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Abstra
t. In this paper, we give a des
ription of the spe
trum of a 
lass of

non-selfadjoint perturbations of selfadjoint ~-pseudo-di�erential operators in

dimension one and we show that it is given by Bohr-Sommerfeld quantization


onditions. To a
hieve this, we make use of previous work by Mi
hael Hitrik,

Anders Melin and Johannes Sjöstrand. We also give an appli
ation of our

result in the 
ase of PT -symmetri
 pseudo-di�erential operators.

Introdu
tion

The obje
t of this paper is to des
ribe the spe
trum of a 
lass of pseudo-

di�erential operators in the semi-
lassi
al limit. Semi-
lassi
al analysis is a rigorous

mathemati
al framework that allows to relate 
lassi
al me
hani
s and quantum me-


hani
s in the regime where the Plan
k 
onstant ~ goes to zero, using the mi
rolo
al

analysis of pseudo-di�erential operators as its basi
 tools. In quantum me
hani
s to

ea
h observable we asso
iate an operator and the possible values of this observable


orrespond to the spe
trum of the operator. Most of the papers on quantum me-


hani
s are devoted to the study of selfadjoint operators whi
h 
orresponds to real

observables. However, the spe
tral analysis of non-selfadjoint operators, whi
h is

the subje
t of this paper, is very useful in the modelling of damping or for the study

of resonan
es [Dav02℄. Moreover, PT-symmetri
 operators, whi
h are not ne
essar-

ily selfadjoint but may have, under some 
onditions, a real spe
trum, have been

re
ently 
onsidered as a natural generalization of quantum observables, see [Ben05℄.

Bohr-Sommerfeld quantization 
onditions were introdu
ed in the study of ele
-

troni
 levels of atoms to determine whi
h 
lassi
al traje
tories were relevant. More

pre
isely, Niels Bohr proposed that the ele
trons in atoms 
ould only exist in 
ertain

well-de�ned stable orbits satisfying the following 
ondition:

1

2π

∮

p.dq = n~, for some n ∈ N,

where the pair (q, p) are the position and momentum 
oordinates of an ele
tron

and where the integral is 
omputed over some 
losed orbit in the phase spa
e.

Further experiments showed that Bohr's model of the atom seemed too simple to

des
ribe some heavier elements, so Arnold Sommerfeld expanded the original model

to explain these phenomenons by suggesting that ele
trons travel in ellipti
al orbits

around a nu
leus instead of 
ir
ular orbits.

Mathemati
ally, Bohr-Sommerfeld quantization 
onditions give a des
ription of

the spe
trum of some 
lass of selfadjoint operators. These 
onditions are established
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in the one-dimensional 
ase and in that of 
ompletely integrable systems. More

pre
isely, we say that a one-dimensional selfadjoint pseudo-di�erential operator P~

satis�es the Bohr-Sommerfeld 
onditions if its eigenvalues are the real numbers E
su
h that:

∫

γE

α0 + ~

∫

γE

κ+ ~
π

2
µ(γE) +O(~2) ∈ 2π~Z,

where:

• γE is a spe
i�
 loop in the level set ΛE = {p−1(E)} where p is the prin
ipal
symbol of the operator P~;

• µ(γE) is the Maslov index of the 
urve γE ;
• α0 is the Liouville 1-form;

• κ is the subprin
ipal 1-form.

The 
ase of regular energy 
urves in dimension one has been investigated by Bernard

Hel�er and Didier Robert in [HR84℄ and that of 
ompletely integrable systems by

Anne-Marie Charbonnel in [Cha88℄ and by San V�u Ngo

.


 in [VN00℄ (where the sub-

prin
ipal 1-form was de�ned). In the 
ase of non-selfadjoint operators, these 
ondi-

tions are not satis�ed; however if we 
onsider a non-selfadjoint pseudo-di�erential

operator 
lose to a selfadjoint one, several results have been re
ently obtained. More

pre
isely, these 
onditions have been extended in the 
ase of non-selfadjoint pertur-

bations of selfadjoint operators in dimension two by Anders Melin and Johannes

Sjöstrand in [MS02, MS03℄ and then by Mi
hael Hitrik and Johannes Sjöstrand in

[HS04℄. The 
ase of non-selfadjoint perturbations of selfadjoint operators in dimen-

sion one has not yet been treated, so that is the 
ase that we investigate here.

More pre
isely, we give a des
ription of the spe
trum of a family of ~-pseudo-

di�erential operators of the form F ǫ
~
(x, ~Dx) + iǫQǫ

~
(x, ~Dx) where F

ǫ
~
and Qǫ

~
are

selfadjoint operators depending smoothly on a parameter ǫ. The result states that
any eigenvalue of su
h obje
t 
an be written as a fun
tion of ~ times an integer.

This fun
tion is analyti
, depending on the small parameter ǫ and admits an as-

ymptoti
 expansion in powers of ~. Moreover, the �rst term in the asymptoti


expansion of this fun
tion is the inverse of a 
omplex a
tion integral. Then, we

give an appli
ation of our result for PT -symmetri
 pseudo-di�erential operators in

dimension one.

Stru
ture of the paper:

• in Se
tion 1, we state our result;

• in Se
tion 2, we prove the result in two main steps. The �rst one 
onsists

in establishing the result in the 
ase of an operator a
ting on L2(S1) and
to prove it by using te
hniques developed by Mi
hael Hitrik, Anders Melin,

Johannes Sjöstrand and San V�u Ngo

.


 in the following papers [MS02, MS03,

HS04, HSN07, Sjö02℄. More pre
isely, we use 
omplex mi
rolo
al analysis

and Grushin problems. Afterwards, in the se
ond step, we generalize the

result obtained in the �rst step to obtain our result;

• in Se
tion 3, we give an appli
ation of our result for PT -symmetri
 opera-

tors;

• in Se
tion 4, we give some numeri
al illustrations of our result.
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1. Result

1.1. Assumptions. Let 0 < ~ ≤ 1 be the semi-
lassi
al parameter. Re
all the

de�nition of the Weyl quantization.

De�nition 1.1.1. Let p~(x, ξ) ∈ S(R2) be a fun
tion in the S
hwartz spa
e de�ned

on the 
otangent spa
e T ∗
R ≃ R

2
and admitting an asymptoti
 expansion in powers

of ~. We de�ne the Weyl quantization of the symbol p~, denoted by P~(x, ~Dx)
(where Dx = −i∂x), by the following formula, for u ∈ L2(R):

P~(x, ~Dx)u(x) =
1

2π~

∫

R

∫

R

e(i/~)(x−y)ξp~

(

x+ y

2
, ξ

)

u(y)dydξ.

P~(x, ~Dx) is a pseudo-di�erential operator a
ting on L
2(R) and we 
alled the fun
-

tion p~(x, ξ) the symbol of the operator P~(x, ~Dx).

Let ǫ be a positive real number. Let P ǫ
~
= P ǫ

~
(x, ~Dx) be the Weyl quantization on

R
2
of some symbol pǫ

~
:= f ǫ

~
+ iǫqǫ

~
depending smoothly on ǫ and satisfying:

(A) pǫ
~
is a holomorphi
 fun
tion on a tubular neighbourhood of R× R and on

this tubular neighbourhood we have:

(1) ∃C > 0, |pǫ~(x, ξ)| ≤ Cm(ℜ(x, ξ)),

where m is an order fun
tion on R
2
, i.e.

1. m ≥ 1;
2. there exists some 
onstants C0 ≥ 0 and N0 ≥ 0 su
h that, for all

X, X̂ ∈ R2
:

m(X) ≤ C0〈X − X̂〉N0m(X̂),

where 〈X〉 = (1 + |X |2)1/2.
(B) pǫ

~
admits an asymptoti
 expansion in powers of ~ in the spa
e of holomor-

phi
 fun
tions satisfying the bound (1) of the form:

pǫ~(x, ξ) ∼
∞
∑

j=0

pǫj(x, ξ)~
j ;

(C) the prin
ipal symbol, denoted by pǫ:

pǫ(x, ξ) := pǫ0(x, ξ) = f ǫ(x, ξ) + iǫqǫ(x, ξ),

with (x, ξ) ∈ R2
, is ellipti
 at in�nity, i.e. for (x, ξ) in a tubular neighbour-

hood of R
2
, there exists C > 0 su
h that:

|pǫ(x, ξ)| ≥ 1

C
m(ℜ(x, ξ)), for |(x, ξ)| ≥ C;

(D) the symbols f ǫ
~
and qǫ

~
are R-valued analyti
 fun
tions on R2

depending

smoothly on ǫ.
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Therefore, we 
onsider a pseudo-di�erential operator P ǫ
~
a
ting on L2(R) satisfying

the previous hypotheses, so we have:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~
and Qǫ

~
are selfadjoint pseudo-di�erential operators depending smoothly

on ǫ.
In order to use the a
tion-angle 
oordinates theorem, we 
onsider, for E0 ∈ R a

�xed real number, the level set:

ΛE0
= {(x, ξ) ∈ R

2; pǫ(x, ξ)|ǫ=0 = E0}.
We assume that:

(E) ΛE0
is 
ompa
t, 
onne
ted and regular, i.e. d(pǫ|ǫ=0) = d(f ǫ|ǫ=0) 6= 0 on

ΛE0
.

Remark 1.1.2. Be
ause of the ellipti
ity assumption, we already know that the

level set ΛE0
is 
ompa
t for small E0.

Notation: TubNeigh(R2) denotes a tubular neighbourhood of R2
in C2

.

Assume, for C > 0 a 
onstant, that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We 
onsider the following 
omplex neighbourhood of the level set ΛE0
:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2); pǫ(x, ξ) = E}.
This level set is 
onne
ted and df ǫ 6= 0 on ΛǫE for ǫ small enough (a

ording to

Assumption (E)). In what follows, we de�ne an a
tion integral I(E) of the form:

I(E) =
1

2π

∫

γE

ξdx,

where γE is a spe
i�
 loop in the level set ΛǫE (see Se
tion 2.3). We will show that

under our assumptions the map E 7−→ I(E) is invertible.

Under the assumptions (A) to (D), the spe
trum of the operator P ǫ
~
is dis
rete in

some �xed neighbourhood of the real number E0.

1.2. Main result.

Theorem A. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ and a
ting on L2(R). Let E0 ∈ R su
h that the assumptions (A)

to (E) are satis�ed, in parti
ular the operator P ǫ
~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

where F ǫ
~
and Qǫ

~
are selfadjoint pseudo-di�erential operators. Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a 
onstant.

Then the spe
trum of the operator P ǫ
~
in the re
tangle RC,ǫ is given by:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),
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where gǫ
~
is an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~

and depending smoothly on ǫ. Moreover, the �rst term in the asymptoti
 expansion

of gǫ
~
, denoted by gǫ0, is the inverse of the a
tion 
oordinate E 7−→ 1

2π

∫

γE
ξdx.

Remark 1.2.1. This result gives a des
ription of the spe
trum in a re
tangle RC,ǫ
whi
h does not depend on the semi-
lassi
al parameter ~ 
ontrary to the result

obtained in the two-dimensional 
ase by Mi
hael Hitrik and Johannes Sjöstrand in

[HS04℄ in whi
h the parameters ǫ and ~ are related. Therefore, we obtain a slightly

�ner result in the one-dimensional 
ase.

Remark 1.2.2. We assume that the level set ΛE0
is 
onne
ted. However, it should

be possible to state a similar result in the 
ase of several 
onne
ted 
omponents using

the same basi
 outline (in this 
ase, we would have to 
onsider Bohr-Sommerfeld

quantization 
onditions for ea
h 
omponent and 
onsider the union of these 
om-

ponents).

2. Proof

The proof of our result is divided into two parts:

1. we 
onsider a pseudo-di�erential operator P ǫ
~
a
ting on L2(S1) of the form

P ǫ
~
(θ, ~Dθ) = F ǫ

~
(θ, ~Dθ) + iǫQǫ

~
(θ, ~Dθ), where F

ǫ
~
(θ, ~Dθ) = F ǫ(~Dθ) + O(~)

and we prove the same type of result (Theorem B) for this operator;

2. we generalize Theorem B to the 
ase of an operator a
ting on L2(R) and satis-

fying the assumptions (A) to (E).

2.1. Result in the L2(S1)-
ase. In this paragraph, we present our result in the


ase of a pseudo-di�erential operator a
ting on L2(S1).

Notation:

• S1 is the real torus R/2πZ;
• (T ∗

S
1)C is the 
omplex 
otangent spa
e of S

1
: (S1 + iR)× C;

• L2(S1) is the set of 2π-periodi
 measurable fun
tions f su
h that:

1

2π

∫ 2π

0

|f(θ)|2 dθ <∞;

• TubNeigh(S1 × R) is a tubular neighbourhood of S1 × R in (T ∗S1)C;
• Neigh(A;B) is a neighbourhood of the spa
e A in the spa
e B.

We 
onsider a pseudo-di�erential operator P ǫ
~
depending smoothly on ǫ and a
ting

on L2(S1) of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where Qǫ
~
is a selfadjoint pseudo-di�erential operator depending smoothly on ǫ and

F ǫ
~
is a selfadjoint pseudo-di�erential operator depending smoothly on ǫ of the form:

F ǫ~(θ, ~Dθ) = F ǫ(~Dθ) +O(~).

More pre
isely, P ǫ
~
is theWeyl quantization of the symbol pǫ

~
(θ, I) = f ǫ

~
(θ, I)+iǫqǫ

~
(θ, I)

whi
h is a periodi
 fun
tion in θ satisfying the following 
onditions:

(A') pǫ
~
is a holomorphi
 fun
tion on a tubular neighbourhood of S1 × R su
h

that on this neighbourhood:

(2) ∃C > 0, |pǫ~(θ, I)| ≤ Cm(ℜ(I)),
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where m is an order fun
tion on R;

(B') pǫ
~
admits an asymptoti
 expansion in powers of ~ in the spa
e of holomor-

phi
 fun
tions satisfying the bound (2):

pǫ~(θ, I) ∼
∞
∑

j=0

pǫj(θ, I)~
j ,

(C') the prin
ipal symbol, denoted by pǫ:

pǫ(θ, I) := pǫ0(θ, I) = f ǫ(I) + iǫqǫ(θ, I),

for (θ, I) ∈ S1 × R, is ellipti
 at in�nity, i.e. for (θ, I) in a tubular neigh-

bourhood of S1 × R, there exists C > 0 su
h that:

|pǫ(θ, I)| ≥ 1

C
m(ℜ(I)), for |(θ, I)| ≥ C;

(D') the symbols f ǫ
~
and qǫ

~
are R-valued analyti
 fun
tions on S1×R depending

smoothly on ǫ.

For E0 ∈ R a �xed real number, we 
onsider the level set:

ΛE0
= {(θ, I) ∈ S

1 × R; pǫ(θ, I)|ǫ=0 = E0}.
We assume that:

(E') ΛE0
is regular, i.e. d(pǫ|ǫ=0) = (f ǫ|ǫ=0)

′ 6= 0 on ΛE0
.

Assume, for C > 0 a 
onstant, that:

E ∈
{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We 
onsider the following 
omplex neighbourhood of the level set ΛE0
:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
A

ording to Assumption (E'), this level set ΛǫE is 
onne
ted and (f ǫ)′ 6= 0 on ΛǫE
for ǫ small enough (f ǫ is a lo
al di�eomorphism on ΛǫE).
Let γE be a loop in ΛǫE generating π1(Λ

ǫ
E) (the fundamental group of ΛǫE), we

de�ne an a
tion integral Ĩ (we will explain later why this integral is well-de�ned

and invertible) by:

Ĩ(E) =
1

2π

∫

γE

Idθ.

To des
ribe the spe
trum of the operator P ǫ
~
, we have the following result.

Theorem B. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ and a
ting on L2(S1). Let E0 ∈ R su
h that the hypotheses (A')

to (E') are satis�ed, in parti
ular the operator P ǫ
~
is of the form:

P ǫ~(θ, ~Dθ) = F ǫ~(θ, ~Dθ) + iǫQǫ~(θ, ~Dθ),

where F ǫ
~
(θ, ~Dθ) = F ǫ(~Dθ) +O(~). Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a 
onstant.

Then, we have:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),
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where gǫ
~
is an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~

and depending smoothly on ǫ. Moreover, the �rst term in the asymptoti
 expansion

of gǫ
~
, denoted by gǫ0, is the inverse of the a
tion 
oordinate Ĩ.

2.2. Proof of Theorem B. To prove Theorem B, we pro
eed as follows.

Step 1: we 
onstru
t a 
anoni
al transformation κ and 
omplex a
tion-angle 
oor-

dinates (θ̃, Ĩ), where :

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

su
h that:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Step 2: we quantize the 
anoni
al transformation κ, by following this pro
edure:

1. we 
onjugate, by a unitary transform, the operator P ǫ
~
a
ting on L2(S1)

in an operator P̃ ǫ
~
a
ting on some Bargmann spa
e, therefore their

spe
tra are equal;

2. we 
onstru
t a unitary operator Ũ0 su
h that mi
rolo
ally:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~);

then, by an iterative pro
edure, we 
onstru
t a unitary operator Ũ
su
h that mi
rolo
ally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞).

Step 3: we determine the spe
trum of the operator P ǫ
~
by using two Grushin prob-

lems, one for the operator P̃ ǫ
~
and one for the operator gǫ

~

(

~

i

∂

∂θ̃

)

obtained

in Step 2.

2.2.1. Constru
tion of the 
anoni
al transformation κ. This 
onstru
tion is analo-

gous to what is done in [HS04℄.

We 
onsider:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); pǫ(θ, I) = E}.
Noti
e that the fun
tion pǫ − E is holomorphi
 and that:

∂pǫ

∂I
(θ, I) =

df ǫ

dI
(I) + iǫ

∂qǫ

∂I
(θ, I) 6= 0,

for ǫ su�
iently small be
ause (f ǫ)′ 6= 0 and ∂Iq
ǫ
is bounded on ΛǫE . Therefore

by applying the holomorphi
 impli
it fun
tion theorem, we obtain that ΛǫE 
an be

written as:

ΛǫE = {(θ, I) ∈ TubNeigh(S1 × R); I = lǫ(θ, E)},
where lǫ is a holomorphi
 fun
tion depending smoothly on ǫ.
We 
an now de�ne an a
tion 
oordinate Ĩ by integrating the 1-form Idθ. Sin
e

ΛǫE is homotopy equivalent to S1, then there exists a unique loop γE in ΛǫE whose

homotopy 
lass generates π1(Λ
ǫ
E) (up to orientation), and we de�ne the 
oordinate

Ĩ by:

Ĩ(E) =
1

2π

∫

γE

Idθ.
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We 
an 
hoose the loop γE de�ned by the following parametrization, for t ∈ [0, 2π[:
{

θ(t) = t;

I(t) = lǫ(θ(t), E).

Therefore, we 
an rewrite Ĩ(E) as:

Ĩ(E) =
1

2π

∫ 2π

0

lǫ(θ(t), E)dt.

Sin
e the 1-form Idθ|Λǫ
E
is 
losed, by applying Stokes formula we obtain that Ĩ(E)

depends only on the homotopy 
lass of the loop γE in ΛǫE .
Moreover, noti
e that (sin
e f ǫ is a lo
al di�eomorphism):

dĨ

dE
(E) =

1

2π

∫ 2π

0

∂lǫ

∂E
(θ(t), E)dt,

=
1

2π

∫ 2π

0

(

d(f ǫ)−1

dE
(E) +O(ǫ)

)

dt,

=
d(f ǫ)−1

dE
(E) +O(ǫ) 6= 0.

Therefore by using the holomorphi
 inverse fun
tion theorem, we see that the map

E 7−→ Ĩ(E) is a lo
al di�eomorphism.

We are now able to 
onstru
t the 
anoni
al transformation κ.

Proposition 2.2.1. There exists a 
anoni
al transformation:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ),

su
h that:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Hen
e, the fun
tion gǫ is the inverse of the a
tion integral Ĩ.

Proof. Let δ0 be a positive real number and let S
1+ i]−δ0, δ0[ be the proje
tion (on

the �rst 
oordinate) of the tubular neighbourhood of S1 ×R used in the de�nition

of the level set ΛǫE . Let π : R+ i]− δ0, δ0[−→ S1 + i]− δ0, δ0[ be the proje
tion. We

denote by θ̂ some 
omplex number su
h that θ = π(θ̂) with θ ∈ S1 + i]− δ0, δ0[.

We are going to prove that there exists a holomorphi
 fun
tion h(θ, Ĩ) su
h that

lo
ally we have:

κ : Neigh(ΛǫE , (T
∗
S
1)C) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(

θ,
∂h

∂θ

)

7−→
(

∂h

∂Ĩ
, Ĩ

)

.

Re
all that E is a �xed 
omplex number; we 
onsider the 1-form:

ω = Idθ|Λǫ
E
= lǫ(θ, E)dθ.

lǫ is a holomorphi
 fun
tion, so we have: dω = 0 on ΛǫE .
Thus, sin
e ΛǫE is homotopi
 to S

1
, there exists a fun
tion h(θ, E) de�ned on ΛǫE
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su
h that dh = ω if and only if:

1

2π

∫

γE

ω = 0,

where γE is the loop previously de�ned.

Therefore, there exists a fun
tion h(θ, E) on ΛǫE su
h that:

dh = ω − 1

2π

∫

γE

ω = ω − 1

2π

∫

γE

Idθ = ω − Ĩ(E).

Moreover, there also exists a fun
tion ĥ(θ̂, E) on (R + i] − δ0, δ0[) × C su
h that

dĥ = ω̂ = π∗ω. We 
an 
hoose:

ĥ(θ̂, E) = h(π(θ̂), E) + θ̂Ĩ(E).

Then:

dĥ = π∗dh+ Ĩ = ω̂.

Sin
e E 7−→ Ĩ(E) is a lo
al di�eomorphism, then we de�ne a fun
tion ȟ(θ̂, Ĩ) by:

ȟ(θ̂, Ĩ) = ĥ(θ̂, E(Ĩ)) = h(π(θ̂), E(Ĩ)) + θ̂Ĩ ,

where E(Ĩ) is the inverse fun
tion of Ĩ(E).

By de�nition of ȟ, there exists a fun
tion h̃(θ, Ĩ) de�ned by:

h̃(θ, Ĩ) = ȟ(π∗θ, Ĩ).

Let:

κ(θ, I) =

(

∂h̃

∂Ĩ
(θ, Ĩ), Ĩ

)

.

This fun
tion is well-de�ned be
ause it does not depend on the 
hoi
e of the 
lass

representative of θ. Besides, for (θ, I) ∈ ΛǫE , by 
onstru
tion we have:

I = lǫ(θ, E) =
∂h̃

∂θ
(θ, Ĩ).

Therefore κ is lo
ally a holomorphi
 symple
ti
 transformation whi
h sends ΛǫE on

{Ĩ = cst} (be
ause Ĩ depends only on E), thus:

pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ),

be
ause

∂

∂θ̃
the tangent ve
tor �eld to {Ĩ = cst} is sent by κ−1

on the tangent

ve
tor �eld to ΛǫE , in other words:

∂

∂θ̃
(pǫ ◦ κ−1(θ̃, Ĩ)) = 0 ⇒ pǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Moreover, we 
an dedu
e from this equation that gǫ is the inverse of the a
tion

integral Ĩ be
ause:

gǫ(Ĩ(E)) = p ◦ κ−1(θ̃, Ĩ(E)) = E.

�

Remark 2.2.2. If ǫ = 0, κ is the identity (of generating fun
tion h(θ, Ĩ) = θĨ).
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2.2.2. Quantization of the 
anoni
al transformation κ. We want to 
onstru
t an

operator U0 asso
iated with the 
anoni
al transformation κ. In this 
ase, we 
an

not apply Egorov's theorem, therefore we are going to write the 
anoni
al trans-

formation κ as a 
omposition of 
anoni
al transformations that will be easier to

quantize. Before doing so, re
all that one 
an quantize a 
anoni
al transformation

if it 
omes from some FBI transform (see for example [Zwo12, Chapter 13℄).

Notation: Let Φ be a stri
tly plurisubharmoni
 R-valued quadrati
 form on C.

We introdu
e the following notation:

• L(dz) is the Lebesgue measure

i

2
dz ∧ dz;

• L2(C,Φ) = L2(C, e−2Φ/~L(dz)) is the set of measurable fun
tions f su
h

that:

∫

C

|f(z)|2e−2Φ(z)/~L(dz) < +∞;

• L2(C,Φ,m) = L2(C,m2e−2Φ/~L(dz)) is the set of measurable fun
tions f
su
h that:

∫

C

|f(z)|2m(z)2e−2Φ(z)/~L(dz) < +∞;

where m is a fun
tion (from now one, m will denote the order fun
tion

asso
iated with the operator P ǫ
~
in Assumption (A));

• H(C,Φ) = Hol(C)∩L2(C,Φ) is the set of holomorphi
 fun
tions in L2(C,Φ);
• H(C,Φ,m) = Hol(C) ∩ L2(C,Φ,m) is the set of holomorphi
 fun
tions in

L2(C,Φ,m).

Remark 2.2.3. Sin
e the order fun
tion m is su
h that m ≥ 1, we have:

H(C,Φ,m) ⊂ H(C,Φ).

Re
all the de�nition of the FBI (Fourier-Bros-Iagoniltzer) transform in dimension

one (see for example [Zwo12, Chapter 13℄).

De�nition 2.2.4 (FBI transform and its 
anoni
al transformation). Let φ(z, x) be
a holomorphi
 quadrati
 fun
tion on C× C su
h that:

1. ℑ
(

∂2φ

∂x2

)

is a positive real number;

2.

∂2φ

∂x∂z
6= 0.

The FBI transform asso
iated with the fun
tion φ is the operator Tφ de�ned on

S(R) by:
Tφu(z) =

cφ
~3/4

∫

R

e(i/~)φ(z,x)u(x)dx,

where:

cφ =
1

21/2π3/4

| det ∂x∂zφ|
(detℑ(∂2xφ))1/4

.

We de�ne a 
anoni
al transformation asso
iated with Tφ by:

κφ : C× C −→ C× C,

(x,−∂xφ(z, x)) 7−→ (z, ∂zφ(z, x)).

We have the following property on FBI transform (see for example [Zwo12, p.309℄).
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Proposition 2.2.5. Let, for z ∈ C:

Φ(z) = sup
x∈R

(−ℑ(φ(z, x))) .

Then Tφ : L2(R) −→ H(C,Φ) is a unitary transformation.

Moreover, if T ∗
φ : L2(C,Φ) −→ L2(R) is the adjoint of Tφ, then:

T ∗
φv(x) = cφh

−3/4

∫

C

e(i/~)φ(z,x)e−2Φ(z)/~v(z)L(dz).

And we have:

1. TφT
∗
φ = 1 on H(C,Φ);

2. T ∗
φTφ = 1 on L2(R).

Remark 2.2.6. The 
anoni
al transformation κφ sends R2
on the IR-manifold (I-

Lagrangian and R-symple
ti
) ΛΦ =

{(

z,
2

i

∂Φ

∂z
(z)

)

; z ∈ C

}

where Φ is a stri
tly

plurisubharmoni
 R-valued quadrati
 form asso
iated with φ in the sense of Propo-

sition 2.2.5.

First, we have the following results (see for example [Sjö02, p.139-142℄ or [MS03℄).

Proposition 2.2.7. Let P ǫ
~
be a pseudo-di�erential operator a
ting on L2(R) and

satisfying the hypothesis (A) to (D). Let Φ0 be a stri
tly plurisubharmoni
 R-valued

quadrati
 form on C (we 
an asso
iate with Φ0 a holomorphi
 quadrati
 fun
tion

φ0 in the sense of Proposition 2.2.5). Let P̃ ǫ
~
= Tφ0

◦ P ǫ
~
◦ T ∗

φ0
. Then:

1. P̃ ǫ
~
: H(C,Φ0, m̃) −→ H(C,Φ0) is uniformly bounded in ~ and ǫ (for ~ < 1

and ǫ < ǫ0 where ǫ0 is a �xed positive real number), where m̃ = m ◦ κ−1
φ0

is

an order fun
tion on ΛΦ0
=

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂y
(y)

}

(re
all that m is

the order fun
tion asso
iated with the operator P ǫ
~
in Hypothesis (A));

2. P̃ ǫ
~
is given by the 
ontour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ C2; η =
2

i

∂Φ0

∂x

(

x+ y

2

)}

and where the symbol p̃ǫ
~

is given by p̃ǫ
~
= pǫ

~
◦ κ−1

φ0
.

Sin
e p̃ǫ
~
is a holomorphi
 fun
tion and is bounded by the order fun
tion m̃ in a

tubular neighbourhood of ΛΦ0
, we 
an perform a 
ontour deformation of Γ(x) and


onsider other weight fun
tions as follows.

Proposition 2.2.8. With the notation of Proposition 2.2.7, let Φ ∈ C1,1(C,R)
(the spa
e of C1

fun
tions with Lips
hitz gradient) be a fun
tion 
lose to Φ0 in the

following sense:

1. Φ− Φ0 is bounded;

2. there exists a 
onstant C > 0 su
h that: sup

∣

∣

∣

∣

∂Φ

∂x
− ∂Φ0

∂x

∣

∣

∣

∣

<
1

2C
, where C

is large enough, so that:

ΓC(x) =

{

(y, η) ∈ C
2; η =

2

i

∂Φ0

∂x

(

x+ y

2

)

+
i

C

x− y

〈x − y〉

}

⊂ ΛΦ.
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Then P̃ ǫ
~
: H(C,Φ, m̃) −→ H(C,Φ) is uniformly bounded in ~ and ǫ (for ~ < 1 and

ǫ < ǫ0 where ǫ0 is a �xed positive real number).

We now introdu
e the following stri
tly plurisubharmoni
 quadrati
 form :

Φ1 : C −→ R

x 7−→ 1

2
|ℑ(x)|2

This quadrati
 form is asso
iated in the sense of Proposition 2.2.5 with the holo-

morphi
 quadrati
 fun
tion φ1 de�ned by, for all z, x ∈ C:

φ1(z, x) =
i

2
(z − x)2.

The 
anoni
al transformation κφ1
is given by:

κφ1
: C× C −→ C× C,

(x, ξ) 7−→ (x− iξ, ξ).

Noti
e that, for (x, ξ) ∈ C2
, we have:

κφ1
(x+ 2π, ξ) = κφ1

(x, ξ) + (2π, 0).

Therefore, there exists a map κφ1
: (S1 + iR) × C −→ (S1 + iR) × C su
h that

π ◦ κφ1
= κφ1

◦ π where π : (R+ iR)× C −→ (S1 + iR)× C is the proje
tion.

We 
onsider the following transformations:

1. κφ1
: (T ∗S1)C −→ (T ∗S1)C whi
h sends S1 × R to ΛΦ1

where:

ΛΦ1
=

{

(x, ξ) ∈ (T ∗
S
1)C, ξ =

2

i

∂Φ1

∂x
(x) = −ℑ(x)

}

;

2. κ̃−1
de�ned by:

κ̃−1 = κ−1
φ1

◦ κ−1 ◦ κφ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

whi
h does not preserve ΛΦ1
(be
ause κ is not a real transformation) but

sends it to another IR-manifold denoted by ΛΦ2
, where Φ2 is a smooth

fun
tion 
lose to Φ1.

To summarize, we 
onsider the following 
ommutative diagram on the phase spa
es:

S1 × R ⊂ (T ∗S1)C
(θ,I)

κ
//

κφ1

��

(T ∗S1)C ⊃ S1

(θ̃,Ĩ)

× R

κφ1

��
ΛΦ1

⊂(T∗

S
1)C

ΛΦ2
⊂ (T ∗S1)C
(y,η)

(T ∗
S
1)C ⊃ ΛΦ1

(x,ξ)

κ̃−1

oo

We want to quantize the previous transformations. First, we show how to 
on-

stru
t a unitary operator asso
iated with the transformation κ̃, following [MS03℄

(note that their 
ase is the two dimensional one). For the sake of 
ompleteness, we

re
all the one dimension theory. We 
onsider:

κ̃−1 = κφ1
◦ κ−1 ◦ κ−1

φ1
: (T ∗

S
1)C −→ (T ∗

S
1)C,

(x, ξ) 7−→ (y, η).
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First, we 
an show that there exists a smooth fun
tion Φ2 su
h that the transfor-

mation κ̃−1
sends the IR-manifold ΛΦ1

to ΛΦ2
.

Proposition 2.2.9. There exists a smooth fun
tion Φ2 su
h that:

1. Φ2 is uniformly stri
tly plurisubharmoni
;

2. Φ2 is 
lose to Φ1 in the sense of Proposition 2.2.8;

3. κ̃−1(ΛΦ1
) = ΛΦ2

=

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂y
(y)

}

.

Proof. Sin
e κ̃−1
is the 
omposition of three holomorphi
 symple
ti
 transforma-

tions, then κ̃−1(ΛΦ1
) is an IR-manifold. Thus, by using the fa
t that κ is 
lose to

the identity map when ǫ is small, we 
an show that κ̃−1(ΛΦ1
) 
an be written as ΛΦ2

with Φ2 some smooth fun
tion. Besides, sin
e ǫ is small, κ̃−1
is 
lose to the identity,

therefore ΛΦ2
is 
lose to ΛΦ1

, so ∂xΦ2(x) is 
lose to ∂xΦ1(x). Besides, sin
e Φ1

is a uniformly stri
tly plurisubharmoni
 fun
tion, κ̃ is holomorphi
 and ∂xΦ2(x) is

lose to ∂xΦ1(x), then Φ2 is also a uniformly plurisubharmoni
 fun
tion. �

Let graph(κ̃) = {(x, ξ; y, η) ∈ ΛΦ1
× ΛΦ2

; (x, ξ) = κ̃(y, η)}. Following [MS03℄,

we 
an 
onstru
t a fun
tion ψ(x, y), de�ned in a neighbourhood of ea
h point of

πx,y(graph(κ̃)) (the proje
tion of the set graph(κ̃)), su
h that:

1. ∂xψ(x, y) and ∂yψ(x, y) vanish to in�nite order on π(x,y)(graph(κ̃));

2. ∂xψ(x, y) =
2

i

∂Φ1

∂x
(x) and ∂yψ(x, y) =

2

i

∂Φ2

∂y
(y), ∀(x, y) ∈ π(x,y)(graph(κ̃));

3. Φ1(x) + Φ2(y) + ℑ(ψ(x, y)) ∼ dist((x, y), π(x,y)(graph(κ̃))
2
.

Remark 2.2.10. We 
an 
onsider the set πx,y(graph(κ̃)) be
ause ΛΦ1
and ΛΦ2

are

parametrized by x and y respe
tively, so ΛΦ1
× ΛΦ2

too. Therefore πx,y(graph(κ̃))
is a regular submanifold of ΛΦ1

× ΛΦ2
.

A

ording to Conditions 1. and 2. we have:

dψ =
2

i

∂Φ1

∂x
(x)dx +

2

i

∂Φ2

∂y
(y)dy on π(x,y)(graph(κ̃)).

If we restri
t ψ to π(x,y)(graph(κ̃)) and identify it with a fun
tion on graph(κ̃), we
obtain:

d(ψ|graph(κ̃)) = ξdx− ηdy for (x, ξ; y, η) ∈ graph(κ̃).

We want to study the analyti
 
ontinuation of the fun
tion ψ along a loop γ in

graph(κ̃).
First, noti
e that:

ℑ(ξdx)|ΛΦ1

= ℑ
(

2

i

∂Φ1

∂x
dx

)

,

=
1

2i

(

2

i

∂Φ1

∂x
dx− 2

i

∂Φ1

∂x
dx

)

,

= −
(

∂Φ1

∂x
dx+

∂Φ1

∂x
dx

)

,

= −dΦ1.

So the form ℑ(ξdx)|ΛΦ1

is exa
t. Similarly ℑ(ηdy)|ΛΦ2

is exa
t.

Let γ̂ = {(κ̃(ρ), ρ); ρ ∈ γ} where γ is any loop in the domain of κ̃ restri
ted to ΛΦ2
.
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We have:

∫

γ̂

dψ =

∫

(κ̃◦γ,γ)
(ξdx− ηdy) ,

=

∫

κ̃◦γ
ξdx −

∫

γ

ηdy,

=

∫

κ̃◦γ
(ℜ(ξdx) + iℑ(ξdx))−

∫

γ

(ℜ(ηdy) + iℑ(ηdy)) ,

=

∫

κ̃◦γ
ℜ(ξdx) −

∫

γ

ℜ(ηdy),

:= −J(γ).
Therefore along a loop, ψ 
hanges by a real 
onstant sin
e it is the di�eren
e of two

real a
tions. We 
all this di�eren
e the Floquet index, this number depends only

on κ̃.

Notation:

• L2
J(S

1) is the spa
e of Floquet periodi
 measurable fun
tions f su
h that:

1

2π

∫ 2π

0

|f(x)|2dx < +∞,

su
h a fun
tion f satis�es the following Floquet periodi
ity 
ondition:

f(x+ 2π) = e−(i/~)Jf(x).

• L2
J(S

1 + iR,Φ) is the spa
e of multi-valued Floquet periodi
 fun
tions f
su
h that:

∫ 2π

0

∫

R

|f(z)|2e−2Φ(z)/~L(dz) < +∞,

• HJ (S
1 + iR,Φ) is the spa
e of holomorphi
 fun
tions in L2

J(S
1 + iR,Φ).

We 
an now quantize the transformation κ̃.

Proposition 2.2.11 ([MS03℄). Let A be the operator de�ned by:

Au(x) =
1

~

∫

C

e(i/~)ψ(x,y)a(x, y)χ(x, y)u(y)e−(2/~)Φ2(y)L(dy),

where a(x, y) is a symbol satisfying:

1. a(x, y) ∼∑ aj(x, y)~
j
in C∞(Neigh(π(x,y)(graph(κ̃))));

2. aj ∈ C∞
;

3. ∂xaj = O((dist((x, y), π(x,y)graph(κ̃)))
∞ + ~∞);

4. ∂yaj = O((dist((x, y), π(x,y)graph(κ̃)))
∞ + ~∞);

5. a ellipti
, i.e. a0 does not vanish;

and where χ is a 
ut-o� equal to 1 in a neighbourhood of π(x,y)(graph(κ̃)).
Let U ⊂ ΛΦ2

and let V ⊂ ΛΦ1
su
h that κ̃(U) = V . Then:

1. A = L2(π(U), e−2Φ2/~L(dy)) −→ L2
J
(π(V ), e−2Φ1/~L(dx)) is a bounded

operator;

2. ‖(∂ ◦A)u‖L2

J

≤ O(~∞)‖u‖L2
.

Remark 2.2.12. Let A∗
be the adjoint of A. Then, A∗

is asso
iated with the

transformation κ̃−1
and we 
an 
hoose the symbol a su
h that, up to O(~∞) (with

the notations of Proposition 2.2.11):
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• A∗A is the orthogonal proje
tor L2(π(U), e−2Φ2/~L(dy)) −→ H(π(U),Φ2);
• AA∗

is the orthogonal proje
tor L2
J
(π(V ), e−2Φ1/~L(dx)) −→ HJ (π(V ),Φ1).

Therefore, we obtained a unitary operator A mi
rolo
ally de�ned on the L2(Φ)-
spa
es asso
iated with the transformation κ̃, whi
h sends the set of holomorphi


fun
tions on itself up to O(~∞). We also have an Egorov theorem in this 
ase, as

follows.

Proposition 2.2.13 ([MS03℄). With the notation of Proposition 2.2.11, there exists

an operator P̂ ǫ
~
depending smoothly on ǫ de�ned by:

P̂ ǫ~(x, ~Dx)u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)η(χp̂ǫ~)

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂x

(

x+ y

2

)}

and where χ is a suitable


ut-o�, su
h that:

1. the prin
ipal symbol p̂ǫ of P̂ ǫ
~
satis�es the equation p̂ǫ = p̃ǫ ◦ κ̃−1

;

2. P̂ ǫ
~
A = AP̃ ǫ

~
and A∗P̂ ǫ

~
= P̃ ǫ

~
A∗

up to O(~∞) in the sense that:

‖(P̂ ǫ~A−AP̃ ǫ~)u‖L2

J
(Ṽ ,Φ1)

≤ O(~∞)‖u‖H(U,Φ),

‖(A∗P̂ ǫ~ − P̃ ǫ~A
∗)u‖L2(Ũ,Φ) ≤ O(~∞)‖u‖HJ (V,Φ1),

where Ṽ is a 
ompa
t subset of π(V ) and Ũ is a 
ompa
t subset of π(U).

We previously de�ned an operator Tφ1
: L2(R) −→ H(C,Φ1) asso
iated with

the 
anoni
al transformation Tφ1
. We now want to 
onstru
t an operator a
ting on

the Floquet spa
es asso
iated with the 
anoni
al transformation κφ1
, thus we are

looking for an operator B su
h that:

B : HJ (S
1 + iR,Φ1) −→ L2

J (S
1).

Notation: We denote by k the kernel of the FBI transform Tφ1
: L2(R) −→ H(C,Φ1)

asso
iated with φ1, i.e.:

Tφ1
u(z) = cφ1

~
−3/4

∫

R

e−(1/2~)(z−x)2u(x)dx =

∫

R

k(z − x; ~)u(x)dx,

with cφ1
≥ 0 the 
onstant given by De�nition 2.2.4.

The 
omplex adjoint T ∗
φ1

: L2(C,Φ1) −→ L2(R) 
an be rewritten as:

T ∗
φ1
v(x) = cφ1

~
−3/4

∫

C

e−(1/2~)(z−x)2e−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

We identify the fun
tions in L2
J
(S1) with the Floquet periodi
 lo
ally square inte-

grable fun
tions on R and similarly for the fun
tions in HJ (S
1 + iR,Φ1).

Proposition 2.2.14 ([MS03℄).

1. Tφ1
indu
es an operator B∗ : L2

J
(S1) −→ HJ (S

1 + iR,Φ1) given by:

B∗u(z) =

∫

R

k(z − x; ~)u(x)dx =

∫

E

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνu(x)dx,
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where E ⊂ R is a fundamental domain for 2πZ.
2. The 
omplex adjoint of B∗

is de�ned by:

Bv(x) =

∫

E+iR

∑

ν∈2πZ

k(z − x+ ν; ~)e(i/~)Jνe−2Φ1(z)/~v(z)L(dz),

=

∫

C

k(z − x; ~)e−2Φ1(z)/~v(z)L(dz).

Therefore B 
oin
ides with the inverse of the FBI transform T ∗
φ1
.

Sin
e the FBI transform Tφ1
is a unitary operator a

ording to Proposition 2.2.5,

then we 
an dedu
e that B∗
is also a unitary operator.

Proposition 2.2.15 ([MS03℄).

1. BB∗ = 1 on L2
J
(S1);

2. B∗B = 1 on HJ (S
1 + iR,Φ1).

We also have an Egorov theorem in the L2(S1)-
ase that we dedu
e from Proposition

2.2.7.

Proposition 2.2.16. Let P ǫ
~
be a pseudo-di�erential operator a
ting on L2

J
(S1)

and satisfying the hypothesis (A') to (D'). Let P̃ ǫ
~
= B∗ ◦ P ǫ

~
◦B. Then:

1. P̃ ǫ
~
: HJ (S

1 + iR,Φ1, m̃) −→ HJ (S
1 + iR,Φ1) is uniformly bounded in ~

and ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a �xed positive real number), where

m̃ = m ◦ κ−1
φ1

is an order fun
tion on:

ΛΦ1
=

{

(y, η) ∈ (T ∗
S
1)C; η =

2

i

∂Φ1

∂y
(y)

}

;

2. P̃ ǫ
~
is given by the 
ontour integral:

P̃ ǫ~u(x) =
1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηp̃ǫ~

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ1

∂x

(

x+ y

2

)}

and where the sym-

bol p̃ǫ
~
is given by p̃ǫ

~
= pǫ

~
◦ κ−1

φ1
.

Proposition 2.2.17. With the notation of Proposition 2.2.16, let Φ2 be a fun
tion

of 
lass C1,1

lose to Φ1 in the following sense:

1. Φ2 − Φ1 is bounded;

2. sup

∣

∣

∣

∣

∂Φ2

∂x
− ∂Φ1

∂x

∣

∣

∣

∣

is su�
iently small.

Then P̃ ǫ
~
: HJ (S

1 + iR,Φ2, m̃) −→ HJ(S
1 + iR,Φ2) is uniformly bounded in ~ and

ǫ (for ~ < 1 and ǫ < ǫ0 where ǫ0 is a �xed positive real number).

Remark 2.2.18. Propositions 2.2.16 and 2.2.17 hold in the L2(S1)-
ase.
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To summarize, we have the following diagram (with the notations of Propositions

2.2.11 and 2.2.16):

L2(S1)
U0

//

B∗

��

L2
J
(S1)

B∗

��
H(S1+iR,Φ1)

H(π(U),Φ2) A
// HJ (π(V ),Φ1)

We 
an apply Proposition 2.2.17 in the L2(S1)-
ase and obtain an operator:

P̃ ǫ~ = B∗P ǫ~B : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Then, if Ũ0 = BA mi
rolo
ally we have by 
omposition:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where gǫ is the fun
tion given by Proposition 2.2.1 and where gǫ
(

~

i

∂

∂θ̃

)

is the

Weyl quantization of the symbol gǫ(Ĩ) on L2
J(S

1).

We 
an sum up what we have done in this paragraph by the following proposition.

Proposition 2.2.19. There exists a unitary operator Ũ0 : H(π(U),Φ2) −→ L2
J
(S1)

su
h that mi
rolo
ally we have:

Ũ0P̃
ǫ
~ = gǫ

(

~

i

∂

∂θ̃

)

Ũ0 +O(~),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ is an

analyti
 fun
tion depending smoothly on ǫ whose inverse is the a
tion integral Ĩ.

We 
an improve this proposition by using an iterative pro
edure.

Proposition 2.2.20. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

su
h that mi
rolo
ally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.11 and where gǫ
~
is

an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~, depending

smoothly on ǫ and whose �rst term gǫ0 := gǫ is the inverse of the a
tion integral Ĩ.

Proof. Let Ũ0 be the operator de�ned in Proposition 2.2.19, if S0 := gǫ
(

~

i

∂

∂θ̃

)

then we have:

(3) Ũ0P̃
ǫ
~ = S0Ũ0 +O(~) := (S0 + ~R1)Ũ0.

We want to modify Ũ0 to obtain our result. More pre
isely, we �rst look for a

unitary operator V su
h that:

(4) V (Ũ0P̃
ǫ
~) = (S0 + ~S1)V Ũ0 +O(~2),
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with S1 = gǫ1

(

~

i

∂

∂θ̃

)

and where gǫ1 is a fun
tion to determine. We have, a

ording

to Equations (3) and (4):

V (Ũ0P̃
ǫ
~) = V (S0Ũ0 + ~R1Ũ0) = (S0 + ~S1)V Ũ0 +O(~2),

V S0Ũ0 + ~V R1Ũ0 = S0V Ũ0 + ~S1V Ũ0 +O(~2),

V S0 − S0V = ~S1V − ~V R1 +O(~2),

[V, S0] = ~S1V − ~V R1 +O(~2).

In terms of prin
ipal symbols, this means:

1

i
{v(θ̃, Ĩ), s0(θ̃, Ĩ)} = v(θ̃, Ĩ)(s1(θ̃, Ĩ)− r1(θ̃, Ĩ)) for (θ̃, Ĩ) ∈ (T ∗

S
1)C.

Let v = eia, then we have:

1

i
{v, s0} =

1

i

(

∂eia

∂θ̃

∂s0

∂Ĩ
− ∂eia

∂Ĩ

∂s0

∂θ̃

)

=
1

i
ieia

(

∂a

∂θ̃

∂s0

∂Ĩ
− ∂a

∂Ĩ

∂s0

∂θ̃

)

= eia{a, s0}.

Therefore eia{a, s0} = eia(s1 − r1), i.e. {a, s0} = s1 − r1. Moreover, we know that

s0 = gǫ(Ĩ), so:

(5) s1 − r1 = {a, gǫ(Ĩ)} =
∂a

∂θ̃

dgǫ

dĨ
i.e.

∂a

∂θ̃
=

(

dgǫ

dĨ

)−1

(s1 − r1).

Sin
e {a, s0} = s1 − r1, then:

(6) s1 =
1

2π

∫

r1dθ̃.

Consequently, we 
an determine s1 by using Equation (6) and ∂θ̃a by using Equation

(5). Then, sin
e

∫

∂θ̃adθ̃ = 0, we 
an well-de�ne a.
Thus, we obtain:

(V Ũ0)P̃
ǫ
~ :=

(

gǫ
(

~

i

∂

∂θ̃

)

+ ~gǫ1

(

~

i

∂

∂θ̃

)

+ ~
2R2

)

(V Ũ0).

We then reiterate this pro
ess with the operator W = Id + ~V . This iterative

pro
edure yields the result. �

2.2.3. Spe
trum.

Notation: We denote by Sǫ
~
the operator a
ting on L2

J
(S1) of symbol gǫ

~
(Ĩ), i.e.

Ũ P̃ ǫ
~
= Sǫ

~
Ũ +O(~∞) a

ording to Proposition 2.2.20 (where P̃ ǫ

~
= B∗P ǫ

~
B).

First, we have the following results.

Proposition 2.2.21. The spe
trum of the operator Sǫ
~
is given by:

σ(Sǫ~) = {gǫ~(~k − J), k ∈ Z},
where gǫ

~
is the fun
tion given by Proposition 2.2.20.

Proof. The family (el(θ̃))l∈Z = (eilθ̃e−(i/~)Jθ̃)l∈Z for θ̃ ∈ [0, 2π] is an orthonormal

basis of the spa
e L2
J
(S1). �

Proposition 2.2.22. Let P ǫ
~
and P̃ ǫ

~
be the operators previously de�ned. Then

σ(P ǫ
~
) = σ(P̃ ǫ

~
).
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Proof. There exists some unitary operator B∗
su
h that P̃ ǫ

~
= B∗P ǫ

~
B, therefore

the spe
trum of the operator P̃ ǫ
~
is equal to the spe
trum of the operator P ǫ

~
. �

We want to des
ribe the spe
trum of the operator P̃ ǫ
~
by using the spe
trum of

the operator Sǫ
~
that we know expli
itly. To do so, we follow the method used in

[HS04, MS03℄ ex
ept that in our 
ase the operator Sǫ
~
obtained by 
onjuga
y from

P̃ ǫ
~
is easier to manipulate.

More pre
isely, we want to des
ribe the spe
trum of the operator P̃ ǫ
~
in a re
tangle

of the form:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

,

for E0 ∈ R, where C > 0 is a su�
iently large 
onstant. Therefore, we will use

some mi
rolo
al analysis in a neighbourhood of {p̃ǫ
~
= E} where E ∈ RC,ǫ.

Notation:

• Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = pǫ ◦ κ−1

φ1
(y, η) = E} where

TubNeigh(ΛΦ2
) denotes a tubular neighbourhood of ΛΦ2

in (T ∗
S
1)C;

• let I0 ∈ R be the 
onstant su
h that (κ−1
φ1

◦ κ̃)(Λ̃E0
) = {Ĩ = I0} where:

Λ̃E0
= {(y, η) ∈ ΛΦ2

; p̃ǫ(y, η)|ǫ=0 = E0}.

We 
onsider the set of quasi-eigenvalues for the operator Sǫ
~
, namely:

Σ(ǫ, ~) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ.
First, we 
an estimate the distan
e between two elements of the set Σ(ǫ, ~); indeed,
let z = gǫ

~
(~k − J) and z̃ = gǫ

~
(~l − J) with k, l ∈ Z and k 6= l. We assume that

z, z̃ ∈ Σ(ǫ, ~).
Then:

|z − z̃| ≥ ~|k − l|
O(1)

.

Let:

δ~ =
1

4
inf
k 6=l

dist(gǫ~(~k − J), gǫ~(~l − J)) >
~

O(1)
;

and 
onsider a family of open dis
s of the form:

Ωk(~) = {z ∈ RC,ǫ; |z − gǫ~(~k − J)| < δ~}.

Remark 2.2.23. The sets Ωk(~) are disjoints (be
ause the distan
e between two

elements of the set Σ(ǫ, ~) is greater than δ~).

We want to show that the spe
trum of the operator P̃ ǫ
~
in the re
tangle RC,ǫ is


ontained in the union of dis
s Ωk(~). Therefore, we 
onsider the following equation
for z ∈ RC,ǫ:

(7) (P̃ ǫ~ − z)u = v with u, v ∈ H(S1 + iR,Φ2).

First, outside a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a 
on-

stant C > 0 su
h that:

|p̃ǫ~(y, η)− E| > 1

C
.
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Indeed, by de�nition, we have:

Λ̃ǫE = {(y, η) ∈ TubNeigh(ΛΦ2
); p̃ǫ(y, η) = E},

= {(y, η) ∈ TubNeigh(ΛΦ2
); |p̃ǫ(y, η)− E| = 0} ;

So, for (y, η) /∈ V a small neighbourhood of Λ̃ǫE in TubNeigh(ΛΦ2
), there exists a


onstant C1 > 0 su
h that:

|p̃ǫ(y, η)− E| > 1

C1
.

Besides, we 
an dedu
e from Assumption (C'), that for (y, η) ∈ TubNeigh(ΛΦ2
), we

have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)), for |y, η| ≥ C.

Let K = {(y, η) ∈ TubNeigh(ΛΦ2
); |(y, η)| ≤ C}. We assume that K is su
h that

for (y, η) /∈ K, we have |E| ≤ 1

2C
m̃(ℜ(η)). We distinguish two 
ases:

• either (y, η) /∈ V and (y, η) ∈ K, then by 
ontinuity:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) 6= 0,

so there exist a 
onstant C > 0 su
h that:

|p̃ǫ(y, η)− E|
m̃(ℜ(η)) ≥ 1

C
i.e. |p̃ǫ(y, η)− E| ≥ 1

C
m̃(ℜ(η)).

• or (y, η) /∈ V and (y, η) /∈ K, then by the ellipti
ity 
ondition, we have:

|p̃ǫ(y, η)| ≥ 1

C
m̃(ℜ(η)),

then:

|p̃ǫ(y, η)− E| ≥ |p̃ǫ(y, η)| − |E| ≥ 1

C
m̃(ℜ(η)) − 1

2C
m̃(ℜ(η)) = 1

2C
m̃(ℜ(η)).

Consequently, for (y, η) /∈ V , there exist a 
onstant C > 0 su
h that:

|p̃ǫ(y, η)− E| ≥ 1

2C
m̃(ℜ(η)).

We denote by r̃ǫ
~
the fun
tion su
h that p̃ǫ

~
(y, η) = p̃ǫ(y, η) + ~r̃ǫ

~
(y, η). Therefore,

for (y, η) /∈ V , we have:

|p̃ǫ~(y, η)− E| = |p̃ǫ~(y, η)− p̃ǫ(y, η) + p̃ǫ(y, η)− E|,
≥ |p̃ǫ(y, η)− E| − |p̃ǫ~(y, η)− p̃ǫ(y, η)|,

≥ 1

2C
m̃(ℜ(η)) − |~rǫ~(y, η)| ,

≥ 1

2C
m̃(ℜ(η)) − ~Cm̃(ℜ(η)), a

ording to Assumption (B')

=

(

1

2C
− ~C

)

m̃(ℜ(η)).

Therefore, for (y, η) /∈ V , there exist a 
onstant C > 0 su
h that:

|p̃ǫ~(y, η)− E| > 1

C
.
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Consequently, for (y, η) /∈ V , there exist a 
onstant C > 0 su
h that:

|ℜ(p̃ǫ~(y, η)− E)| > 1

C
or |ℑ(p̃ǫ~(y, η)− E)| > 1

C
.

Notation: Let a ∈ C∞
b (TubNeigh(ΛΦ2

)). We denote by OpΦ2
(a) the quantization

of the symbol a de�ned, for u ∈ H(S1 + iR,Φ2), by:

OpΦ2
(a)u(x) =

1

2π~

∫∫

Γ(x)

e(i/~)(x−y)ηa

(

x+ y

2
, η

)

u(y)dydη,

where Γ(x) =

{

(y, η) ∈ (T ∗S1)C; η =
2

i

∂Φ2

∂x

(

x+ y

2

)}

(so

(

x+ y

2
, η

)

∈ ΛΦ2
).

Re
all that: OpΦ2
(a) : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2).

Let X pǫ|ǫ=0
be the �ow of the Hamiltonian ve
tor �eld asso
iated to pǫ|ǫ=0. Let

X p̃ǫ|
ǫ=0

be the image by the fun
tion κΦ1
of the real �ow of X pǫ|

ǫ=0
. We 
onsider

a partition of unity on the manifold TubNeigh(ΛΦ2
):

1 = χ+ ψ+
1 + ψ−

1 + ψ+
2 + ψ−

2 ,

with:

1. χ ∈ C∞
0 (TubNeigh(ΛΦ2

)) a smooth fun
tion su
h that χ = 1 in a neighbour-

hood of Λ̃ǫE and su
h that its support is 
ontained in a small neighbourhood

of Λ̃ǫE where: Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) +O(~∞);

2. ψ±
1 ∈ C∞

0 ((T ∗S1)C) a smooth fun
tion supported in a region invariant under

the �ow of X p̃ǫ|
ǫ=0

and where:

ℑ(p̃ǫ~ − E) > ± 1

C
;

3. ψ±
2 ∈ C∞

b (TubNeigh(ΛΦ2
)) a smooth fun
tion supported in a region where:

ℜ(p̃ǫ~ − E) > ± 1

C
.

Moreover, we 
an 
hoose the fun
tions ψ±
1 su
h that their Poisson bra
kets 
om-

mute with p̃ǫ|ǫ=0.

To show the pertinen
e of this partition of unity, we are going to look at some

properties where it intervenes. The proofs of these propositions are similar to what

is done in [HS04℄, thus we do not re
all them here.

Proposition 2.2.24. Let u, v ∈ H(S1 + iR,Φ2) satisfying Equation (7). Then, we

have:

‖OpΦ2
(1− χ)u‖ ≤ O (1) ‖v‖+O(~∞)‖u‖.

Then, from Equation (7), we have:

(8) (P̃ ǫ~ − z)OpΦ2
(χ)u = OpΦ2

(χ)v + w with w = [P̃ ǫ~ ,OpΦ2
(χ)]u.

Sin
e w is mi
rolo
alized in the support of [P̃ ǫ
~
,OpΦ2

(χ)], whi
h is 
ontained outside

a small neighbourhood of Λ̃ǫE , we 
an show using Proposition 2.2.24 that:

(9) ‖w‖ ≤ O (~) ‖v‖+O(~∞)‖u‖.
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By applying the operator Ũ on Equation (8), we obtain:

Ũ((P̃ ǫ~ − z)OpΦ2
(χ)u) = Ũ(OpΦ2

(χ)v + w),

Ũ P̃ ǫ~OpΦ2
(χ)u − zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

(Sǫ~Ũ +O(~∞))OpΦ2
(χ)u− zŨOpΦ2

(χ)u = ŨOpΦ2
(χ)v + Ũw,

be
ause Ũ P̃ ǫ
~
OpΦ2

(χ) = Sǫ
~
ŨOpΦ2

(χ) + O(~∞) by de�nition of the partition of

unity. Therefore, we have:

(10) (Sǫ~ − z)ŨOpΦ2
(χ)u = ŨOpΦ2

(χ)v + Ũw + T∞u,

where T∞ = O(~∞) : H(S1 + iR,Φ2) −→ L2
J
(S1).

From the expli
it de�nition of the operator Sǫ
~
we see that, if z ∈ RC,ǫ \

⋃

Ωk(~),
the operator Sǫ

~
− z : L2

J
(S1) −→ L2

J
(S1) is mi
rolo
ally invertible in the region

where |Ĩ − I0| ≤
1

O(1)
(whi
h 
orresponds to the domain where the operator Sǫ

~
is

well-de�ned) and its mi
rolo
al inverse is of the norm O
(

1

~

)

. Moreover, we also

have the following proposition.

Proposition 2.2.25. Let z ∈ RC,ǫ \
⋃

Ωk(~). Let u, v ∈ H(S1 + iR,Φ2) satisfying
Equation (10). Then, we have the following estimate:

‖OpΦ2
(χ)u‖ ≤ O(1)

~
‖v‖+O(~∞)‖u‖.

Proof. We multiply Equation (10) by Ũ−1(Sǫ
~
− z)−1

(where Ũ−1
is the mi
rolo
al

inverse of Ũ whi
h exists in the domain of the fun
tion χ) and use the estimate on

the norm of the operator Sǫ
~
− z, the estimate on w and the de�nition of T∞. �

We dedu
e from Propositions 2.2.24 and 2.2.25, that if z ∈ RC,ǫ \
⋃

Ωk(~), then

the operator P̃ ǫ
~
− z : H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) is inje
tive.

Besides the operator P̃ ǫ
~
−z : H(S1+iR,Φ2, m̃) −→ H(S1+iR,Φ2) is also Fredholm

of index 0 (i.e. it is an operator with �nite-dimensional kernel and 
okernel whose

dimensions are the same). Namely, by the ellipti
ity of the prin
ipal symbol p̃ǫ, we


an 
onstru
t an inverse for P̃ ǫ
~
− z+K where K is a 
ompa
t operator. Therefore,

we obtain that P̃ ǫ
~
− z+K is Fredholm of index 0 and that proves the fa
t that the

operator P̃ ǫ
~
− z is also Fredholm of index 0.

Therefore, if z ∈ RC,ǫ \
⋃

Ωk(~) we obtain that:

P̃ ǫ~ − z : H(S1 + iR,Φ2, m̃) −→ H(S1 + iR,Φ2),

is bije
tive.

We 
an sum up what we have done so far by saying that the eigenvalues of the

operator P̃ ǫ
~
in RC,ǫ are lo
alized in the open dis
s Ωk(~). We are now fo
using on

one of these dis
s.

Sin
e the eigenfun
tions are mi
rolo
alized in a neighbourhood of Ĩ = I0, then we


onsider the 
ouples (~, k) su
h that z ∈ Ωk(~), i.e. |~k − J − I0| <
1

C
.
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We want to prove that z ∈ Ωk(~) is a O(~∞)-
lose to an eigenvalue of the operator

P̃ ǫ
~
if and only if:

z = gǫ~(~k − J) +O(~∞).

To do so, we are going to study two Grushin problems 
on
erning Sǫ
~
−z and P̃ ǫ

~
−z

respe
tively; we re
all the de�nition of this problem (for more details on this linear

algebrai
 tool see [SZ07℄).

De�nition 2.2.26 (Grushin problem). A Grushin problem for an operator P : H1 −→ H2

between two Hilbert spa
es is a system:

{

Pu+R−u− = v,

R+u = v+;

where R− : H− −→ H2, R+ : H1 −→ H+, with H−, H+ two Hilbert spa
es and

where (u, u−) ∈ H1 × H−, (v, v+) ∈ H2 × H+. The matrix asso
iated with the

Grushin problem is de�ned by:

P :=

(

P R−
R+ 0

)

: H1 ×H− −→ H2 ×H+.

First, we 
onsider a Grushin problem for the operator Sǫ
~
− z. This problem is

globally de�ned if we 
onsider the fun
tion gǫ
~
(de�ning the operator Sǫ

~
) as a


ompa
tly supported one.

Let (el)l∈Z be the fun
tions de�ned for l ∈ Z and θ̃ ∈ [0, 2π] by:

el(θ̃) = e(i/~)(~l−J)θ̃ = eilθ̃e−(i/~)Jθ̃.

The family of fun
tions (el)l∈Z forms an orthonormal basis of the spa
e L2
J
(S1).

Let R̂+ and R̂− be the following operators:

R̂+ : L2
J (S

1) −→ C R̂− : C −→ L2
J (S

1),

u 7−→ 〈u|ek〉 ũ 7−→ ũek.

We look at the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ L2
J(S

1)× C:

{

(Sǫ~ − z)u+ R̂−ũ = v,

R̂+u = ṽ.

Proposition 2.2.27. Let:

S =

(

Sǫ
~
− z R̂−
R̂+ 0

)

: L2
J (S

1)× C −→ L2
J (S

1)× C.

Then, the operator S admits an inverse de�ned by:

Ê =

(

Ê(z) Ê+

Ê− Ê−,+(z)

)

,

with:

1. Ê+ = R̂−;
2. Ê− = R̂+;

3. Ê−,+(z) = z − gǫ
~
(~k − J);

Furthermore, the 
omponents of the operator Ê satisfy the following estimates:

(i) Ê =
O(1)

~
: L2

J
(S1) −→ L2

J
(S1);
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(ii) Ê+ = O(1) : C −→ L2
J
(S1);

(iii) Ê− = O(1) : L2
J
(S1) −→ C;

(iv) Ê−,+ = O(~) : C −→ C.

Moreover, for all (u, ũ), (v, ṽ) ∈ L2
J
(S1)×C satisfying S(u, ũ) = (v, ṽ), we have the

following estimate:

(11) ~‖u‖L2

J

+ |ũ| ≤ O(1)(‖v‖L2

J

+ ~|ṽ|).

Proof. We invert the system S(u, ũ) = (v, ṽ) with (u, ũ), (v, ṽ) ∈ L2
J
(S1) × C by

using the orthonormal basis (el)l∈Z and the expli
it expression Sǫ
~
= gǫ

~

(

~

i

∂

∂θ̃

)

to obtain the expression of Ê . Then, the estimates (i), (ii), (iii) and (iv) 
an be

dedu
ed from 1., 2. and 3. always by using the properties of the basis (el)l∈Z.

Lastly, the estimate (11) 
an be dedu
ed from (i), (ii), (iii) and (iv). �

We now deal with a global Grushin problem for the operator P̃ ǫ
~
− z.

We 
onsider the following operators, for all (~, k) su
h that z ∈ Ωk(~):

R+ : H(S1 + iR,Φ2) −→ C,

u 7−→ R̂+ŨOpΦ2
(χ)u := 〈ŨOpΦ2

(χ)u|ek〉
and:

R− : C −→ H(S1 + iR,Φ2),

ũ 7−→ Ũ−1R̂−ũ := ũŨ−1ek.

where Ũ is the operator de�ned in Proposition 2.2.20 su
h that mi
rolo
ally :

Ũ P̃ ǫ~OpΦ2
(χ) = Sǫ~ŨOpΦ2

(χ) +O(~∞),

and where Ũ−1
denote the mi
rolo
al inverse of Ũ .

First, a

ording to [HS04℄, noti
e that we have the following property:

OpΦ2
(χ)R− = R− +O(~∞) : C −→ H(S1 + iR,Φ2),

up to de
reasing the support of the fun
tion χ if ne
essary (be
ause the fun
tions

ek and χ are lo
alized in the same neighbourhood).

We 
onsider the following Grushin problem, for (u, ũ) and (v, ṽ) ∈ H(S1+iR,Φ2)×C:
{

(P̃ ǫ~ − z)u+R−ũ = v,

R+u = ṽ.

Proposition 2.2.28. For all (v, ṽ) ∈ H(S1 + iR,Φ2) × C, this Grushin problem

admits a unique solution (u, ũ) ∈ H(S1+iR,Φ2, m̃)×C with the following estimate:

(12) ~‖u‖+ |ũ| ≤ O(1) (‖v‖+ ~|ṽ|) .
Proof. To prove this result, we are going to modify the Grushin problem for the

operator P̃ ǫ
~
− z and redu
e ourselves to that of the operator Sǫ

~
− z, we will then

be able to use Proposition 2.2.27.

Indeed, we start by applying the operator OpΦ2
(χ) to the �rst equation of the

Grushin problem for P̃ ǫ
~
− z:

{

OpΦ2
(χ)(P̃ ǫ~ − z)u+OpΦ2

(χ)R−ũ = OpΦ2
(χ)v,

R+u = ṽ.
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Sin
e OpΦ2
(χ)R− = R− +O(h∞) := R− −R∞

− , we have:

{

OpΦ2
(χ)(P̃ ǫ~ − z)u+R−ũ = OpΦ2

(χ)v +R∞
− ũ,

R+u = ṽ.

Sin
e:

OpΦ2
(χ)(P̃ ǫ~ − z)u = OpΦ2

(χ)P̃ ǫ~u− zOpΦ2
(χ)u,

= P̃ ǫ~OpΦ2
(χ)u − [P̃ ǫ~,OpΦ2

(χ)]u− zOpΦ2
(χ)u,

= (P̃ ǫ~ − z)OpΦ2
(χ)u − [P̃ ǫ~ ,OpΦ2

(χ)]u,

then, if w := [P̃ ǫ
~
,OpΦ2

(χ)]u, we have:
{

(P̃ ǫ~ − z)OpΦ2
(χ)u+R−ũ = OpΦ2

(χ)v + w +R∞
− ũ,

R+u = ṽ.

where w satis�es the following estimate:

‖w‖ ≤ O (~) ‖v‖+O(h∞)(‖u‖+ |ũ|).
We apply the operator Ũ to the �rst equation:

{

Ũ(P̃ ǫ~ − z)OpΦ2
(χ)u + ŨR−ũ = ŨOpΦ2

(χ)v + Ũw + ŨR∞
− ũ,

R+u = ṽ.

Besides, sin
e R− = Ũ−1R̂− and Ũ(P̃ ǫ
~
−z)OpΦ2

(χ) = (Sǫ
~
−z)ŨOpΦ2

(χ)+O(h∞),
the system be
omes:

{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R+u = ṽ.

where w̃ satis�es |w̃| ≤ O(h∞)(‖u‖+ |ũ|).
Moreover by de�nition R+ = R̂+ŨOpΦ2

(χ), then the system 
an be written as:

{

(Sǫ~ − z)ŨOpΦ2
(χ)u+ R̂−ũ = ŨOpΦ2

(χ)v + Ũw + w̃,

R̂+ŨOpΦ2
(χ)u = ṽ.

We re
ognize the Grushin problem for Sǫ
~
− z and therefore we dedu
e our result.

The proof of the estimate (12) uses the estimate (11) and the estimations on the

norm of w and w̃. �

Let:

P =

(

P̃ ǫ
~
− z R−
R+ 0

)

: H(S1 + iR,Φ2)× C −→ H(S1 + iR,Φ2)× C.

Then, a

ording to Proposition 2.2.28, the operator P is inje
tive for z ∈ Ωk(~)
and be
ause it is a rank-one perturbation of a Fredholm operator of index 0, we
know that the operator P is bije
tive for z ∈ Ωk(~).
We denote the inverse of P by:

E =

(

E(z) E+

E− E−,+(z)

)

,

and re
all that the spe
trum of P̃ ǫ
~
in Ωk(~) is equal to the set of z ∈ C su
h that

E−,+(z) = 0. Therefore, we want to determine the 
omponent E−,+(z).
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Corollary 2.2.28.1. The 
omponents of the operator E are given by:

1. E+ = Ũ−1Ê+ +O(~∞);

2. E−,+(z) = Ê−,+(z) +O(~∞) = z − gǫ
~
(~k − J) +O(~∞).

Proof. Sin
e PE = Id, we have:
{

(P̃ ǫ~ − z)E+ +R−E−,+(z) = 0,

R+E+ = 1.

Therefore, we need to show, that up to O(h∞), we have:
{

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z) ≡ 0,

R+Ũ
−1Ê+ ≡ 1.

We have:

R+Ũ
−1Ê+

= R̂+ŨOpΦ2
(χ)Ũ−1Ê+ by de�nition of R+,

≡ 1 by de�nition of χ and be
ause SÊ = Id a

ording to Proposition 2.2.27.

Then, we have:

(P̃ ǫ~ − z)Ũ−1Ê+ +R−Ê−,+(z)

= (P̃ ǫ~ − z)Ũ−1Ê+ + Ũ−1R̂−Ê−,+(z) by de�nition of R−,

≡ Ũ−1(Sǫ~ − z)Ê+ + Ũ−1R̂−Ê−,+(z) be
ause Ũ P̃ ǫ~ = Sǫ~Ũ +O(h∞),

≡ 0 be
ause SÊ = Id.

�

We 
an sum up what we have done so far by the following proposition.

Proposition 2.2.29. Let P̃ ǫ
~
: H(S1 + iR,Φ2) −→ H(S1 + iR,Φ2) be the operator

previously de�ned. Then, with the notations of Proposition 2.2.20, we have:

σ(P̃ ǫ~) ∩RC,ǫ = σ(Sǫ~) ∩RC,ǫ +O(~∞) = {gǫ~(~k − J), k ∈ Z} ∩RC,ǫ +O(~∞).

Proof. By de�nition of the spe
trum, we know that z ∈ σ(P̃ ǫ
~
) if and only if P̃ ǫ

~
− z

is non-invertible, i.e. E−,+(z) = 0, i.e. z = gǫ
~
(~k− J) +O(~∞) (be
ause P̃ ǫ

~
− z is

invertible if and only if E−,+ is invertible too, i.e. if and only if E−,+(z) 6= 0). �

Now, we 
an 
on
lude and determine the spe
trum of the operator P ǫ
~
by using

Propositions 2.2.29 and 2.2.22. This ends the proof of Theorem B.

2.3. Proof of Theorem A. To prove Theorem A, we are going to make a link with

the L2(S1)-
ase, then we will apply te
hniques developed in the proof of Theorem

B.

We 
onsider the pseudo-di�erential operator P ǫ
~
a
ting on L2(R) and depending

smoothly on ǫ of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx),

satisfying the hypotheses (A) to (E) (whi
h were de�ned in the introdu
tion).

We want to obtain Bohr-Sommerfeld quantization 
onditions for this operator by
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using Theorem B. Therefore, we are looking for a real 
anoni
al transformation of

the form:

κ̂ : Neigh(f ǫ = cst,R2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I),

and su
h that:

f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I),

where f̂ ǫ is an analyti
 fun
tion depending smoothly on ǫ.
To 
onstru
t su
h a 
anoni
al transformation κ̂, we are going to use the a
tion-

angle 
oordinates theorem.

Let E0 ∈ R, we 
onsider:

ΛǫE0
= {(x, ξ) ∈ R

2, f ǫ(x, ξ) = E0};
re
all that ΛE0

is 
ompa
t, 
onne
ted and regular.

Let γ̂E0
be a loop generating π1(Λ

ǫ
E0

) and let:

I(E0) =
1

2π

∫

γ̂E0

ξdx.

Then, by applying the a
tion-angle 
oordinates theorem with the parameter ǫ, we
know that there exists a symple
tomorphism:

κ̂ : Neigh(f ǫ = E0,R
2) −→ Neigh(I = cst, S1 × R),

(x, ξ) 7−→ (θ, I);

su
h that:

f ǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I).

The 
anoni
al transformation κ̂ transforms the prin
ipal symbol pǫ(x, ξ) to a prin-


ipal symbol of the form:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I);

where q̂ǫ(θ, I) = qǫ ◦ κ̂−1(θ, I). Therefore, we redu
e our problem to the study of a

prin
ipal symbol on S1 × R of the form used in Theorem B.

Moreover, we 
an 
hoose the transformation κ̂ su
h that for any loop γ̂, we have:
∫

γ̂

κ̂∗Idθ − ξdx = 0.

Indeed, sin
e κ̂ is a 
anoni
al transformation then:

κ̂∗(dI ∧ dθ) = dξ ∧ dx.
Consequently, the 1-form κ̂∗(Idθ)− ξdx is 
losed and by Stokes theorem, we obtain

that the following integral over a loop γ̂:
∫

γ̂

κ̂∗(Idθ)− ξdx,

depends only on the homotopy 
lass of γ̂, then there exists a real 
onstant cγ̂(κ̂)
su
h that:

∫

γ̂

κ̂∗(Idθ)− ξdx = cγ̂(κ̂),

and we 
an 
hoose this 
onstant equals to zero (up to 
hange the transformation κ̂
if ne
essary).



28 OPHÉLIE ROUBY

Besides, we 
an extend the real 
anoni
al transformation κ̂ into a 
omplex 
anoni
al

transformation su
h that:

pǫ ◦ κ̂−1(θ, I) = f̂ ǫ(I) + iǫq̂ǫ(θ, I), for (θ, I) 
omplex 
oordinates.

Consequently, for γ̂ a 
omplex loop, the following relation is always true:

∫

γ̂

κ̂∗(Idθ) − ξdx = 0.

Let, for C > 0 a 
onstant:

E ∈
{

z ∈ C, |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

.

We 
an 
onsider a loop γE in:

Λ̂ǫE = {(θ, I) ∈ TubNeigh(S1 × R), p̂ǫ(θ, I) = pǫ ◦ κ̂−1(θ, I) = E}.

Thus the loop κ̂∗γE := γ̂E is in
luded in:

ΛǫE = {(x, ξ) ∈ TubNeigh(R2), pǫ(x, ξ) = E}.

And the following a
tion integral is well-de�ned:

1

2π

∫

γ̂E

ξdx =
1

2π

∫

γE

Idθ.

This explains why we 
an express the �rst term in the asymptoti
 expansion of

eigenvalues of the operator P ǫ
~
in terms of the a
tion integral

∫

ξdx.

We want to quantize the 
omplex 
anoni
al transformation κ̂ of the form:

κ̂ : Neigh(ΛǫE ,TubNeigh(R
2)) −→ Neigh(Λ̂ǫE ,TubNeigh(S

1 × R)),

(x, ξ) 7−→ (θ, I),

where (x, ξ) and (θ, I) denotes the 
omplex 
oordinates. However, a

ording to the

proof of Theorem B, we know that there exists a 
omplex 
anoni
al transformation:

κ : Neigh(Λ̂ǫE ,TubNeigh(S
1 × R)) −→ Neigh(Ĩ = cst, (T ∗

S
1)C),

(θ, I) 7−→ (θ̃, Ĩ);

su
h that:

p̂ǫ ◦ κ−1(θ̃, Ĩ) = gǫ(Ĩ).

Consequently, instead of quantizing the transformation κ̂, we 
an dire
tly quantize

the 
anoni
al transformation κ ◦ κ̂. To do so, we follow the same steps as in the

proof of Theorem B, thus we 
onsider the following 
ommutative diagram on the

phase spa
es:

R2 ⊂ C2 κ◦κ̂
//

κφ1

��

(T ∗
S
1)C ⊃ S

1 × R

κφ1

��
ΛΦ1

⊂C
2

ΛΦ2
⊂ C2 (T ∗S1)C ⊃ ΛΦ1

κ̃−1

oo
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We quantize the transformations as done previously and obtain the following dia-

gram (with the notation of Propositions 2.2.8, 2.2.11 and 2.2.16):

L2(R)
U0

//

Tφ1

��

L2
J
(S1)

B∗

��
H(C,Φ1)

H(π(U),Φ2) A
// HJ (π(V ),Φ1)

Notation: P̃ ǫ
~
= Tφ1

◦ P ǫ
~
◦ T ∗

φ1
: H(C,Φ2) −→ H(C,Φ2).

We 
an sum up what we have done so far by the following proposition. The proof

of this result uses the same iterative pro
edure as in Proposition 2.2.20.

Proposition 2.3.1. There exists a unitary operator Ũ : H(π(U),Φ2) −→ L2
J
(S1)

su
h that mi
rolo
ally:

Ũ P̃ ǫ~ = gǫ~

(

~

i

∂

∂θ̃

)

Ũ +O(~∞),

where π(U) is a suitable neighbourhood as in Proposition 2.2.20 and where gǫ
~
is

an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~, depending

smoothly on ǫ and su
h that its �rst term gǫ0 is the inverse of the a
tion integral

1
2π

∫

γ̂E
ξdx.

In order to determine the spe
trum of the operator P ǫ
~
, we use the same argu-

ments as in the proof of Theorem B and therefore two Grushin problems, one for

the operator Sǫ
~
− z and the other one for the operator P̃ ǫ

~
− z.

3. Appli
ation to PT -symmetri
 pseudo-differential operators

PT -symmetri
 operators are used as an alternative to selfadjoint operators in

quantum me
hani
s and an interesting question about any su
h operator is whether

or not its spe
trum is real (see [Ben05℄). In the 
ase of perturbations of pseudo-

di�erential operators, Naima Boussekkine and Nawal Me
herout proved in [BM13℄

that PT -symmetri
 perturbation of a semi-
lassi
al S
hrödinger operator with a

real-valued single well potential have real spe
trum. Then Naima Boussekkine,

Nawal Me
herout, Thierry Ramond and Johannes Sjöstrand proved in [BMRS15℄

that in the 
ase of a double well potential for an exponentially small perturbation

of S
hrödinger operator, this operator also has real spe
trum. They also showed

that for non-small perturbations of S
hrödinger operator, the spe
trum 
an be
ome


omplex.

First, re
all the de�nition of a PT -symmetri
 operator (see for example [BM13℄

or [BMRS15℄): we denote by P the parity operator and by T the time-reversal

operator de�ned by:

P : L2(R) −→ L2(R) T : L2(R) −→ L2(R),

u(x) 7−→ u(−x) u(x) 7−→ u(x).

Let P ǫ
~
be a pseudo-di�erential operator a
ting on L2(R) and depending smoothly

on ǫ.
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De�nition 3.0.2. We said that the pseudo-di�erential operator P ǫ
~
is PT -symmetri


if [P ǫ
~
,PT ] = 0.

Theorem C. Let P ǫ
~
be a pseudo-di�erential operator depending smoothly on a

small parameter ǫ, a
ting on L2(R) and let E0 ∈ R su
h that they satisfy the

assumptions (A) to (E), 
onsequently the operator P ǫ
~
is of the form:

P ǫ~(x, ~Dx) = F ǫ~(x, ~Dx) + iǫQǫ~(x, ~Dx).

Moreover, we assume that P ǫ
~
is PT -symmetri
. Let:

RC,ǫ =

{

z ∈ C; |ℜ(z)− E0| <
1

C
, |ℑ(z)| < ǫ

C

}

where C > 0 is a 
onstant.

Then the spe
trum of the operator P ǫ
~
in the re
tangle RC,ǫ is real.

Besides, the spe
trum σ(P ǫ
~
) in the re
tangle RC,ǫ is given by Theorem A, thus:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),

where gǫ
~
is an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~,

depending smoothly on ǫ and su
h that its �rst term gǫ0 in the asymptoti
 expansion

is the inverse of the a
tion 
oordinate

1
2π

∫

γE
ξdx.

Proof. A

ording to Theorem A, we know that the spe
trum of the operator P ǫ
~
in

the re
tangle RC,ǫ is given by:

σ(P ǫ~) ∩RC,ǫ = {gǫ~(~k), k ∈ Z} ∩RC,ǫ +O(~∞),

where gǫ
~
is an analyti
 fun
tion admitting an asymptoti
 expansion in powers of ~,

depending smoothly on ǫ and the �rst term gǫ0 is the inverse of the a
tion 
oordinate

1
2π

∫

γE
ξdx. This means that the eigenvalues are along a 
urve up to O(~∞).

Moreover, sin
e P ǫ
~
is PT -symmetri
, we have PT (P ǫ

~
−z) = (P ǫ

~
−z)PT . Therefore

the spe
trum σ(P ǫ
~
) is symmetri
 with respe
t to the real axis.

If we 
hoose an eigenvalue in the spe
trum σ(P ǫ
~
), then the symmetri
 of this

eigenvalue must also be in the spe
trum. Yet, the distan
e between the real parts

of two eigenvalues is of order O(~), therefore the symmetri
 of an eigenvalue has the

same real part as the eigenvalue itself. Therefore the symmetri
 of an eigenvalue

is the eigenvalue itself, i.e. the spe
trum is real. As a result, we obtain that

σ(P ǫ
~
) ∩RC,ǫ is real. �

Remark 3.0.3. We re
over the result of Naima Boussekkine and Nawal Me
herout

in [BM13℄ by using this theorem for any real number E0 satisfying Hypothesis (E)

(i.e. for non-
riti
al point E0) and the result of Mi
hael Hitrik in [Hit04℄ for 
riti
al

points E0.

4. Numeri
al illustrations

In this se
tion, we illustrate our result for several di�erential operators. The fol-

lowing plots have been obtained with the numeri
al 
omputation software S
ilab.

4.1. Operators a
ting on L2(S1). Let α ∈ R∗
. In this se
tion, we deal with

di�erential operators P ǫ a
ting on L2(S1) of the form:

P ǫ(θ, ~Dθ) = α~Dθ + iǫQ(θ, ~Dθ),

where the symbol q(θ, I) asso
iated with the operator Q(θ, ~Dθ) is an analyti


fun
tion on S
1 × R whi
h does not depend on the semi-
lassi
al parameter ~.
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To implement this type of operators and determine their spe
tra by numeri
al

methods, we follow these three steps:

1. noti
e that the family (el)l∈Z = (eilθ)l∈Z is an orthonormal basis of L2(S1),
therefore we 
an de�ne the operator P ǫ by its a
tion on the basis, so we

obtain an in�nite matrix Pǫ;
2. we 
hoose an integer N ≥ 1 and we restri
t the matrix Pǫ to a matrix

Pǫ2N+1 of size (2N + 1)× (2N + 1) by 
hoosing to only 
onsider the a
tion

of the operator P ǫ on the fun
tions (el)−N≤l≤N ;
3. we 
ompute the spe
trum of Pǫ with the fun
tion spe
 of S
ilab.

Then, to 
ompare the numeri
al spe
trum with our result, we determine an ap-

proximate of the fun
tion gǫ(Ĩ) (whi
h gives the exa
t spe
trum) by 
onsidering

the average in θ of the symbol pǫ(θ, I) := αI + iǫq(θ, I).
We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. α = 1;

4. ǫ = ~δ with δ =
1

2
.
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Figure 1. pǫ(θ, I) = αI + iǫ(cos θ + I2).

Figure 2. pǫ(θ, I) = αI + iǫ(cos θ + I2).
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Figure 3. pǫ(θ, I) = αI + iǫ(cos θ + I3).

Figure 4. pǫ(θ, I) = αI + iǫ(cos θ + I3).
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4.2. Operators a
ting on L2(R). In this se
tion, we deal with di�erential oper-

ators P ǫ a
ting on L2(R) of the form:

P ǫ(x, ~Dx) = P0(x, ~Dx) + iǫQ(x, ~Dx),

where P0(x, ~Dx) = x2 + (~Dx)
2
is the harmoni
 os
illator and where q(x, ξ) the

symbol asso
iated with the operator Q(x, ~Dx) is a polynomial fun
tion in x and

ξ, whi
h does not depend on the semi-
lassi
al parameter ~.

To implement this type of operator, we 
onsider the following spa
e.

De�nition 4.2.1 (Fo
k spa
e). The Fo
k spa
e, denoted by F , is the set of holo-

morphi
 fun
tions f(z) on C satisfying:

1

π

∫

C

|f(z)|2e−|z|2/~L(dz) < +∞.

Notation: 〈, 〉 is the s
alar produ
t on F de�ned for all u, v ∈ F by:

〈u, v〉 = 1

π

∫

C

u(z)v(z)e−|z|2/~L(dz).

We 
an show that, for α ∈ N, the family (ζα)α∈N, where:

ζα(z) =
zα√

~α+1α!
,

is an orthonormal basis of F . Re
all the de�nition of the Bargmann transform

asso
iated with the Fo
k spa
e.

De�nition 4.2.2 (Bargmann transform). Let u ∈ L2(R), we de�ne the Bargmann

transform of u, for z ∈ C, by:

(Tu)(z) =

∫

R

e−(z2−2
√
2xz+x2)/(2~)u(x)dx.

This transform sends L2(R) to the Fo
k spa
e F .

To determine the spe
trum of the operator P ǫ by numeri
al methods, we follow

these three steps:

1. we 
ompute TP ǫT−1
by using 
reation and annihilation operators and we

de�ne the operator TP ǫT−1
by its a
tion on the basis (ζα)α∈N, so we obtain

an in�nite matrix Pǫ;
2. we 
hoose an integer N ≥ 1 and we restri
t the matrix Pǫ to a matrix

PǫN+1 of size (N + 1)× (N + 1) by 
hoosing to only 
onsider the a
tion of

the operator TP ǫT−1
on the fun
tions (ζα)0≤α≤N ;

3. we 
ompute the spe
trum of Pǫ with the fun
tion spe
 of S
ilab.

Then, to 
ompare the numeri
al spe
trum with our result, we determine an ap-

proximate of the fun
tion gǫ (whi
h gives the exa
t spe
trum) by giving expli
it

a
tion-angle 
oordinates for the harmoni
 os
illator and by 
omputing an approx-

imate to order ǫ of the fun
tion gǫ (by averaging q). We denote this approximate

by g̃ǫ.
We 
ompare the numeri
al result with the approximate spe
trum obtained by using

our theorem (i.e. g̃ǫ(~k) with k ∈ Z) and with the approximate spe
trum obtained

by using the spe
trum of the harmoni
 os
illator (i.e. g̃ǫ(~(2k + 1)) with k ∈ Z).

We observe that the approximate spe
trum obtained via the spe
trum of the har-

moni
 os
illator is better than the one obtained with our result, be
ause it takes
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into a

ount the Maslov index.

We obtain the following plots by using the parameters:

1. N = 66;

2. ~ =
1

N
;

3. ǫ = ~δ with δ =
1

2
.

Figure 5. pǫ(x, ξ) = x2 + ξ2 + iǫx2.
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Figure 6. pǫ(x, ξ) = x2 + ξ2 + iǫx2.

Figure 7. pǫ(x, ξ) = x2 + ξ2 + iǫ(x2 + x3).
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Figure 8. pǫ(x, ξ) = x2 + ξ2 + iǫx4.

Figure 9. pǫ(x, ξ) = x2 + ξ2 + iǫx4.
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