫ
~) = (S0 + ~S1)V Ũ0 +O(~2),
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with S1 = gǫ1

(

~

i

∂

∂θ̃

)

and where gǫ1 is a funtion to determine. We have, aording

to Equations (3) and (4):

V (Ũ0P̃
ǫ
~) = V (S0Ũ0 + ~R1Ũ0) = (S0 + ~S1)V Ũ0 +O(~2),

V S0Ũ0 + ~V R1Ũ0 = S0V Ũ0 + ~S1V Ũ0 +O(~2),

V S0 − S0V = ~S1V − ~V R1 +O(~2),

[V, S0] = ~S1V − ~V R1 +O(~2).

In terms of prinipal symbols, this means:

1

i
{v(θ̃, Ĩ), s0(θ̃, Ĩ)} = v(θ̃, Ĩ)(s1(θ̃, Ĩ)− r1(θ̃, Ĩ)) for (θ̃, Ĩ) ∈ (T ∗

S
1)C.

Let v = eia, then we have:

1

i
{v, s0} =

1

i

(

∂eia

∂θ̃

∂s0

∂Ĩ
− ∂eia

∂Ĩ

∂s0

∂θ̃

)

=
1

i
ieia

(

∂a

∂θ̃

∂s0

∂Ĩ
− ∂a

∂Ĩ

∂s0

∂θ̃

)

= eia{a, s0}.

Therefore eia{a, s0} = eia(s1 − r1), i.e. {a, s0} = s1 − r1. Moreover, we know that

s0 = gǫ(Ĩ), so:

(5) s1 − r1 = {a, gǫ(Ĩ)} =
∂a

∂θ̃

dgǫ

dĨ
i.e.

∂a

∂θ̃
=

(

dgǫ

dĨ

)−1

(s1 − r1).

Sine {a, s0} = s1 − r1, then:

(6) s1 =
1

2π

∫

r1dθ̃.

Consequently, we an determine s1 by using Equation (6) and ∂θ̃a by using Equation

(5). Then, sine

∫

∂θ̃adθ̃ = 0, we an well-de�ne a.
Thus, we obtain:

(V Ũ0)P̃
ǫ
~ :=

(

gǫ
(

~

i

∂

∂θ̃

)

+ ~gǫ1

(

~

i

∂

∂θ̃

)

+ ~
2R2

)

(V Ũ0).

We then reiterate this proess with the operator W = Id + ~V . This iterative

proedure yields the result. �

2.2.3. Spetrum.

Notation: We denote by Sǫ
~
the operator ating on L2

J
(S1) of symbol gǫ

~
(Ĩ), i.e.

Ũ P̃ ǫ
~
= Sǫ

~
Ũ +O(~∞) aording to Proposition 2.2.20 (where P̃ ǫ

~
= B∗P ǫ

~
B).

First, we have the following results.

Proposition 2.2.21. The spetrum of the operator Sǫ
~
is given by:

σ(Sǫ~) = {gǫ~(~k − J), k ∈ Z},
where gǫ

~
is the funtion given by Proposition 2.2.20.

Proof. The family (el(θ̃))l∈Z = (eilθ̃e−(i/~)Jθ̃)l∈Z for θ̃ ∈ [0, 2π] is an orthonormal

basis of the spae L2
J
(S1). �

Proposition 2.2.22. Let P ǫ
~
and P̃ ǫ

~
be the operators previously de�ned. Then

σ(P ǫ
~
) = σ(P̃ ǫ

~
).
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Proof. There exists some unitary operator B∗
suh that P̃ ǫ

~
= B∗P ǫ

~
B, therefore

the spetrum of the operator P̃ ǫ
~
is equal to the spetrum of the operator P ǫ

~
. �

We want to desribe the spetrum of the operator P̃ ǫ
~
by using the spetrum of

the operator Sǫ
~
that we know expliitly. To do so, we follow the method used in

[HS04, MS03℄ exept that in our ase the operator Sǫ
~
obtained by onjugay from

P̃ ǫ
~
is easier to manipulate.

More preisely, we want to desribe the spetrum of the operator P̃ ǫ
~
in a retangle

of the form:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

,

for E0 ∈ R, where C > 0 is a su�iently large onstant. Therefore, we will use

some miroloal analysis in a neighbourhood of {p̃ǫ
~
= E} where E ∈ RC,ǫ.

Notation:

• Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = pǫ ◦ κ−1

φ1
(y, η) = E} where

TubNeigh(ΛΦ2
) denotes a tubular neighbourhood of ΛΦ2

in (T ∗
S
1)C;

• let I0 ∈ R be the onstant suh that (κ−1
φ1

◦ κ̃)(Λ̃E0
) = {Ĩ = I0} where:

Λ̃E0
= {(y, η) ∈ ΛΦ2

; p̃ǫ(y, η)|ǫ=0 = E0}.

We onsider the set of quasi-eigenvalues for the operator Sǫ
~
, namely:

Σ(ǫ, ~) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ.
First, we an estimate the distane between two elements of the set Σ(ǫ, ~); indeed,
let z = gǫ

~
(~k − J) and z̃ = gǫ

~
(~l − J) with k, l ∈ Z and k 6= l. We assume that

z, z̃ ∈ Σ(ǫ, ~).
Then:

|z − z̃| ≥ ~|k − l|
O(1)

.

Let:

δ~ =
1

4
inf
k 6=l

dist(gǫ~(~k − J), gǫ~(~l − J)) >
~

O(1)
;

and onsider a family of open diss of the form:

Ωk(~) = {z ∈ RC,ǫ; |z − gǫ~(~k − J)| < δ~}.

Remark 2.2.23. The sets Ωk(~) are disjoints (beause the distane between two

elements of the set Σ(ǫ, ~) is greater than δ~).

We want to show that the spetrum of the operator P̃ ǫ
~
in the retangle RC,ǫ is

ontained in the union of diss Ωk(~). Therefore, we onsider the following equation
for z ∈ RC,ǫ:

(7) (P̃ ǫ~ − z)u = v with u, v ∈ H(S1 + iR,Φ2).

First, outside a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a on-

stant C > 0 suh that:

|p̃ǫ~(y, η)− E| > 1

C
.
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Indeed, by de�nition, we have:

Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = E},

= {(y, η) ∈ TubNeigh(ΛΦ2
); |p̃ǫ(y, η)− E| = 0} ;

So, for (y, η) /∈ V a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a

onstant C1 > 0 suh that:

|p̃ǫ(y, η)− E| > 1

C1
.

Besides, we an dedue from Assumption (C'), that for (y, η) ∈ TubNeigh(ΛΦ2
), we

have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)), for |y, η| ≥ C.

Let K = {(y, η) ∈ TubNeigh(ΛΦ2
); |(y, η)| ≤ C}. We assume that K is suh that

for (y, η) /∈ K, we have |E| ≤ 1

2C
m̃(ℜ(η)). We distinguish two ases:

• either (y, η) /∈ V and (y, η) ∈ K, then by ontinuity:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) 6= 0,

so there exist a onstant C > 0 suh that:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) ≥ 1

C
i.e. |p̃ǫ(y, η)− E| ≥ 1

C
m̃(ℜ(η)).

• or (y, η) /∈ V and (y, η) /∈ K, then by the elliptiity ondition, we have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)),

then:

|p̃ǫ(y, η)− E| ≥ |p̃ǫ(y, η)| − |E| ≥ 1

C
m̃(ℜ(η)) − 1

2C
m̃(ℜ(η)) = 1

2C
m̃(ℜ(η)).

Consequently, for (y, η) /∈ V , there exist a onstant C > 0 suh that:

|p̃ǫ(y, η)− E| ≥ 1

2C
m̃(ℜ(η)).

We denote by r̃ǫ
~
the funtion suh that p̃ǫ

~
(y, η) = p̃ǫ(y, η) + ~r̃ǫ

~
(y, η). Therefore,

for (y, η) /∈ V , we have:

|p̃ǫ~(y, η)− E| = |p̃ǫ~(y, η)− p̃ǫ(y, η) + p̃ǫ(y, η)− E|,
≥ |p̃ǫ(y, η)− E| − |p̃ǫ~(y, η)− p̃ǫ(y, η)|,

≥ 1

2C
m̃(ℜ(η)) − |~rǫ~(y, η)| ,

≥ 1

2C
m̃(ℜ(η)) − ~Cm̃(ℜ(η)), aording to Assumption (B')

=

(

1

2C
− ~C

)

m̃(ℜ(η)).

Therefore, for (y, η) /∈ V , there exist a onstant C > 0 suh that:

|p̃ǫ~(y, η)− E| > 1

C
.



BOHR-SOMMERFELD CONDITIONS 21

Consequently, for (y, η) /∈ V , there exist a onstant C > 0 suh that:

|ℜ(p̃ǫ~(y, η)− E)| > 1

C
or |ℑ(p̃ǫ~(y, η)− E)| > 1

C
.

Notation: Let a ∈ C∞
b (TubNeigh(ΛΦ2

)). We denote by OpΦ2
(a) the quantization

of the symbol a de�ned, for u ∈ H(S1 + iR,Φ2), by:

OpΦ2
(a)u(x) =

1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηa

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂x

(

x+ y

2

)}

(so

(

x+ y

2
, η

)

∈ ΛΦ2
).

Reall that: OpΦ2
(a) : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Let X pǫ|ǫ=0
be the �ow of the Hamiltonian vetor �eld assoiated to pǫ|ǫ=0. Let

X p̃ǫ|
ǫ=0

be the image by the funtion κΦ1
of the real �ow of X pǫ|

ǫ=0
. We onsider

a partition of unity on the manifold TubNeigh(ΛΦ2
):

1 = χ+ ψ+
1 + ψ−

1 + ψ+
2 + ψ−

2 ,

with:

1. χ ∈ C∞
0 (TubNeigh(ΛΦ2

)) a smooth funtion suh that χ = 1 in a neighbour-

hood of Λ̃ǫE and suh that its support is ontained in a small neighbourhood

of Λ̃ǫE where: Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) +O(~∞);

2. ψ±
1 ∈ C∞

0 ((T ∗S1)C) a smooth funtion supported in a region invariant under

the �ow of X p̃ǫ|
ǫ=0

and where:

ℑ(p̃ǫ~ − E) > ± 1

C
;

3. ψ±
2 ∈ C∞

b (TubNeigh(ΛΦ2
)) a smooth funtion supported in a region where:

ℜ(p̃ǫ~ − E) > ± 1

C
.

Moreover, we an hoose the funtions ψ±
1 suh that their Poisson brakets om-

mute with p̃ǫ|ǫ=0.

To show the pertinene of this partition of unity, we are going to look at some

properties where it intervenes. The proofs of these propositions are similar to what

is done in [HS04℄, thus we do not reall them here.

Proposition 2.2.24. Let u, v ∈ H(S1 + iR,Φ2) satisfying Equation (7). Then, we

have:

‖OpΦ2
(1− χ)u‖ ≤ O (1) ‖v‖+O(~∞)‖u‖.

Then, from Equation (7), we have:

(8) (P̃ ǫ~ − z)OpΦ2
(χ)u = OpΦ2

(χ)v + w with w = [P̃ ǫ~ ,OpΦ2
(χ)]u.

Sine w is miroloalized in the support of [P̃ ǫ
~
,OpΦ2

(χ)], whih is ontained outside

a small neighbourhood of Λ̃ǫE , we an show using Proposition 2.2.24 that:

(9) ‖w‖ ≤ O (~) ‖v‖+O(~∞)‖u‖.
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By applying the operator Ũ on Equation (8), we obtain:

Ũ((P̃ ǫ~ − z)OpΦ2
(χ)u) = Ũ(OpΦ2

(χ)v + w),

Ũ P̃ ǫ~OpΦ2
(χ)u − zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

(Sǫ~Ũ +O(~∞))OpΦ2
(χ)u− zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

beause Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) + O(~∞) by de�nition of the partition of

unity. Therefore, we have:

(10) (Sǫ~ − z)ŨOpΦ2
(χ)u = ŨOpΦ2

(χ)v + Ũw + T∞u,

where T∞ = O(~∞) : H(S1 + iR,Φ2) −→ L2
J
(S1).

From the expliit de�nition of the operator Sǫ
~
we see that, if z ∈ RC,ǫ \

⋃

Ωk(~),
the operator Sǫ

~
− z : L2

J
(S1) −→ L2

J
(S1) is miroloally invertible in the region

where |Ĩ − I0| ≤
1

O(1)
(whih orresponds to the domain where the operator Sǫ

~
is

well-de�ned) and its miroloal inverse is of the norm O
(

1

~

)

. Moreover, we also

have the following proposition.

Proposition 2.2.25. Let z ∈ RC,ǫ \
⋃

Ωk(~). Let u, v ∈ H(S1 + iR,Φ2) satisfying
Equation (10). Then, we have the following estimate:

‖OpΦ2
(χ)u‖ ≤ O(1)

~
‖v‖+O(~∞)‖u‖.

Proof. We multiply Equation (10) by Ũ−1(Sǫ
~
− z)−1

(where Ũ−1
is the miroloal

inverse of Ũ whih exists in the domain of the funtion χ) and use the estimate on

the norm of the operator Sǫ
~
− z, the estimate on w and the de�nition of T∞. �

We dedue from Propositions 2.2.24 and 2.2.25, that if z ∈ RC,ǫ \
⋃

Ωk(~), then

the operator P̃ ǫ
~
− z : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) is injetive.

Besides the operator P̃ ǫ
~
−z : H(S1+iR,Φ2, m̃) −→ H(S1+iR,Φ2) is also Fredholm

of index 0 (i.e. it is an operator with �nite-dimensional kernel and okernel whose

dimensions are the same). Namely, by the elliptiity of the prinipal symbol p̃ǫ, we

an onstrut an inverse for P̃ ǫ
~
− z+K where K is a ompat operator. Therefore,

we obtain that P̃ ǫ
~
− z+K is Fredholm of index 0 and that proves the fat that the

operator P̃ ǫ
~
− z is also Fredholm of index 0.

Therefore, if z ∈ RC,ǫ \
⋃

Ωk(~) we obtain that:

P̃ ǫ~ − z : H(S1 + iR,Φ2, m̃) −→ H(S1 + iR,Φ2),

is bijetive.

We an sum up what we have done so far by saying that the eigenvalues of the

operator P̃ ǫ
~
in RC,ǫ are loalized in the open diss Ωk(~). We are now fousing on

one of these diss.

Sine the eigenfuntions are miroloalized in a neighbourhood of Ĩ = I0, then we

onsider the ouples (~, k) suh that z ∈ Ωk(~), i.e. |~k − J − I0| <
1

C
.
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We want to prove that z ∈ Ωk(~) is a O(~∞)-lose to an eigenvalue of the operator

P̃ ǫ
~
if and only if:

z = gǫ~(~k − J) +O(~∞).

To do so, we are going to study two Grushin problems onerning Sǫ
~
−z and P̃ ǫ

~
−z

respetively; we reall the de�nition of this problem (for more details on this linear

algebrai tool see [SZ07℄).

De�nition 2.2.26 (Grushin problem). A Grushin problem for an operator P : H1 −→ H2

between two Hilbert spaes is a system:

{

Pu+R−u− = v,

R+u = v+;

where R− : H− −→ H2, R+ : H1 −→ H+, with H−, H+ two Hilbert spaes and

where (u, u−) ∈ H1 × H−, (v, v+) ∈ H2 × H+. The matrix assoiated with the

Grushin problem is de�ned by:

P :=

(

P R−
R+ 0

)

: H1 ×H− −→ H2 ×H+.

First, we onsider a Grushin problem for the operator Sǫ
~
− z. This problem is

globally de�ned if we onsider the funtion gǫ
~
(de�ning the operator Sǫ

~
) as a

ompatly supported one.

Let (el)l∈Z be the funtions de�ned for l ∈ Z and θ̃ ∈ [0, 2π] by:

el(θ̃) = e(i/~)(~l−J)θ̃ = eilθ̃e−(i/~)Jθ̃.

The family of funtions (el)l∈Z forms an orthonormal basis of the spae L2
J
(S1).

Let R̂+ and R̂− be the following operators:

R̂+ : L2
J (S

1) −→ C R̂− : C −→ L2
J (S

1),

u 7−→ 〈u|ek〉 ũ 7−→ ũek.

We look at the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ L2
J(S

1)× C:

{

(Sǫ~ − z)u+ R̂−ũ = v,

R̂+u = ṽ.

Proposition 2.2.27. Let:

S =

(

Sǫ
~
− z R̂−
R̂+ 0

)

: L2
J (S

1)× C −→ L2
J (S

1)× C.

Then, the operator S admits an inverse de�ned by:

Ê =

(

Ê(z) Ê+

Ê− Ê−,+(z)

)

,

with:

1. Ê+ = R̂−;
2. Ê− = R̂+;

3. Ê−,+(z) = z − gǫ
~
(~k − J);

Furthermore, the omponents of the operator Ê satisfy the following estimates:

(i) Ê =
O(1)

~
: L2

J
(S1) −→ L2

J
(S1);



24 OPHÉLIE ROUBY

(ii) Ê+ = O(1) : C −→ L2
J
(S1);

(iii) Ê− = O(1) : L2
J
(S1) −→ C;

(iv) Ê−,+ = O(~) : C −→ C.

Moreover, for all (u, ũ), (v, ṽ) ∈ L2
J
(S1)×C satisfying S(u, ũ) = (v, ṽ), we have the

following estimate:

(11) ~‖u‖L2

J

+ |ũ| ≤ O(1)(‖v‖L2

J

+ ~|ṽ|).

Proof. We invert the system S(u, ũ) = (v, ṽ) with (u, ũ), (v, ṽ) ∈ L2
J
(S1) × C by

using the orthonormal basis (el)l∈Z and the expliit expression Sǫ
~
= gǫ

~

(

~

i

∂

∂θ̃

)

to obtain the expression of Ê . Then, the estimates (i), (ii), (iii) and (iv) an be

dedued from 1., 2. and 3. always by using the properties of the basis (el)l∈Z.

Lastly, the estimate (11) an be dedued from (i), (ii), (iii) and (iv). �

We now deal with a global Grushin problem for the operator P̃ ǫ
~
− z.

We onsider the following operators, for all (~, k) suh that z ∈ Ωk(~):

R+ : H(S1 + iR,Φ2) −→ C,

u 7−→ R̂+ŨOpΦ2
(χ)u := 〈ŨOpΦ2

(χ)u|ek〉
and:

R− : C −→ H(S1 + iR,Φ2),

ũ 7−→ Ũ−1R̂−ũ := ũŨ−1ek.

where Ũ is the operator de�ned in Proposition 2.2.20 suh that miroloally :

Ũ P̃ ǫ~OpΦ2
(χ) = Sǫ~ŨOpΦ2

(χ) +O(~∞),

and where Ũ−1
denote the miroloal inverse of Ũ .

First, aording to [HS04℄, notie that we have the following property:

OpΦ2
(χ)R− = R− +O(~∞) : C −→ H(S1 + iR,Φ2),

up to dereasing the support of the funtion χ if neessary (beause the funtions

ek and χ are loalized in the same neighbourhood).

We onsider the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ H(S1+iR,Φ2)×C:
{

(P̃ ǫ~ − z)u+R−ũ = v,

R+u = ṽ.

Proposition 2.2.28. For all (v, ṽ) ∈ H(S1 + iR,Φ2) × C, this Grushin problem

admits a unique solution (u, ũ) ∈ H(S1+iR,Φ2, m̃)×C with the following estimate:

(12) ~‖u‖+ |ũ| ≤ O(1) (‖v‖+ ~|ṽ|) .
Proof. To prove this result, we are going to modify the Grushin problem for the

operator P̃ ǫ
~
− z and redue ourselves to that of the operator Sǫ

~
− z, we will then

be able to use Proposition 2.2.27.

Indeed, we start by applying the operator OpΦ2
(χ) to the �rst equation of the

Grushin problem for P̃ ǫ
~
− z:

{

OpΦ2
(χ)(P̃ ǫ~ − z)u+OpΦ2

(χ)R−ũ = OpΦ2
(χ)v,

R+u = ṽ.
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Sine OpΦ2
(χ)R− = R− +O(h∞) := R− −R∞

− , we have:

{

OpΦ2
(χ)(P̃ ǫ~ − z)u+R−ũ = OpΦ2

(χ)v +R∞
− ũ,

R+u = ṽ.

Sine:

OpΦ2
(χ)(P̃ ǫ~ − z)u = OpΦ2

(χ)P̃ ǫ~u− zOpΦ2
(χ)u,

= P̃ ǫ~OpΦ2
(χ)u − [P̃ ǫ~,OpΦ2

(χ)]u− zOpΦ2
(χ)u,

= (P̃ ǫ~ − z)OpΦ2
(χ)u − [P̃ ǫ~ ,OpΦ2

(χ)]u,

then, if w := [P̃ ǫ
~
,OpΦ2

(χ)]u, we have:
{

(P̃ ǫ~ − z)OpΦ2
(χ)u+R−ũ = OpΦ2

(χ)v + w +R∞
− ũ,

R+u = ṽ.

where w satis�es the following estimate:

‖w‖ ≤ O (~) ‖v‖+O(h∞)(‖u‖+ |ũ|).
We apply the operator Ũ to the �rst equation:

{

Ũ(P̃ ǫ~ − z)OpΦ2
(χ)u + ŨR−ũ = ŨOpΦ2

(χ)v + Ũw + ŨR∞
− ũ,

R+u = ṽ.

Besides, sine R− = Ũ−1R̂− and Ũ(P̃ ǫ
~
−z)OpΦ2

(χ) = (Sǫ
~
−z)ŨOpΦ2

(χ)+O(h∞),
the system beomes:

{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R+u = ṽ.

where w̃ satis�es |w̃| ≤ O(h∞)(‖u‖+ |ũ|).
Moreover by de�nition R+ = R̂+ŨOpΦ2

(χ), then the system an be written as:

{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R̂+ŨOpΦ2
(χ)u = ṽ.

We reognize the Grushin problem for Sǫ
~
− z and therefore we dedue our result.

The proof of the estimate (12) uses the estimate (11) and the estimations on the

norm of w and w̃. �

Let:

P =

(

P̃ ǫ
~
− z R−
R+ 0

)

: H(S1 + iR,Φ2)× C −→ H(S1 + iR,Φ2)× C.

Then, aording to Proposition 2.2.28, the operator P is injetive for z ∈ Ωk(~)
and beause it is a rank-one perturbation of a Fredholm operator of index 0, we
know that the operator P is bijetive for z ∈ Ωk(~).
We denote the inverse of P by:

E =

(

E(z) E+

E− E−,+(z)

)

,

and reall that the spetrum of P̃ ǫ
~
in Ωk(~) is equal to the set of z ∈ C suh that

E−,+(z) = 0. Therefore, we want to determine the omponent E−,+(z).
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Corollary 2.2.28.1. The omponents of the operator E are given by:

1. E+ = Ũ−1Ê+ +O(~∞);

2. E−,+(z) = Ê−,+(z) +O(~∞) = z − gǫ
~
(~k − J) +O(~∞).

Proof. Sine PE = Id, we have:
{

(P̃ ǫ~ − z)E+ +R−E−,+(z) = 0,

R+E+ = 1.

Therefore, we need to show, that up to O(h∞), we have:
{

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z) ≡ 0,

R+Ũ
−1Ê+ ≡ 1.

We have:

R+Ũ
−1Ê+

= R̂+ŨOpΦ2
(χ)Ũ−1Ê+ by de�nition of R+,

≡ 1 by de�nition of χ and beause SÊ = Id aording to Proposition 2.2.27.

Then, we have:

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z)

= (P̃ ǫ~ − z)Ũ−1Ê+ + Ũ−1R̂−Ê−,+(z) by de�nition of R−,

≡ Ũ−1(Sǫ~ − z)Ê+ + Ũ−1R̂−Ê−,+(z) beause Ũ P̃ ǫ~ = Sǫ~Ũ +O(h∞),

≡ 0 beause SÊ = Id.

�

We an sum up what we have done so far by the following proposition.

Proposition 2.2.29. Let P̃ ǫ
~
: H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) be the operator

previously de�ned. Then, with the notations of Proposition 2.2.20, we have:

σ(P̃ ǫ~) ∩RC,ǫ = σ(Sǫ~) ∩RC,ǫ +O(~∞) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ +O(~∞).

Proof. By de�nition of the spetrum, we know that z ∈ σ(P̃ ǫ
~
) if and only if P̃ ǫ

~
− z

is non-invertible, i.e. E−,+(z) = 0, i.e. z = gǫ
~
(~k− J) +O(~∞) (beause P̃ ǫ

~
− z is

invertible if and only if E−,+ is invertible too, i.e. if and only if E−,+(z) 6= 0). �

Now, we an onlude and determine the spetrum of the operator P ǫ
~
by using

Propositions 2.2.29 and 2.2.22. This ends the proof of Theorem B.

2.3. Proof of Theorem A. To prove Theorem A, we are going to make a link with

the L2(S1)-ase, then we will apply tehniques developed in the proof of Theorem

B.

We onsider the pseudo-di�erential operator P ǫ
~
ating on L2(R) and depending

smoothly on ǫ of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

satisfying the hypotheses (A) to (E) (whih were de�ned in the introdution).

We want to obtain Bohr-Sommerfeld quantization onditions for this operator by
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using Theorem B. Therefore, we are looking for a real anonial transformation of

the form:

κ̂ : Neigh(f ǫ = cst,R2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I),

and suh that:

f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I),

where f̂ ǫ is an analyti funtion depending smoothly on ǫ.
To onstrut suh a anonial transformation κ̂, we are going to use the ation-

angle oordinates theorem.

Let E0 ∈ R, we onsider:

ΛǫE0
= {(x, ξ) ∈ R

2, f ǫ(x, ξ) = E0};
reall that ΛE0

is ompat, onneted and regular.

Let γ̂E0
be a loop generating π1(Λ

ǫ
E0

) and let:

I(E0) =
1

2π

∫

γ̂E0

ξdx.

Then, by applying the ation-angle oordinates theorem with the parameter ǫ, we
know that there exists a sympletomorphism:

κ̂ : Neigh(f ǫ = E0,R
2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I);

suh that:

f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I).

The anonial transformation κ̂ transforms the prinipal symbol pǫ(x, ξ) to a prin-

ipal symbol of the form:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I);

where q̂ǫ(θ, I) = qǫ ◦ κ̂−1(θ, I). Therefore, we redue our problem to the study of a

prinipal symbol on S1 × R of the form used in Theorem B.

Moreover, we an hoose the transformation κ̂ suh that for any loop γ̂, we have:
∫

γ̂

κ̂∗Idθ − ξdx = 0.

Indeed, sine κ̂ is a anonial transformation then:

κ̂∗(dI ∧ dθ) = dξ ∧ dx.
Consequently, the 1-form κ̂∗(Idθ)− ξdx is losed and by Stokes theorem, we obtain

that the following integral over a loop γ̂:
∫

γ̂

κ̂∗(Idθ)− ξdx,

depends only on the homotopy lass of γ̂, then there exists a real onstant cγ̂(κ̂)
suh that:

∫

γ̂

κ̂∗(Idθ)− ξdx = cγ̂(κ̂),

and we an hoose this onstant equals to zero (up to hange the transformation κ̂
if neessary).
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Besides, we an extend the real anonial transformation κ̂ into a omplex anonial

transformation suh that:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I), for (θ, I) omplex oordinates.

Consequently, for γ̂ a omplex loop, the following relation is always true:

∫

γ̂

κ̂∗(Idθ) − ξdx = 0.

Let, for C > 0 a onstant:

E ∈
{

z ∈ C, |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We an onsider a loop γE in:

Λ̂ǫE = {(θ, I) ∈ TubNeigh(S1 × R), p̂ǫ(θ, I) = pǫ ◦ κ̂−1(θ, I) = E}.

Thus the loop κ̂∗γE := γ̂E is inluded in:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2), pǫ(x, ξ) = E}.

And the following ation integral is well-de�ned:

1

2π

∫

γ̂E

ξdx =
1

2π

∫

γE

Idθ.

This explains why we an express the �rst term in the asymptoti expansion of

eigenvalues of the operator P ǫ
~
in terms of the ation integral

∫

ξdx.

We want to quantize the omplex anonial transformation κ̂ of the form:

κ̂ : Neigh(ΛǫE ,TubNeigh(R
2)) −→ Neigh(Λ̂ǫE ,TubNeigh(S

1 × R)),

(x, ξ) 7−→ (θ, I),

where (x, ξ) and (θ, I) denotes the omplex oordinates. However, aording to the

proof of Theorem B, we know that there exists a omplex anonial transformation:

κ : Neigh(Λ̂ǫE ,TubNeigh(S
1 × R)) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ);

suh that:

p̂ǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Consequently, instead of quantizing the transformation κ̂, we an diretly quantize

the anonial transformation κ ◦ κ̂. To do so, we follow the same steps as in the

proof of Theorem B, thus we onsider the following ommutative diagram on the

phase spaes:

R2 ⊂ C2 κ◦κ̂
//

κφ1

��

(T ∗
S
1)C ⊃ S

1 × R

κφ1

��
ΛΦ1

⊂C
2

ΛΦ2
⊂ C2 (T ∗S1)C ⊃ ΛΦ1

κ̃−1

oo
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We quantize the transformations as done previously and obtain the following dia-

gram (with the notation of Propositions 2.2.8, 2.2.11 and 2.2.16):

L2(R)
U0

//

Tφ1

��

L2
J
(S1)

B∗

��
H(C,Φ1)

H(π(U),Φ2) A
// HJ (π(V ),Φ1)

Notation: P̃ ǫ
~
= Tφ1

◦ P ǫ
~
◦ T ∗

φ1
: H(C,Φ2) −→ H(C,Φ2).

We an sum up what we have done so far by the following proposition. The proof

of this result uses the same iterative proedure as in Proposition 2.2.20.

Proposition 2.3.1. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

suh that miroloally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.20 and where gǫ
~
is

an analyti funtion admitting an asymptoti expansion in powers of ~, depending

smoothly on ǫ and suh that its �rst term gǫ0 is the inverse of the ation integral

1
2π

∫

γ̂E
ξdx.

In order to determine the spetrum of the operator P ǫ
~
, we use the same argu-

ments as in the proof of Theorem B and therefore two Grushin problems, one for

the operator Sǫ
~
− z and the other one for the operator P̃ ǫ

~
− z.

3. Appliation to PT -symmetri pseudo-differential operators

PT -symmetri operators are used as an alternative to selfadjoint operators in

quantum mehanis and an interesting question about any suh operator is whether

or not its spetrum is real (see [Ben05℄). In the ase of perturbations of pseudo-

di�erential operators, Naima Boussekkine and Nawal Meherout proved in [BM13℄

that PT -symmetri perturbation of a semi-lassial Shrödinger operator with a

real-valued single well potential have real spetrum. Then Naima Boussekkine,

Nawal Meherout, Thierry Ramond and Johannes Sjöstrand proved in [BMRS15℄

that in the ase of a double well potential for an exponentially small perturbation

of Shrödinger operator, this operator also has real spetrum. They also showed

that for non-small perturbations of Shrödinger operator, the spetrum an beome

omplex.

First, reall the de�nition of a PT -symmetri operator (see for example [BM13℄

or [BMRS15℄): we denote by P the parity operator and by T the time-reversal

operator de�ned by:

P : L2(R) −→ L2(R) T : L2(R) −→ L2(R),

u(x) 7−→ u(−x) u(x) 7−→ u(x).

Let P ǫ
~
be a pseudo-di�erential operator ating on L2(R) and depending smoothly

on ǫ.
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De�nition 3.0.2. We said that the pseudo-di�erential operator P ǫ
~
is PT -symmetri

if [P ǫ
~
,PT ] = 0.

Theorem C. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ, ating on L2(R) and let E0 ∈ R suh that they satisfy the

assumptions (A) to (E), onsequently the operator P ǫ
~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx).

Moreover, we assume that P ǫ
~
is PT -symmetri. Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a onstant.

Then the spetrum of the operator P ǫ
~
in the retangle RC,ǫ is real.

Besides, the spetrum σ(P ǫ
~
) in the retangle RC,ǫ is given by Theorem A, thus:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),

where gǫ
~
is an analyti funtion admitting an asymptoti expansion in powers of ~,

depending smoothly on ǫ and suh that its �rst term gǫ0 in the asymptoti expansion

is the inverse of the ation oordinate

1
2π

∫

γE
ξdx.

Proof. Aording to Theorem A, we know that the spetrum of the operator P ǫ
~
in

the retangle RC,ǫ is given by:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),

where gǫ
~
is an analyti funtion admitting an asymptoti expansion in powers of ~,

depending smoothly on ǫ and the �rst term gǫ0 is the inverse of the ation oordinate

1
2π

∫

γE
ξdx. This means that the eigenvalues are along a urve up to O(~∞).

Moreover, sine P ǫ
~
is PT -symmetri, we have PT (P ǫ

~
−z) = (P ǫ

~
−z)PT . Therefore

the spetrum σ(P ǫ
~
) is symmetri with respet to the real axis.

If we hoose an eigenvalue in the spetrum σ(P ǫ
~
), then the symmetri of this

eigenvalue must also be in the spetrum. Yet, the distane between the real parts

of two eigenvalues is of order O(~), therefore the symmetri of an eigenvalue has the

same real part as the eigenvalue itself. Therefore the symmetri of an eigenvalue

is the eigenvalue itself, i.e. the spetrum is real. As a result, we obtain that

σ(P ǫ
~
) ∩RC,ǫ is real. �

Remark 3.0.3. We reover the result of Naima Boussekkine and Nawal Meherout

in [BM13℄ by using this theorem for any real number E0 satisfying Hypothesis (E)

(i.e. for non-ritial point E0) and the result of Mihael Hitrik in [Hit04℄ for ritial

points E0.

4. Numerial illustrations

In this setion, we illustrate our result for several di�erential operators. The fol-

lowing plots have been obtained with the numerial omputation software Silab.

4.1. Operators ating on L2(S1). Let α ∈ R∗
. In this setion, we deal with

di�erential operators P ǫ ating on L2(S1) of the form:

P ǫ(θ, ~Dθ) = α~Dθ + iǫQ(θ, ~Dθ),

where the symbol q(θ, I) assoiated with the operator Q(θ, ~Dθ) is an analyti

funtion on S
1 × R whih does not depend on the semi-lassial parameter ~.
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To implement this type of operators and determine their spetra by numerial

methods, we follow these three steps:

1. notie that the family (el)l∈Z = (eilθ)l∈Z is an orthonormal basis of L2(S1),
therefore we an de�ne the operator P ǫ by its ation on the basis, so we

obtain an in�nite matrix Pǫ;
2. we hoose an integer N ≥ 1 and we restrit the matrix Pǫ to a matrix

Pǫ2N+1 of size (2N + 1)× (2N + 1) by hoosing to only onsider the ation

of the operator P ǫ on the funtions (el)−N≤l≤N ;
3. we ompute the spetrum of Pǫ with the funtion spe of Silab.

Then, to ompare the numerial spetrum with our result, we determine an ap-

proximate of the funtion gǫ(Ĩ) (whih gives the exat spetrum) by onsidering

the average in θ of the symbol pǫ(θ, I) := αI + iǫq(θ, I).
We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. α = 1;

4. ǫ = ~δ with δ =
1

2
.
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Figure 1. pǫ(θ, I) = αI + iǫ(cos θ + I2).

Figure 2. pǫ(θ, I) = αI + iǫ(cos θ + I2).
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Figure 3. pǫ(θ, I) = αI + iǫ(cos θ + I3).

Figure 4. pǫ(θ, I) = αI + iǫ(cos θ + I3).
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4.2. Operators ating on L2(R). In this setion, we deal with di�erential oper-

ators P ǫ ating on L2(R) of the form:

P ǫ(x, ~Dx) = P0(x, ~Dx) + iǫQ(x, ~Dx),

where P0(x, ~Dx) = x2 + (~Dx)
2
is the harmoni osillator and where q(x, ξ) the

symbol assoiated with the operator Q(x, ~Dx) is a polynomial funtion in x and

ξ, whih does not depend on the semi-lassial parameter ~.

To implement this type of operator, we onsider the following spae.

De�nition 4.2.1 (Fok spae). The Fok spae, denoted by F , is the set of holo-

morphi funtions f(z) on C satisfying:

1

π

∫

C

|f(z)|2e−|z|2/~L(dz) < +∞.

Notation: 〈, 〉 is the salar produt on F de�ned for all u, v ∈ F by:

〈u, v〉 = 1

π

∫

C

u(z)v(z)e−|z|2/~L(dz).

We an show that, for α ∈ N, the family (ζα)α∈N, where:

ζα(z) =
zα√

~α+1α!
,

is an orthonormal basis of F . Reall the de�nition of the Bargmann transform

assoiated with the Fok spae.

De�nition 4.2.2 (Bargmann transform). Let u ∈ L2(R), we de�ne the Bargmann

transform of u, for z ∈ C, by:

(Tu)(z) =

∫

R

e−(z2−2
√
2xz+x2)/(2~)u(x)dx.

This transform sends L2(R) to the Fok spae F .

To determine the spetrum of the operator P ǫ by numerial methods, we follow

these three steps:

1. we ompute TP ǫT−1
by using reation and annihilation operators and we

de�ne the operator TP ǫT−1
by its ation on the basis (ζα)α∈N, so we obtain

an in�nite matrix Pǫ;
2. we hoose an integer N ≥ 1 and we restrit the matrix Pǫ to a matrix

PǫN+1 of size (N + 1)× (N + 1) by hoosing to only onsider the ation of

the operator TP ǫT−1
on the funtions (ζα)0≤α≤N ;

3. we ompute the spetrum of Pǫ with the funtion spe of Silab.

Then, to ompare the numerial spetrum with our result, we determine an ap-

proximate of the funtion gǫ (whih gives the exat spetrum) by giving expliit

ation-angle oordinates for the harmoni osillator and by omputing an approx-

imate to order ǫ of the funtion gǫ (by averaging q). We denote this approximate

by g̃ǫ.
We ompare the numerial result with the approximate spetrum obtained by using

our theorem (i.e. g̃ǫ(~k) with k ∈ Z) and with the approximate spetrum obtained

by using the spetrum of the harmoni osillator (i.e. g̃ǫ(~(2k + 1)) with k ∈ Z).

We observe that the approximate spetrum obtained via the spetrum of the har-

moni osillator is better than the one obtained with our result, beause it takes
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into aount the Maslov index.

We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. ǫ = ~δ with δ =
1

2
.

Figure 5. pǫ(x, ξ) = x2 + ξ2 + iǫx2.
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Figure 6. pǫ(x, ξ) = x2 + ξ2 + iǫx2.

Figure 7. pǫ(x, ξ) = x2 + ξ2 + iǫ(x2 + x3).
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Figure 8. pǫ(x, ξ) = x2 + ξ2 + iǫx4.

Figure 9. pǫ(x, ξ) = x2 + ξ2 + iǫx4.
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