The shapes of water

Miguel Teixeira ${ }^{1}$, Steve Arscott ${ }^{2}$, Simon Cox ${ }^{3}$ and Paulo Teixeira ${ }^{4,5}$

${ }^{1}$ Department of Meteorology, University of Reading, United Kingdom
${ }^{2}$ Institut d'Electronique, de Microélectronique et de Nanotechnologie,
Université de Lille, France
${ }^{3}$ Department of Mathematics, Aberystwyth University, United Kingdom
${ }^{4}$ Centro de Física Teórica e Computacional,
Faculdade de Ciências da Universidade de Lisboa, Portugal
${ }^{5}$ Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Portugal

Consider a foam

- A foam consists of pockets, called cells or bubbles, of gas or liquid enclosed in liquid - liquid foams - or solid - solid foams.
- In liquid foams, liquid is distributed over films, Plateau borders (PBs), and nodes.

Bubble bubble, toil and trouble

- The building blocks of foams are bubbles.
- Previously we studied the shapes of bubbles on a liquid syrface:

Teixeira et al.. Langmuir 31, 13708-13717 (2015).

- On a solid surfzce, they can have unusual shapes:

- ... but curved geometries are difficult.

Consider a confined foam

- In confined foams there exist wall PBs, or menisci, where the films meet the confining substrates.

Photo courtesy of M. F. Vaz.

- One usually assumes tha the liquid wets the substrates completely, but this need not be so.
- What is the shape of a PB on a surface of a given wettability (i.e., contact angle θ_{c})? Can that surface support a foam?
- This is important for firefighting foams, containers for foamy foodstuffs, etc.

Theory: model PB and the Young-Laplace equation

Young-Laplace equation for PBs where flat film meets planar substrate:

Boundary conditions:
(1) $d x / d z(z=0)=-\cot \theta_{c}$ (solid substrate);
(2) $d z / d x(x=0)=+\infty$ (PB apex).

Theory: solving the Young-Laplace equation

- Rewrite equation in terms of film inclination $\theta(z)$: boundary conditions are $\theta(0)=\theta_{c}, \theta(h)=\pi / 2$.
- Assume hydrostatic PBs, normalise lengths by h and introduce Bond number $\mathrm{Bo}=\rho g h^{2} / \gamma$.
- Analytically exact solutions for bottom (+) and top (-) PBs:

$$
x^{\prime}\left(z^{\prime}\right)=\int_{z^{\prime}}^{1} \frac{\left(1-z^{\prime \prime}\right)\left(\cos \theta_{c} \pm \frac{\mathrm{Bo}}{2} z^{\prime \prime}\right) d z^{\prime \prime}}{\left[1-\left(1-z^{\prime \prime}\right)^{2}\left(\cos \theta_{c} \pm \frac{\mathrm{Bo}}{2} z^{\prime \prime}\right)^{2}\right]^{1 / 2}}
$$

- In zero gravity ($\mathrm{Bo}=0$, top $=$ bottom):

$$
x^{\prime}\left(z^{\prime}\right)=\frac{1}{\cos \theta_{c}}\left\{1-\left[1-\left(1-z^{\prime}\right)^{2} \cos ^{2} \theta_{c}\right]^{1 / 2}\right\}
$$

Simulation: Surface Evolver (SE)

- Discretise each interface and perform direct numerical minimisation of surface energy for a fixed PB area.
- Only half PB is simulated, by symmetry.
- Discretisation induces a small, unphysical, 'contact' angle where the PBs meet
 the vertical film.

Experiment: set-up

- Contact angle meter (GBX Scientific Instruments, France).
- Commercially available soap solution (Pustefix, Germany), surface tension $\gamma=28.2 \pm 0.3 \mathrm{~mJ}$ $\mathrm{m}^{-2}, \lambda_{c} \approx 1.7 \mathrm{~mm}$.
- In-house microfluidic tool consisting of (i) microfluidic reservoir with a number of capillary slots, made of ABS plastic; (ii) thin, flexible, hydrophilic loop which supports liquid film, made of polyimide-coated capillary tubing (Molex, USA). Gives bottom PB shape only, not top.
- We measure: meniscus width at substrate $2 x$; meniscus height h.

Experiment: substrates studied

Material	$\theta_{c}\left({ }^{\circ}\right)$
SiO_{2}	18.2 ± 2.8
Teflonised polished Si	51.7 ± 0.3
PDMS elastomer	61.0 ± 2.1
Teflonised rough Si	64.0 ± 0.4
Teflonised black Si	109.3 ± 0.3

Results: foam-phobia and foam-philia, theory

Domains of allowed (white, below dashed line only in right panel) and forbidden (elsewhere) PBs in (θ_{c}, Bo) space, at the bottom (left) and top (right) substrates. The solid lines are loci of constant $x^{\prime}\left(z^{\prime}=0\right)$. The dashed line is $B o=2 \cos \theta_{c}$.

Results: bottom PB shapes, theory + SE

Comparison of bottom PB shapes from analytical theory and Surface Evolver.

Results: bottom PB shapes, theory + experiment I

PBs at four of the five surfaces used in the experiments.

Results: bottom PB shapes, theory + experiment II

Scaled PB half-width $x(z=0) / h$ vs Bond number, from theory (curves) and experiment (symbols).

Liquid bridges

- If the film connecting the two PBs is not infinitesimally thin we have a liquid bridge or capillary bridge. May cause repulsion or attraction.
- Liquid bridges are relevant in many contexts:
- Sand art

- AFM in high-humidity environments

- Soldering

- Lungs, closing small airways and impairing gas exchange
- Wet adhesion of insects and tree frogs

Theory: the physics of liquid bridge shape

- Bridge shape is determined by the balance of gravity, surface tension, and liquid contact angles. So a key dimensionless quantity is the Bond number (H is substrate separation):

$$
\mathrm{Bo}=\frac{\rho g H^{2}}{\gamma}
$$

- Relevant lengthscale is the capillary length:

$$
\lambda_{c}=\left(\frac{\gamma}{\rho g}\right)^{1 / 2}
$$

- Starting with Lagrange, a lot of work has been done on axisymmetric bridges.
- We solve the Young-Laplace equation with gravity for a planar bridge between two horizontal, flat substrates, to predict the bridge shape.

Theory: liquid bridge and the Young-Laplace equation

Young-Laplace equation for liquid bridge between two planar substrates:

$$
\left[1+\left(\frac{d x}{d z}\right)^{2}\right]^{-3 / 2} \frac{d^{2} x}{d z^{2}}=-\frac{\Delta p}{\gamma}
$$

$\Delta p=\left[p_{b}(z=0)-\rho g z\right]-p_{a}$ is pressure difference across the interface (\propto curvature), γ is liquid-gas surface tension.

Boundary conditions:
(1) $d x / d z(z=0)=-\cot \theta_{c}^{b}$ (bottom substrate);
(2) $d z / d x(x=H)=\cot \theta_{c}^{t}$ (top substrate).

Theory: solving the Young-Laplace equation

- Rewrite equation in terms of film inclination $\theta(z)$: boundary conditions are $\theta(0)=\theta_{c}^{b}, \theta(H)=\theta_{c}^{t}$:

$$
\sin \theta \frac{d \theta}{d z}=-\frac{\Delta p}{\gamma}
$$

- Analytically exact solution (lenghts in units of H):

$$
x^{\prime}\left(z^{\prime}\right)=x^{\prime}(0)-\int_{0}^{z^{\prime}} \frac{-\cos \theta_{c}^{t} z^{\prime \prime}+\left(1-z^{\prime \prime}\right)\left(\cos \theta_{c}^{b}+\frac{\mathrm{Bo}}{2} z^{\prime \prime}\right)}{\left\{1-\left[-\cos \theta_{c}^{t} z^{\prime \prime}+\left(1-z^{\prime \prime}\right)\left(\cos \theta_{c}^{b}+\frac{\mathrm{Bo}}{2} z^{\prime \prime}\right)\right]^{2}\right\}^{1 / 2}} d z^{\prime \prime}
$$

- In zero gravity ($\mathrm{Bo}=0$, top $=$ bottom):

$$
x^{\prime}\left(z^{\prime}\right)=x^{\prime}(0)+\frac{\sin \theta_{c}^{b}-\left\{1-\left[\cos \theta_{c}^{b}-\left(\cos \theta_{c}^{b}+\cos \theta_{c}^{t}\right) z^{\prime}\right]^{2}\right\}^{1 / 2}}{\cos \theta_{c}^{b}+\cos \theta_{c}^{t}}
$$

Results: when does a bridge bridge?

From requiring that $-1 \leq \cos \theta(z) \leq 1$:

$$
\left.\mathrm{Bo} \leq \mathrm{Bo}^{\max }=2\left(2-\cos \theta_{c}^{b}+\cos \theta_{c}^{t}\right)\right)+4 \sqrt{\left(1-\cos \theta_{c}^{b}\right)\left(1+\cos \theta_{c}^{t}\right)}
$$

Results: how many necks and bulges?

From requiring that $\theta(z)=90^{\circ}$ (in units of H):
$h^{\prime}=\frac{\mathrm{Bo}-2\left(\cos \theta_{c}^{b}+\cos \theta_{c}^{t}\right) \pm \sqrt{\mathrm{Bo}^{2}-4\left(\cos \theta_{c}^{t}-\cos \theta_{c}^{b}\right) \mathrm{Bo}+4\left(\cos \theta_{c}^{t}+\cos \theta_{c}^{b}\right)^{2}}}{2 \mathrm{Bo}}$

Results: are there inflection points?

From requiring that $d \theta(z) / d z=0$ (in units of H):

$$
\tilde{h}^{\prime}=\frac{1}{2}-\frac{\cos \theta_{c}^{b}+\cos \theta_{c}^{t}}{\mathrm{Bo}}
$$

Results: bridge shapes vs Bo, $\theta_{c}^{b}=\theta_{c}^{t}=0^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs $\mathrm{Bo}, \theta_{c}^{b}=\theta_{c}^{t}=45^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs $\mathrm{Bo}, \theta_{c}^{b}=\theta_{c}^{t}=90^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs $\mathrm{Bo}, \theta_{c}^{b}=\theta_{c}^{t}=135^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs $\mathrm{Bo}, \theta_{c}^{b}=\theta_{c}^{t}=180^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: minimum X -sectional area, $\theta_{c}^{b}=\theta_{c}^{t}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs Bo, $\theta_{c}^{b}=45^{\circ}, \theta_{c}^{t}=90^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs $\mathrm{Bo}, \theta_{c}^{b}=45^{\circ}, \theta_{c}^{t}=180^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: bridge shapes vs Bo, $\theta_{c}^{b}=180^{\circ}, \theta_{c}^{t}=0^{\circ}$

Lengths scaled by capillary length λ_{c}.

Results: minimum X-sectional area, $\theta_{c}^{b} \neq \theta_{c}^{t}$

$$
\theta_{c}^{b} \leq \theta_{c}^{t}=180^{\circ}
$$

$$
\theta_{c}^{b} \geq \theta_{c}^{t}=0^{\circ}
$$

Lengths scaled by capillary length λ_{c}.

- We have integrated the Young-Laplace equation (quasi-)analytically to find the shape of the 2D PBs along which a planar vertical film meets two horizontal flat substrates of given wetttabilities.
- The combination of a particular surface $\left(\theta_{c}\right)$ in contact with a particular foam (ρ and γ) leads to allowed and forbidden surface PBs: a surface can be foam-philic or foam-phobic.
- PBs at the top substrate can only exist in a small region of $\left(\theta_{c}, \mathrm{Bo}\right)$ space; in particular, one must have $\theta_{c}<90^{\circ}$.
- PBs at the bottom substrate a have wider range of existence, requiring larger θ_{c} at higher Bo or vice versa.
- Predictions are in fairly good agreement with experiment.
- This was then generalised to a 2D liquid bridge: we established the range of substrate separations for which the bridge can exist, as well as the positions of any necks/bulges amd inflection points on its surface. These results are analytically exact.
- We also obtained the minimum cross-sectional area of such a liquid bridge, as a function of contact angles and substrate separation.

Acknowledgements

We acknowledge funding from the following sources:

- French RENATECH network.
- European Commission through MSCA-RISE project Matrixassay (ID: 644175).
- Fundação para a Ciência e Tecnologia (Portugal) through grants EXCL/FIS-NAN/0083/2012 and UID/FIS/00618/2013.
- Instituto Politécnico de Lisboa (IPL) for travel support.
- Wilhelm und Else Heraeus Stiftung for hospitality.
and would like to thank K. Brakke for his development and maintenance of the Surface Evolver code.

Shameless publicity plug. . .

ILCC2020

$28^{\text {th }}$ International Liquid Crystal Conference $26^{\text {th }}$ to $31^{\text {st }}$ July 2020 Lisbon, Portugal

Topics

- Liquid Crystals in Biology and Active Matter
- Macromolecular Liquid Crystals
- Confined Liquid Crystals
- Design of New Materials
- Mathematical Modelling, Symmetry and Topology
- Novel Applications

Results: bottom PB shapes, theory

Analytically-calculated PB shapes at bottom substrate, for various combinations of Bo and θ_{c}.

Results: top and bottom PB shapes, theory

Analytically-calculated PB shapes at top (left column) and bottom (right column) substrates, for $\mathrm{Bo}=1$ and $\theta_{c}=0^{\circ}$ (top row), 30° (centre row) and 60° (bottom row).

Results: unphysical PB shapes, theory

Examples of unphysical bottom PBs (top row) and top PBs (bottom row).

Results: position of neck/bulge vs $\mathrm{Bo}, \theta_{c}^{b}=\theta_{c}^{t}$

Lengths scaled by substrate separation H.

Results: position of neck/bulge vs $\mathrm{Bo}, \theta_{c}^{b} \neq \theta_{c}^{t}$

Lengths scaled by substrate separation H.

