The shapes of water

Miguel Teixeira¹, Steve Arscott², Simon Cox³ and Paulo Teixeira^{4,5}

 ¹Department of Meteorology, University of Reading, United Kingdom
 ²Institut d'Electronique, de Microélectronique et de Nanotechnologie, Université de Lille, France
 ³Department of Mathematics, Aberystwyth University, United Kingdom
 ⁴Centro de Física Teórica e Computacional, Faculdade de Ciências da Universidade de Lisboa, Portugal
 ⁵Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

Consider a foam

- A foam consists of pockets, called cells or bubbles, of gas or liquid enclosed in liquid liquid foams or solid solid foams.
- In liquid foams, liquid is distributed over films, Plateau borders (PBs), and nodes.

Bubble bubble, toil and trouble

- The building blocks of foams are bubbles.
- Previously we studied the shapes of bubbles on a liquid syrface:

Teixeira et al.. Langmuir 31, 13708-13717 (2015).

• On a **solid** surfzce, they can have unusual shapes:

• ... but curved geometries are difficult.

Consider a confined foam

• In confined foams there exist wall PBs, or menisci, where the films meet the confining substrates.

Photo courtesy of M. F. Vaz.

- One usually assumes that he liquid wets the substrates completely, but this need not be so.
- What is the shape of a PB on a surface of a given wettability (i.e., contact angle θ_c)? Can that surface support a foam?
- This is important for firefighting foams, containers for foamy foodstuffs, etc.

Theory: model PB and the Young-Laplace equation

Young-Laplace equation for PBs where flat film meets planar substrate:

$$\left[1 + \left(\frac{dx}{dz}\right)^2\right]^{-3/2} \frac{d^2x}{dz^2} = -\frac{\Delta p}{\gamma}$$

 $\Delta p = [p_b(z=0) - \rho g z] - p_a$ is pressure difference across the interface (\propto curvature), γ is liquid-gas surface tension.

Boundary conditions:

•
$$dx/dz(z=0) = -\cot \theta_c$$
 (solid substrate);

$$\ \textbf{ 0} \ \ dz/dx(x=0)=+\infty \ (\mathsf{PB} \ \mathsf{apex}).$$

Theory: solving the Young-Laplace equation

- Rewrite equation in terms of film inclination θ(z): boundary conditions are θ(0) = θ_c, θ(h) = π/2.
- Assume hydrostatic PBs, normalise lengths by *h* and introduce Bond number $Bo = \rho g h^2 / \gamma$.
- Analytically exact solutions for bottom (+) and top (-) PBs:

$$x'(z') = \int_{z'}^{1} \frac{(1 - z'') \left(\cos \theta_c \pm \frac{B_0}{2} z''\right) dz''}{\left[1 - (1 - z'')^2 \left(\cos \theta_c \pm \frac{B_0}{2} z''\right)^2\right]^{1/2}}$$

• In zero gravity (Bo = 0, top=bottom):

$$x'(z') = rac{1}{\cos heta_c} \left\{ 1 - \left[1 - (1 - z')^2 \cos^2 heta_c
ight]^{1/2}
ight\}$$

Simulation: Surface Evolver (SE)

- Discretise each interface and perform direct numerical minimisation of surface energy for a fixed PB area.
- Only half PB is simulated, by symmetry.
- Discretisation induces a small, unphysical, 'contact' angle where the PBs meet the vertical film.

Experiment: set-up

- Contact angle meter (GBX Scientific Instruments, France).
- Commercially available soap solution (Pustefix, Germany), surface tension $\gamma = 28.2 \pm 0.3$ mJ m⁻², $\lambda_c \approx 1.7$ mm.
- In-house microfluidic tool consisting of (i) microfluidic reservoir with a number of capillary slots, made of ABS plastic; (ii) thin, flexible, hydrophilic loop which supports liquid film, made of polyimide-coated capillary tubing (Molex, USA). Gives bottom PB shape only, not top.
- We measure: meniscus width at substrate 2x; meniscus height h.

Experiment: substrates studied

Material	θ_{c} (°)
SiO ₂	18.2 ± 2.8
Teflonised polished Si	51.7 ± 0.3
PDMS elastomer	61.0 ± 2.1
Teflonised rough Si	64.0 ± 0.4
Teflonised black Si	109.3 ± 0.3

Results: foam-phobia and foam-philia, theory

Domains of allowed (white, below dashed line only in right panel) and forbidden (elsewhere) PBs in (θ_c , Bo) space, at the bottom (left) and top (right) substrates. The solid lines are loci of constant x'(z' = 0). The dashed line is Bo = $2 \cos \theta_c$.

Results: bottom PB shapes, theory + SE

Comparison of bottom PB shapes from analytical theory and Surface Evolver.

Results: bottom PB shapes, theory + experiment I

PBs at four of the five surfaces used in the experiments.

Results: bottom PB shapes, theory + experiment II

aled PB half-width x(z = 0)/h vs Bond number, from theory (curves) and experiment (symbols).

Liquid bridges

- If the film connecting the two PBs is not infinitesimally thin we have a liquid bridge or capillary bridge. May cause repulsion or attraction.
- Liquid bridges are relevant in many contexts:
 - Sand art

- AFM in high-humidity environments
- Soldering

- Lungs, closing small airways and impairing gas exchange
- Wet adhesion of insects and tree frogs

Theory: the physics of liquid bridge shape

• Bridge shape is determined by the balance of gravity, surface tension, and liquid contact angles. So a key dimensionless quantity is the Bond number (*H* is substrate separation):

$$Bo = \frac{\rho g H^2}{\gamma}$$

• Relevant lengthscale is the capillary length:

$$\lambda_{c} = \left(\frac{\gamma}{\rho g}\right)^{1/2}$$

- Starting with Lagrange, a lot of work has been done on axisymmetric bridges.
- We solve the Young-Laplace equation with gravity for a planar bridge between two horizontal, flat substrates, to predict the bridge shape.

Theory: liquid bridge and the Young-Laplace equation

Young-Laplace equation for liquid bridge between two planar substrates:

$$\left[1 + \left(\frac{dx}{dz}\right)^2\right]^{-3/2} \frac{d^2x}{dz^2} = -\frac{\Delta p}{\gamma}$$

 $\Delta p = [p_b(z=0) - \rho g z] - p_a$ is pressure difference across the interface (\propto curvature), γ is liquid-gas surface tension.

Boundary conditions:

•
$$dx/dz(z=0) = -\cot \theta_c^b$$
 (bottom substrate);

 $dz/dx(x = H) = \cot \theta_c^t \text{ (top substrate)}.$

Theory: solving the Young-Laplace equation

Rewrite equation in terms of film inclination θ(z): boundary conditions are θ(0) = θ^b_c, θ(H) = θ^t_c:

$$\sin\theta \, \frac{d\theta}{dz} = -\frac{\Delta p}{\gamma}$$

• Analytically exact solution (lenghts in units of H):

$$x'(z') = x'(0) - \int_0^{z'} \frac{-\cos\theta_c^t z'' + (1 - z'')\left(\cos\theta_c^b + \frac{Bo}{2}z''\right)}{\left\{1 - \left[-\cos\theta_c^t z'' + (1 - z'')\left(\cos\theta_c^b + \frac{Bo}{2}z''\right)\right]^2\right\}^{1/2}} dz''$$

• In zero gravity (Bo = 0, top=bottom):

$$x'(z') = x'(0) + \frac{\sin\theta_c^b - \left\{1 - \left[\cos\theta_c^b - \left(\cos\theta_c^b + \cos\theta_c^t\right)z'\right]^2\right\}^{1/2}}{\cos\theta_c^b + \cos\theta_c^t}$$

Results: when does a bridge bridge?

Results: how many necks and bulges?

h' —

Results: are there inflection points?

Miguel Teixeira¹, Steve Arscott², Simon Cox³ and Paulo Teixeira^{4,5}

The shapes of water

Results: bridge shapes vs Bo, $\theta_c^b = \theta_c^t = 0^\circ$

Results: bridge shapes vs Bo, $\theta_c^b = \theta_c^t = 45^\circ$

Results: bridge shapes vs Bo, $\theta_c^b = \theta_c^t = 90^\circ$

Results: bridge shapes vs Bo, $\theta_c^b = \theta_c^t = 135^{\circ}$

Results: bridge shapes vs Bo, $\theta_c^b = \theta_c^t = 180^\circ$

Results: minimum X-sectional area, $\theta_c^b = \theta_c^t$

Results: bridge shapes vs Bo, $\theta_c^b = 45^\circ$, $\theta_c^t = 90^\circ$

Results: bridge shapes vs Bo, $\theta_c^b = 45^\circ$, $\theta_c^t = 180^\circ$

Results: bridge shapes vs Bo, $\theta_c^b = 180^\circ$, $\theta_c^t = 0^\circ$

Results: minimum X-sectional area, $\theta_c^b \neq \theta_c^t$

Lengths scaled by capillary length λ_c .

Summary and conclusions

- We have integrated the Young-Laplace equation (quasi-)analytically to find the shape of the 2D PBs along which a planar vertical film meets two horizontal flat substrates of given wetttabilities.
- The combination of a particular surface (θ_c) in contact with a particular foam $(\rho \text{ and } \gamma)$ leads to allowed and forbidden surface PBs: a surface can be **foam-philic** or **foam-phobic**.
 - PBs at the top substrate can only exist in a small region of (θ_c, Bo) space; in particular, one must have $\theta_c < 90^\circ$.
 - PBs at the bottom substrate a have wider range of existence, requiring larger θ_c at higher Bo or vice versa.
- Predictions are in fairly good agreement with experiment.
- This was then generalised to a 2D liquid bridge: we established the range of substrate separations for which the bridge can exist, as well as the positions of any necks/bulges amd inflection points on its surface. These results are analytically exact.
- We also obtained the minimum cross-sectional area of such a liquid bridge, as a function of contact angles and substrate separation.

Acknowledgements

We acknowledge funding from the following sources:

- French RENATECH network.
- European Commission through MSCA-RISE project Matrixassay (ID: 644175).
- Fundação para a Ciência e Tecnologia (Portugal) through grants EXCL/FIS-NAN/0083/2012 and UID/FIS/00618/2013.
- Instituto Politécnico de Lisboa (IPL) for travel support.
- Wilhelm und Else Heraeus Stiftung for hospitality.

and would like to thank K. Brakke for his development and maintenance of the Surface Evolver code.

Shameless publicity plug...

ILCC2020 28th International Liquid Crystal Conference 26th to 31st July 2020

Lisbon, Portugal

http://ilcc2020.org

Topics

- Liquid Crystals in Biology and Active Matter
- Macromolecular Liquid Crystals
- Confined Liquid Crystals
- Design of New Materials
- Mathematical Modelling, Symmetry and Topology
- Novel Applications

Results: bottom PB shapes, theory

combinations of Bo and θ_c .

Miguel Teixeira¹, Steve Arscott², Simon Cox³ and Paulo Teixeira^{4,5} The shapes of water

Results: top and bottom PB shapes, theory

Analytically-calculated PB shapes at top (left column) and bottom (right column) substrates, for Bo = 1 and $\theta_c = 0^\circ$ (top row), 30° (centre row) and 60° (bottom row).

Results: unphysical PB shapes, theory

Examples of unphysical bottom PBs (top row) and top PBs (bottom row).

Results: position of neck/bulge vs Bo, $\theta_c^b = \theta_c^t$

Lengths scaled by substrate separation H.

Results: position of neck/bulge vs Bo, $\theta_c^b \neq \theta_c^t$

Lengths scaled by substrate separation H.