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Consider a foam

A foam consists of pockets, called cells or bubbles, of gas or liquid
enclosed in liquid – liquid foams – or solid – solid foams.

In liquid foams, liquid is distributed over films, Plateau borders
(PBs), and nodes.
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Bubble bubble, toil and trouble

The building blocks of foams are bubbles.

Previously we studied the shapes of bubbles on a liquid syrface:

Teixeira et al.. Langmuir 31, 13708–13717 (2015).

On a solid surfzce, they can have unusual shapes:

. . . but curved geometries are difficult.
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Consider a confined foam

In confined foams there exist wall PBs, or menisci, where the films
meet the confining substrates.

Photo courtesy of M. F. Vaz.

One usually assumes tha the liquid wets the substrates completely,
but this need not be so.

What is the shape of a PB on a surface of a given wettability (i.e.,
contact angle θc)? Can that surface support a foam?

This is important for firefighting foams, containers for foamy
foodstuffs, etc.
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Theory: model PB and the Young-Laplace equation

Young-Laplace equation for
PBs where flat film meets pla-
nar substrate:

[
1 +

(
dx

dz

)2
]−3/2

d2x

dz2
= −∆p

γ

∆p = [pb(z = 0)− ρgz ] − pa
is pressure difference across the
interface (∝ curvature), γ is
liquid-gas surface tension.

Boundary conditions:

1 dx/dz(z = 0) = − cot θc (solid substrate);

2 dz/dx(x = 0) = +∞ (PB apex).
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Theory: solving the Young-Laplace equation

Rewrite equation in terms of film inclination θ(z): boundary
conditions are θ(0) = θc , θ(h) = π/2.

Assume hydrostatic PBs, normalise lengths by h and introduce Bond
number Bo = ρgh2/γ.

Analytically exact solutions for bottom (+) and top (−) PBs:

x ′(z ′) =

∫
1

z′

(1− z ′′)
(
cos θc ± Bo

2 z ′′
)
dz ′′[

1− (1− z ′′)2
(
cos θc ± Bo

2 z ′′
)2
]1/2

In zero gravity (Bo = 0, top=bottom):

x ′(z ′) =
1

cos θc

{
1−

[
1− (1− z ′)

2
cos2 θc

]1/2
}
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Simulation: Surface Evolver (SE)

Discretise each interface and
perform direct numerical
minimisation of surface
energy for a fixed PB area.

Only half PB is simulated, by
symmetry.

Discretisation induces a
small, unphysical, ‘contact’
angle where the PBs meet
the vertical film.
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Experiment: set-up

Contact angle meter (GBX
Scientific Instruments, France).

Commercially available soap
solution (Pustefix, Germany),
surface tension γ = 28.2± 0.3 mJ
m−2, λc ≈ 1.7 mm.

In-house microfluidic tool consisting
of (i) microfluidic reservoir with a
number of capillary slots, made of
ABS plastic; (ii) thin, flexible,
hydrophilic loop which supports
liquid film, made of
polyimide-coated capillary tubing
(Molex, USA). Gives bottom PB
shape only, not top.

We measure: meniscus width at
substrate 2x ; meniscus height h.
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Experiment: substrates studied

Material θc (◦)

SiO2 18.2± 2.8
Teflonised polished Si 51.7± 0.3

PDMS elastomer 61.0± 2.1
Teflonised rough Si 64.0± 0.4
Teflonised black Si 109.3± 0.3
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Results: foam-phobia and foam-philia, theory

Domains of allowed (white, below dashed line only in right panel) and

forbidden (elsewhere) PBs in (θc ,Bo) space, at the bottom (left) and top

(right) substrates. The solid lines are loci of constant x ′(z ′ = 0). The dashed

line is Bo = 2 cos θc .
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Results: bottom PB shapes, theory + SE

Comparison of bottom PB shapes from analytical theory and Surface Evolver.
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Results: bottom PB shapes, theory + experiment I

PBs at four of the five surfaces used in the experiments.
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Results: bottom PB shapes, theory + experiment II

Scaled PB half-width x(z = 0)/h vs Bond number, from theory (curves) and

experiment (symbols).
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Liquid bridges

If the film connecting the two PBs is not infinitesimally thin we have
a liquid bridge or capillary bridge. May cause repulsion or attraction.

Liquid bridges are relevant in many contexts:

Sand art

AFM in high-humidity environments

Soldering

Lungs, closing small airways and impairing gas exchange

Wet adhesion of insects and tree frogs
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Theory: the physics of liquid bridge shape

Bridge shape is determined by the balance of gravity, surface
tension, and liquid contact angles. So a key dimensionless quantity
is the Bond number (H is substrate separation):

Bo =
ρgH2

γ

Relevant lengthscale is the capillary length:

λc =

(
γ

ρg

)1/2

Starting with Lagrange, a lot of work has been done on
axisymmetric bridges.

We solve the Young-Laplace equation with gravity for a planar bridge
between two horizontal, flat substrates, to predict the bridge shape.
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Theory: liquid bridge and the Young-Laplace equation

Young-Laplace equation for liq-
uid bridge between two planar
substrates:

[
1 +

(
dx

dz

)2
]−3/2

d2x

dz2
= −∆p

γ

∆p = [pb(z = 0)− ρgz ] − pa
is pressure difference across the
interface (∝ curvature), γ is
liquid-gas surface tension.

Boundary conditions:

1 dx/dz(z = 0) = − cot θbc (bottom substrate);

2 dz/dx(x = H) = cot θtc (top substrate).
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Theory: solving the Young-Laplace equation

Rewrite equation in terms of film inclination θ(z): boundary
conditions are θ(0) = θbc , θ(H) = θtc :

sin θ
dθ

dz
= −∆p

γ

Analytically exact solution (lenghts in units of H):

x ′(z ′) = x ′(0)−

∫
z′

0

− cos θtcz
′′ + (1− z ′′)

(
cos θbc + Bo

2 z ′′
){

1−
[
− cos θtcz

′′ + (1− z ′′)
(
cos θbc + Bo

2 z ′′
)]2}1/2

dz ′′

In zero gravity (Bo = 0, top=bottom):

x ′(z ′) = x ′(0) +
sin θbc −

{
1−

[
cos θbc −

(
cos θbc + cos θtc

)
z ′
]2}1/2

cos θbc + cos θtc
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Results: when does a bridge bridge?

From requiring that −1 ≤ cos θ(z) ≤ 1:

Bo ≤ Bomax = 2
(

2 − cos θbc + cos θtc

)
) + 4

√(
1 − cos θbc

)
(1 + cos θtc)
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Results: how many necks and bulges?

From requiring that θ(z) = 90◦ (in units of H):

h′ =
Bo− 2

(
cos θbc + cos θtc

)
±
√

Bo2 − 4
(
cos θtc − cos θbc

)
Bo + 4

(
cos θtc + cos θbc

)2

2Bo
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Results: are there inflection points?

From requiring that dθ(z)/dz = 0 (in units of H):

h̃′ =
1

2
− cos θbc + cos θtc

Bo
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Results: bridge shapes vs Bo, θbc = θtc = 0◦

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = θtc = 45◦

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = θtc = 90◦

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = θtc = 135◦

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = θtc = 180◦

Lengths scaled by capillary length λc .
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Results: minimum X-sectional area, θbc = θtc

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = 45◦, θtc = 90◦

Lengths scaled by capillary length λc .
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Results: bridge shapes vs Bo, θbc = 45◦, θtc = 180◦

Lengths scaled by capillary length λc .

Miguel Teixeira1, Steve Arscott2, Simon Cox3 and Paulo Teixeira4,5 The shapes of water



Results: bridge shapes vs Bo, θbc = 180◦, θtc = 0◦

Lengths scaled by capillary length λc .
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Results: minimum X-sectional area, θbc 6= θtc

θbc ≤ θtc = 180◦ θbc ≥ θtc = 0◦

Lengths scaled by capillary length λc .
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Summary and conclusions

We have integrated the Young-Laplace equation (quasi-)analytically
to find the shape of the 2D PBs along which a planar vertical film
meets two horizontal flat substrates of given wetttabilities.

The combination of a particular surface (θc) in contact with a
particular foam (ρ and γ) leads to allowed and forbidden surface
PBs: a surface can be foam-philic or foam-phobic.

PBs at the top substrate can only exist in a small region of (θc ,Bo)
space; in particular, one must have θc < 90◦.
PBs at the bottom substrate a have wider range of existence,
requiring larger θc at higher Bo or vice versa.

Predictions are in fairly good agreement with experiment.

This was then generalised to a 2D liquid bridge: we established the
range of substrate separations for which the bridge can exist, as well
as the positions of any necks/bulges amd inflection points on its
surface. These results are analytically exact.

We also obtained the minimum cross-sectional area of such a liquid
bridge, as a function of contact angles and substrate separation.
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Shameless publicity plug. . .

Topics

Liquid Crystals in Biology and Active Matter

Macromolecular Liquid Crystals

Confined Liquid Crystals

Design of New Materials

Mathematical Modelling, Symmetry and Topology

Novel Applications
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Results: bottom PB shapes, theory

Analytically-calculated PB shapes at bottom substrate, for various

combinations of Bo and θc .
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Results: top and bottom PB shapes, theory

Analytically-calculated PB shapes at top (left column) and bottom (right

column) substrates, for Bo = 1 and θc = 0◦ (top row), 30◦ (centre row) and

60◦ (bottom row).
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Results: unphysical PB shapes, theory

Examples of unphysical bottom PBs (top row) and top PBs (bottom row).
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Results: position of neck/bulge vs Bo, θbc = θtc

Lengths scaled by substrate separation H.
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Results: position of neck/bulge vs Bo, θbc 6= θtc

Lengths scaled by substrate separation H.
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