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Background I

The building blocks of liquid crystals come in a variety of shapes, all
non-spherical:

elongated molecules mineral particles

viruses red blood cells
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Backgound II

All current LC devices use confined LCs.

Their operation relies on the balance between the aligning actions of
the bounding surfaces – their anchoring – and of applied fields.

So the fundamental problem at the heart of LC applications is to
understand how given bounding surfaces modify the properties of a
given LC to induce a resultant alignment.

Confinement introduces additional structure and new phase
transitions. Theories of inhomogeneous fluids are difficult.

So we seek a simple, generic microscopic model – preferably steric.
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A simple liquid crystal model

Hard Gaussian overlap (HGO) particles approximate hard ellipsoids

U(12) =

{
0 if r12 ≥ σ(12)
∞ if r12 < σ(12)

σ(12) = σ0

[
1− 1

2
χ

{
(r̂12 · ω̂1 + r̂12 · ω̂2)2

1 + χ(ω̂1 · ω̂2)
+

(r̂12 · ω̂1 − r̂12 · ω̂2)2

1− χ(ω̂1 · ω̂2)

}]− 1
2

χ =
κ2 − 1

κ2 + 1
, κ =

σL
σ0

particle elongation

Distance of closest approach given in closed form.

κ > 1 prolate (rod-like); κ < 1: oblate (disc-like).
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How to model a confined LC

For prolate (rod-like) particles (κ > 1),
we use the hard needle-wall (HNW)
potential:

βVHNW (z , θ) =

{
0 if z ≥ 1

2
L cos θ

∞ if z < 1
2
L cos θ

For oblate (disc-like) particles (κ > 1),
we use the hard disc-wall (HDW) po-
tential:

βVHDW (z , θ) =

{
0 if z ≥ 1

2
D sin θ

∞ if z < 1
2
D sin θ

Varying L (D) between 0 and σL(σL) is equivalent to changing the degree
of penetrability of the substrates, e.g., by manipulating the density or the
orientation of an adsorbed layer.This can be done independently at either
substrate, leading to symmetric or hybrid films.

Paulo Teixeira1,2, Candy Anquetil-Deck3 and Doug Cleaver4 Theory and simulation of liquid crystal sandwiches



Theory I

Write down grand-canonical free energy functional for this system –
Onsager second-virial with Parsons-Lee correction to approximate
sum of higher-order virial coefficients:

βΩ [ρ(z , ω)]

Sxy
=

∫
ρ(z , ω) [log ρ(z , ω)− 1] dz dω

− F exc
HS

8vHS

∫ ∫
ρ(z1, ω1)Ξ(z1, ω1, z2, ω2)ρ(z2, ω2) dz1dω1dz2dω2

+

∫ [ 2∑
i=1

VHDW (z − z i0, θ)− µ

]
ρ(z , ω) dzdω

where F exc
HS is the Carnahan-Starling excess free energy of hard

spheres of volume vHS , at the same packing fraction ξ.

Minimise it to find equilibrium state.
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Theory II

Structure is given by the density profile ρ(z):

ρ(z) =

∫
ρ(z , ω) dω

Particle orientations are described by order parameters:

Qzz(z) = 〈P2(cos θ)〉 (uniaxial)

Qxx(z)− Qyy (z) =
3

2

〈
sin2 θ cos 2φ

〉
(biaxial)

q(z) =

[
2

3
TrQ2(z)

]1/2

(total)

where Q is the usual order parameter tensor in the lab-fixed frame:

Q =

 Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz


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Theory III

In fact, the theory gives you lots of orientational order parameters. . . Here
is what they all mean.

M. M. Telo da Gama, Molec. Phys. 52, 585-610 (1984)
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Theory IV

Exactly how do we minimise the free-energy functional?

Derive Euler-Lagrange equations, then solve by Picard iteration
(traditional, works well).

ρ(i+1)(z , ω) = (1− α)ρ(i)(z , ω) + αρ(i−1)(z , ω) , 0 ≤ α < 1

Direct minimisation using conjugate gradients (didn’t work too well).

Artificial neural network (NN) – unsupervised multi-layer perceptron
(MLP) (works as well as Picard, sometime better).
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Discotic liquid crystals

Rod-like liquid crystals are well studied. A lot less is known about
liquid crystals made up of discs or plates – discotics (DLCs).

Archetypal discogenic molecules
have a rigid aromatic core with
3-, 4- or 6-fold rotational sym-
metry, and generally 6+ flexible
side-chains, each with 5+ atoms.

DLCs have some potentially very interesting and useful applications:

Optical compensating films
Organic field-effect transistors (OFETs)
Organic light-emitting displays (OLEDs)
Photovoltaic devices (PVDs) and light-harvesting systems
The electronic nose
Specialist lubricants

It makes sense to model them, especially in the confined
environments that occur in many technologies.

R. J. Bushby and K. Kawata, Liq. Cryst. 38, 1415-1426 (2011)
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Results: bulk phase diagram

Better agreement between theory and simulation for prolate particles.

For oblate particles, density gap at I–N transition independent of
elongation.
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Results for rods
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Simulations

NVT Monte Carlo (MC) of particles of κ = 3, sandwiched between
two substrates a distance Lz apart. Periodic boundary conditions in
transverse directions.

Number of particles is N = 1000 for Lz = 12σ0, N = 1250 for
Lz = 18σ0, N = 200 for Lz = 24σ0.

Each system was compressed from the I phase into the N density
range. Typical run lengths at each state point were 5× 105 MC
sweeps (one sweep represents one attempted move per particle) of
equilibration, followed by a production run of 5× 105 sweeps.
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Results: density and Q profiles, symmetric film, Ls = 0

Bulk density ρ∗ = 0.28 in I range.

0 1 2 3 4 5 6
z/σ

0

-0.5

0.0

0.5

1.0

Q
z
z
(z

)

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0
ρ

∗
(z

)

ρ
*
=0.28, theory, Euler-Lagrange solution

ρ
*
=0.28, MC simulation

ρ
*
=0.28, theory, neural network minimisation

Paulo Teixeira1,2, Candy Anquetil-Deck3 and Doug Cleaver4 Theory and simulation of liquid crystal sandwiches



Results: density and Q profiles, symmetric film, Ls = 0
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Results: density and Q profiles, symmetric film, Ls = 2/3

Bulk density ρ∗ = 0.28 in I range
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Results: density and Q profiles, symmetric film, Ls = 2/3

Bulk density ρ∗ = 0.35 in N range
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Results: density and Q profiles, hybrid film, variable Lz

Bulk density ρ∗ = 0.35 in N range
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Results for discs
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Simulations

NVT Monte Carlo (MC), N = 864 particles.

Bulk system: periodic boundary conditions. Ten different particle
elongations, κ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.345, 0.35, 0.4 and
0.45, to find the phase diagram.

Confined system: particles of κ = 0.345, sandwiched between two
substrates a distance Lz = 6σ0 apart. Periodic boundary conditions
in transverse directions.

Each system was compressed from the I phase into the N density
range by increasing the number density by 0.1 after each run. At
each density, run lengths of 106 MC sweeps (one sweep represents
one attempted move per particle) were performed, averages being
accumulated for the final 5× 105 sweeps.
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Results: density and Q profiles, symmetric film, Ds = 1.0
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Results: density and Q profiles, symmetric film, Ds = 0.0
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Results: density and Q profiles, symmetric film, Ds = 0.5
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Results: density and Q profiles, symmetric film, Ds = 0.55
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Results: density and Q profiles, symmetric film, Ds = 0.7
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Results: configuration snapshots, symmetric film

Ds = 0.0

Ds = 0.5

Ds = 0.55

Ds = 1.0
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Results: spatially averaged q vs density, hybrid film
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Both theory and simulation yield a continuous variation, Theory overestimates

the density of the para-N–N transition. Homeotropic films order more easily

than planar ones.
Paulo Teixeira1,2, Candy Anquetil-Deck3 and Doug Cleaver4 Theory and simulation of liquid crystal sandwiches



Results: spatially averaged Qxx −Qyy vs density, hybrid film
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Theory and simulation agree there is some biaxiality, except when anchoring is

uniform homeotropic (face-on) throughout the film.
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Results: density profiles, hybrid film, Db
s = 1.0, D t

s = 0.0
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Results: Q profiles, hybrid film, Db
s = 1.0, D t

s = 0.0
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Results: density profiles, hybrid film, Db
s = 1.0, D t

s = 0.7
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Results: Q profiles, hybrid film, Db
s = 1.0, D t

s = 0.7
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Results: density profiles, hybrid film, Db
s = 0.5, D t

s = 0.0
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Results: Q profiles, hybrid film, Db
s = 0.5, D t

s = 0.0
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Results: regime diagram from simulation, hybrid film
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Results: configuration snapshots, hybrid film
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Conclusions

We have proposed a very simple microscopic model for both rod-like
and disc-like liquid crystals sandwiched between boundaries of
variable penetrability.

This model, coupled with density-funcional formalism, provides
molecular-level control over surface anchoring properties.

The simple Onsager approximation of DFT, combined with
Parsons-Lee density re-scaling, can be useful for describing the
structure of fluids of prolate or oblate HGO particles of moderate
elongation confined between two penetrable walls/large particles.

Although our theory is qualitatively reliable, quantitatively it
performs rather more poorly for oblate than for prolate paticles.
Expected to improve for thicker films, this work is in progress.

We are currently working on implementing more accurate
approximations.

Use of minimisation NNs appears promising (reliable + cheap +
fast).
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Shameless publicity plug

Topics

Liquid Crystals in Biology and Active Matter

Macromolecular Liquid Crystals

Confined Liquid Crystals

Design of New Materials

Mathematical Modelling, Symmetry and Topology

Novel Applications
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How we find the phase diagram from NVT MC simulation
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Results: bulk order parameter vs density

Simulation results show a continuous variation, whereas theory predicts a jump

at the (first-order) I–N transition.
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