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Abstract 
 
In this paper, we deepen our study of the geometric work of Portuguese artist Almada 
Negreiros, who went beyond the usual practice of geometric abstractionists to find 
geometric regularities in ways that resemble the work of a mathematician.  
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Introduction 
 
José de Almada Negreiros (São Tomé and Príncipe, 1893 – Lisbon, 1970) was a key figure of 
20th century Portuguese culture, in both visual arts and literature, see figure 1 for a photo. 
Having spent some time in Paris (1919-1920) and Madrid (1927-1932), where he developed 
some work with architects, he came back to Portugal, where he married a fellow visual 
artist, Sarah Affonso. In these years, Almada (as he liked to call himself), having started his 
artistic life as a cartoonist, he was one of the main artists responsible for introducing the 
modernist movement in Portugal, being a member of the group Orpheu, which included the 
famous Portuguese author Fernando Pessoa. Identifying himself as Futurist, he engaged in a 
variety of art forms, challenging the artistic panorama in Portugal: visual art, manifestos, 
conferences, poetry, plays and ballet. Even though this reference to Futurism waned after 
the 1920s, he was always an avant-garde figure, always pushing the limits of art forms.  
 

 
Figure 1. Almada Negreiros in the 1940s 
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Upon his return to Portugal in 1932, his work came to be closer to Cubism, and his 
restlessness was more tempered. He accepted several commissions to work on public 
buildings, of which the most remarkable are the murals at the maritime stations of Rocha do 
Conde de Óbidos and Alcântara, the University Campus, in Lisbon, and the Church of Our 
Lady of Fátima, also in Lisbon (which included stained glass windows). At this time, he 
continued to develop literary work, namely poetry and a novel, as well as visual works, 
which started as mostly figurative, such as a portrait of Fernando Pessoa. Only in his later 
years, from the 1950s, did Almada became interested in geometric abstractionism, as a 
means to expound his ideas about geometry and art, as we will see — these ideas were 
presented in two conferences given at BBC radio on this topic, entitled “Theleon and 
Abstract Art”. With all this work, Almada became one of the leading figures of the art scene 
in Portugal. 
 
The reason for Almada’s interest in mathematics was mostly philosophical:  he wished to 
show, in his artworks, his personal views on geometry and art. Almada believed there was a 
set of geometric constructions which would be present in all artworks, in all places and in all 
times, which he called the Canon. We quote from his interviews (Valdemar, 2015). 

 
The canon is not the work of man, it is the possible human capturing of immanence. It is the 
initial advent of epistemological light.  
 
To move towards a canon. This is the reason for all my work.  
 
[…] 
 
The canon [...] is not just in the examples from the Middle Ages, nor just in the examples from 
Sumeria, or Crete, Greece, Byzantium, from Arabs or Hebrews, Romanic or Gothic. It exists 
always, in all places, and this is why it is a canon. And each epoch extracts its rules from the 
canon. 
 
[...] 
 
All geometric knowledge is of the following kind: the simultaneous division of the circle in 
equal and proportional parts is the simultaneous origin of the constants of the relation 
nine/ten, degree, mean and extreme ratio and casting out nines.2 

 
Some of Almada’s geometric work has been known since its creation, in the mid 20th 
century, such as the Four abstract paintings (1957) and the mural Começar (1968/9)3, see 

 
2 O cânone não é obra do homem, é a captação que o homem pode da imanência. É o advento inicial da luz 

epistemológica.  
Ir encontro a um cânone. Eis a razão de todo o meu trabalho. [...] 
O cânone [...] não está só nos exemplos da Idade Média, como não está só nos exemplos da Suméria, não está 
só nos de Creta, Gregos, Bizantinos, Árabes, Hebraicos, Românicos ou Góticos. Ele está sempre e é por isso 
mesmo que ele é cânone. E cada época tira do cânone as suas regras. [...] 
Todo o conhecimento geométrico é do seguinte teor: a divisão simultanea do quadrado e do circulo em partes 
iguais e partes proporcionais é a origem simultanea das constantes da relação nove/dez, grau, média e 
extrema razão e prova dos nove. 
3 For a general view of the mural, visit the site https://gulbenkian.pt/almada-comecar/en/ 

https://gulbenkian.pt/almada-comecar/en/


figure 2. However, these remarkable works did not shed much light on the author’s 
geometric thinking per se, either due to their simplicity (as is the case with the four abstract 
paintings) or their complexity (the case with the mural Começar). We know of this thinking 
mostly from a written source, the 1960 interviews, conducted by the journalist António 
Valdemar and published in the Portuguese daily newspaper Diário de Notícias (Valdemar, 
2015). But a clear materialization of these ideas in the form of artwork was still lacking until 
recently.  
 

 
Figure 2. Começar by Almada Negreiros. Incised and painted stone, 1968. 

 
Since 2011, the estate of Almada Negreiros has received special attention within the project 
“Modernismo Online” (http://modernismo.pt), and, along time, many unpublished works 
have resurfaced. Last year, the estate of Almada Negreiros was deposited in NOVA-FCSH, in 
Lisbon, reorganized and preemptively restored, making it possible to have a global view of 
this author’s work. This is being done within the newly created Centro de Estudos e 
Documentação Almada Negreiros e Sarah Affonso (CEDANSA). 
 
In what concerns geometry (and mathematics in general), hundreds of drawings have been 
found4. We highlight two collections: 
 

- The Language of the Square collection, comprising about 128 drawings (some 
incomplete) on 50 x 70 cm paper. It presents a remarkable formal consistency (in 
colors and drawing materials) and a content that resembles a book on geometry, 
progressing from easier to more complicated constructions, with no written 
explanation of the drawings. 

- A collection of 16 small notebooks, measuring 18 x 13 cm, with long folding pages, 
containing also abstract geometric drawings in progression, along with references to 
artistic artefacts (mostly paintings) related to these geometric studies.  

 
Figure 3 shows two examples, one from each collection, which will be analyzed in the course 
of this paper. The original artworks and the images, digitized by António Coelho, belong to 
the estate of Almada Negreiros. The filing codes for these artworks are ANSA-A-598 and 
ANSA-C-25-40 — at each point, we will refer to the codes ascribed to each drawing in the 
catalogue of the estate,5 so that the reader can find them at the online archive 
modernismo.pt.  

 
4 See http://modernismo.pt/index.php/geometria-almada 
5 These always start with ANSA, as a reference to “Almada Negreiros and Sarah Affonso”, followed by an A or a 

C, depending on whether the drawing can be found in an artwork or a notebook, followed by one or more 
filing numbers.  
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Figure 3. Two artworks by Almada Negreiros, the first from the collection Language of the 

Square (ANSA-A-598) and the second one from a notebook (ANSA-C-25) 
 
These two collections deserve a special reference because of the organization of the 
geometric material. The sequential order of the drawings, becoming increasingly more 
intricate, resembles an exposition of a mathematical theory. Other than these, there are 
also more than a hundred scattered geometric drawings, mostly in squared paper.  
 
We have already started the study of the geometric work of Almada Negreiros, in both 
articles and books, with Simão Palmeirim (who has a Ph.D. in Fine Arts), see for instance 
Costa and Freitas (2015b). A systematic approach to these collections and scattered 
drawings is still lacking, as well as a thorough analysis of the geometric contents of the panel 
Começar. Nevertheless, it is now possible to give a more thorough description of the 
geometric thinking of Almada Negreiros from his own artistic sources, deepening the results 
of our previous paper. This is what we propose to do in the following sections.   
 
Constructions and Theorems 
 
We now investigate the geometric drawings of Almada from a mathematical viewpoint. In 
view of the quotes we have presented previously, along with an analysis of the geometric 
material that Almada has left us, we can gather that the geometric constructions that 
constitute what he calls the Canon include the following:  
 

- Divisions of the circle in equal parts, 

- Rectangles with definite proportions, such as 3:2, √𝑛 (for 𝑛 = 2,3,5) and 𝜑 (the 
golden rectangle), 

- The golden section, both in lines and in arcs of circle, and 
- The relation nine/ten, a particular connection between these two numbers.  



 
Having this in mind, we can see that his geometric drawings constitute attempts to solve 
two problems:  
 

- To find simple and elegant geometric relations between the elements of the Canon, 
described above, and 

- To apply these canonical elements to the study of artistic artefacts. 
 
In this paper, we will only focus on the first part of his program, the more abstract one. 
Almada uses mathematical methods, but with an artistic mind, meaning that he presents 
geometric results, but with no proof other than visual verification. In fact, he expresses this 
view very clearly in his interviews (Valdemar, 2015):  
 

It is not for scholars that I attempt this publication. I present the result to scholars. I submit 
myself absolutely to the competence of their respective eruditions. Let them come. But don't 
bring calculation to a knowledge whose characteristic is not to have it. If the calculations 
confirm it, congratulations to the calculation. If it does not confirm it, beware the calculation.6 

 
This absolute certainty about his body of results can sometimes be found in some scientists, 
especially when proposing a new promising theory7 — but not this contempt for 
verification, of course.  
 
Nevertheless, unlike what usually happens with geometry-based art, these drawings do 
attempt to prove regularities. Like in Euclid’s Elements, they can be divided into 
constructions (sequences of ruler-and-compass instructions with an aim to construct a 
geometric figure or element) and theorems (universal regularities, especially concerning the 
circle). Also, in a mathematical vein, these are presented cumulatively, starting with simpler 
drawings and elaborating on them, to obtain more sophisticated results. We present 
examples of both kinds.  
 
The four drawings in figure 4 are reproductions of artworks from the collection “Language 
of the Square” (the original drawing for the second one appears in figure 1), their codes in 
the modernismo.pt catalogue are ANSA-A-590, ANSA-A-598, ANSA-A-567 and ANSA-A-898. 
We preserved the colors and the thickness of the lines, as they help to interpret the content 
of the drawings. All the drawings in this collection start with a square (hence the name of 
the collection), with either a circle or a quarter circle inscribed, which is why these elements 
are drawn with a thicker line.  
 

 
6 Não é para eruditos que tento a divulgação. A eruditos apresento o resultado. Sujeito-me absolutamente à 

competência das suas respetivas erudições. Que venham. Mas não queiram trazer cálculo a conhecimento cuja 
característica é não o ter. Se o cálculo confirmar, parabéns ao calculo. Se não confirmar, cuidado com o 
cálculo. 
7 One is reminded of a quote attributed to Einstein, about Eddington’s measurements at the time of the solar 

eclipse of May 29, 1919, in case they didn’t corroborate his theory: “Then I would have felt sorry for the dear 
Lord. The theory is correct.” 



 
Figure 4. A geometric sequence from The Language of the Square 

 
These four drawings, which are part of a sequence of nine, are an example of the 
development of a geometrical idea, where more elements are added, or new mathematical 
elements found, all around a point, which the author denotes by a, in the second drawing.  
 
In drawing 1, Almada introduces the geometric construction which will be central for this 
sequence: from a diagonal of a half-square, he draws two arcs of circle, in green. In this 

drawing, this leads to two lines in red, marked8 𝜙 and √5. In Almada’s notation, this means 
that if we consider these lines as diagonals of rectangles, with sides parallel to those of the 
square, these would have the proportions indicated – in particular, one would be a golden 
rectangle. It’s not difficult to verify that these statements are accurate.  
 

 
8 The usual symbol used for the letter phi, when referring to the golden number, is 𝜑, we use this one to 

follow Almada’s choice. 



Almada also adds two numbers, 9 and 10, to the intersections of these lines with the 
quarter circle inscribed in the square. The meaning of these numbers is the following: the 
arcs from 0 to these points are the 9th and the 10th parts of the circle, respectively. In this 
drawing, these are not accurate, they are approximations, with an error of about 0.7%.9 This 
is a manifestation of the “relation nine/ten” we have mentioned: the two numbers appear 
together in a simple and elegant construction.  
 
The notations we find in this drawing are consistent in all of Almada’s geometric work. A 
number written on a line always represents the proportion of a rectangle, having that line as 
diagonal, and a number n on a circle always represents the division of this circle in n equal 
parts. 
 
In the second drawing, we find the two arcs of circle on the lower right. To these, a third 
one is added, obtaining the point a, marked inside the square, which will be the central 
point in this series. Almada adds the following annotation to this drawing: 
 

𝑎𝑐 =
⊙

9
      𝑎𝑜 =

⊙

10
      𝑎𝑏 =

⊙

14
 

 
This means that the lines ac, ao and ab, all stemming from point a, are the chords of the 9th, 
the 10th and the 14th parts of the circle, respectively. Only the statement about the 10th part 
is accurate, even though the one about the 9th part indicates an incredible approximation, 
with an error of 0.001%, see Freitas (2015) for more details. 
 
The third drawing retains the division of the circle in 10 parts, already obtained, and adds to 
it the divisions in 18 and 20 parts (which are twice the famous pair 9 and 10), obtained with 
arcs of circle. The second one is exact, the first one has an error of 0.2%.  
 
Finally, in the fourth drawing, an intricate geometric construction yields the divisions of the 
circle into 36 and 40 parts — see a detail in the figure 5.  

 
Figure 5. Detail of the last drawing in figure 2 

 

 
9 Many of these drawings have been fully analyzed in Costa and Freitas (2015a), distinguishing the accurate 

constructions from the approximate ones. 



As these are, respectively, 10° and 9°, Almada notes that its difference is one degree, 
another element of Almada’s Canon, as we have seen from the previous quotes. Here, the 
precision is not so impressive for the 36th part: it has an error of 2.5%. However, for the 40th 
part, the error is 0.3%.  
 
As we have seen, in this series, Almada presents several divisions of the circle, with each 
one elaborating on previously obtained results. We recall that this is but a brief example 
from the collection “Language of the Square”, which comprises 128 drawings. A critical 
edition of this collection is currently being prepared, for which 71 drawings were selected 
and organized, according to groupings that present this kind of progressive exposition of 
geometric results.  
 
We now present an example from a notebook, ANSA-C-25 in figure 6, a part of a sequence 
of five drawings, which includes another element of Almada’s canon: the golden section of 
lines (the original of second image in this figure can be seen in figure 1).  
 

 
Figure 6. Geometric development from a notebook 

 
The construction suggested in the first image is as follows: given a circle with point 9 already 
obtained, and a diameter OO’, draw an arc of circle from 9 to the diameter, centered at O, 
obtaining a new point on the diameter. With center on this point, draw a half-circle, 
containing point O, one of the extremes of the diameter, determining another point in the 
diameter. Draw a final arc of circle, with center at the other extreme, O’, passing through 
this point. This arc will yield the 10th part of the circle.  
 
The accuracy of this construction depends, of course, on the accuracy of the initial point 9. It 
cannot be fully exact, since, as we will see, the 10th part of the circle can be achieved with 
straightedge and compass, but not the 9th part. One can check that if one of the markings is 
exact, the other will have an error of about 1%.  
 
The second image takes advantage of the points already obtained to draw a regular 
pentagram. Since the exact point 10 is a part of this figure, its accuracy will depend on the 
accuracy with which this point was determined. It can be proved that if the point 10 is 
accurate, then the pentagram is regular (Costa & Freitas, 2015a, p. 73).  
 
In the third image, only the pentagram and the circle are kept, and the author proceeds to 
find two golden sections, in a segment and in the circle. For this construction, one draws an 
arc of circle, centered at O, passing through A, obtaining point B. Then one draws segments 



BO’ and the dotted line going through A and C (the point names A, B and C were added to 
the original drawing). The author claims that the points B and O’ determine the golden 
section of the circle and that point C determined the golden section of line BO’, This is 
signaled by the letters m and M, denoting the small and the large parts of this section (this 
notation is also consistent throughout his geometric work).  
 
Regarding accuracy, if we start from a regular starred pentagram, and if we take the 
measure of AB to be 1, the distance between the exact division and the point obtained is 
0.0071. As for the golden angle, the accurate value is 137.51° (up to the second decimal), 
Almada’s angle is 137.40°, with an error of 0.08% (Costa & Freitas, 2015a, p. 75).  
 
Almada was aware that, in the pentagram, the intersections of the sides determine the 
golden section in each other, he mentions the fact in one of his works, the tapestry Número 
(1957). We infer that he’s trying to present new occurrences of the ratio in this figure, in this 
case, both approximated. 
 
As we have remarked, Almada also presents regularities, which we may call “Theorems”, 
bearing in mind that the results are not exact but approximate, in line with his own stated 
method of work. In the mural Começar, he states three of these results, see figure 7.   
 

 
Figure 7. Statements of theorems from the mural Começar 

 

The notation 2
⊙

6
 on the lower left refers to the diameter of the circle (two times the chord 

of the sixth part of the circle, which coincides with the radius). The three expressions on the 
right are decompositions of this diameter and refer to chords of divisions of the circle in 
equal parts. We will present Almada’s justifications for the first and the second results, we 
have not yet found one for the third one. 
 
The justification for the first equality appears in a figure in the interviews published in 1960. 
We reproduce this image in figure 8. 



 
Figure 8. A “theorem” about a decomposition of the diameter of a circle 

 

The only original markings are the points O, 7, and the measure 
2

3
𝑟, on the right (all the 

remaining point names were added for clarity). The construction starts with a double 
square, with an inscribed semicircle. Drawing the diagonal of the double square, we get 
point A, and from this point, with a segment parallel to the base of the square, we obtain 
point B. A line from the midpoint of the base of the rectangle to point B determines point 7, 
and from this point, a small arc of circle with center D gives us point C.  
 
The arc from O to point 7 is approximately the 7th part of the circle, with an error of 0.2%, 
and line CD is also a good approximation of two thirds of the radius of the circle, with an 
error of 0.7%. The statement of the theorem in figure 6 is 
 

2
⊙

6
= 3 (

⊙

4
−

⊙

7
) 

 
This is equivalent to saying that two thirds of the radius is equal to the chord of the arc from 
point D to point 7, which is what the figure illustrates.  
 
The second result is illustrated by the first image in figure 4: 
 

2
⊙

6
= 2

⊙

9
+

⊙

10
 

 
It states that the diameter of the circle can be decomposed into a chord of the 10th part of 
the circle, plus two chords of the 9th part. This is again a reference to one of the main 
elements of the Canon, the “relation nine/ten”. The sum of these three lengths is 0.7% 
shorter than the diameter.  
 
These are, by no means, the only “theorems” registered by Almada. We have presented 
these examples of “visual proofs”, so to say, to show Almada’s practice of finding and 
“proving” geometric regularities, which we can call approximate theorems. We note that 
this goes far beyond what artists usually do when they use mathematical elements in their 
visual work: in this case, we have an intent of finding proofs of geometric statements.  



 
We also have no evidence of how Almada would reach these constructions and statements, 
we can only infer that it was by meticulous drawing and observation, trial and error, done 
repeatedly over decades. Confirmation would then come by direct measurement, possibly 
using instruments or exact constructions made on tracing paper.10 
 
Regular division of the circle 
 
As we have seen, Almada has a very personal style of geometric abstractionism, one that 
develops geometric results with the aim of revealing what he calls the Canon, a set of 
geometric constructions that would be primordial to all art. Even though this was primarily 
an artistic endeavor, his work can also be mathematically appreciated, containing even an 
advancement to an historical problem: that of dividing the circle in equal parts.  
 
This problem is already treated by Euclid. Book 4 of The Elements is dedicated to inscribing 
several geometric figures in others — namely regular polygons in circles — using 
straightedge and compass. Euclid shows methods for inscribing the triangle, square, 
pentagon, hexagon and pentadecagon (15 sides), all regular, in a circle. With angle 
bisection, one can get more polygons. It is believed that Archimedes also treated this topic, 
presenting an exact construction for the heptagon, using a ruler with two markings, a style 
of construction known as neusis (Johnson, 1975).  
 
In the Middle Ages, one can find an interest in this topic related to art and artisans. We 
present two examples. In A Book on Those Geometric Constructions Which Are Necessary for 
a Craftsman (961-972) by Abū’l-Wafāʾ Al-Būzjānī, Persian mathematician and astronomer 
(940-998) one finds mathematical studies of this topic, and an approximate construction for 
the heptagon. The Sketchbook of Villard de Honnecourt (medieval architect, 13th century), a 
very practical image book, includes an approximate construction for the pentagon, applied 
to the design of the base of a pentagonal tower.  
 
In the Renaissance, Albrecht Dürer (1471-1528), painter, printmaker, and theorist, 
presented several constructions for the regular division of the circle, some exact, some 
approximate, in his Treatise on Mensuration with Compass and Ruler (Dürer, 1538). The 
book includes approximate constructions for polygons with 5, 7, 9, 11, 13 and 15 sides. 
 
In 1752, Nicolas Bion, the French king’s engineer for mathematical instruments (globes, 
sundials, mechanical machines, etc.) published the Traité de la construction et des 
principaux usages des instruments de mathématique, a very practical book, which includes a 
general method for dividing the circle in 𝑛 equal parts (Bion, 1752). The novelty here is that 
with just one method, which depended on the division of a line in 𝑛 parts, one could get a 
division into any number of parts. The divisions obtained by this method are, in most cases, 
good approximations.   
 
Gauss was the first to improve on Euclid’s list of constructible polygons, by proving, in 1796, 
that the polygon with 17 sides was constructible. He then proceeded to prove a sufficient 

 
10 We have seen this method being used today by artists with a similar interest in geometric constructions. 



condition for constructability two years later, in the Disquisitiones Arithmeticae. Pierre 
Wantzel proved the necessity of the condition in 1837, achieving the following result. 
 
Gauss-Wantzel’s theorem. It is possible to divide a circle into n equal parts, with 
straightedge and compass, if and only if  
 

𝑛 = 2𝑘𝑝1 … 𝑝𝑡 
 
where 𝑝1, … , 𝑝𝑡  are distinct Fermat primes. 
 

A Fermat prime is a prime of the form 22𝑟
+ 1. The only Fermat primes known so far are 3, 

5, 17, 257 and 65537.  
 
In particular, we see that it is impossible to divide a circle in 7, 9 or 14 parts: 7 and 14 are 
divisible by 7, which is not a Fermat prime, and 9 = 3 × 3, the Fermat prime 3 appears 
twice.  
 
Even though this result gave a final answer as to which divisions were constructible, there 
remained an interest in approximate ones, as some of the methods for the exact ones could 
be too intricate. In 1853, Housel, a schoolteacher, presented an analysis of the 
approximations of Bion’s method, up to 17 sides (Housel, 1853), with the following remark:  
 

The calculation has been carried out to the seventeen-sided polygon that we now know 
how to inscribe exactly; but the construction that would result from Mr. Gauss's 
calculations would be so painful, that this approximation would be even better in 
practice.11 

 
In the same year, Tempier, another schoolteacher, provided a variation of Bion’s method 
(Tempier, 1853 and Tempier, 1854), which afforded better approximations. For the division 
of the circle in 17 sides, Bion’s method provides an approximation of 2.9%, and Tempier’s 
method, one of 0.2%. For more on this topic, see Freitas and Tavares (2018). 
 
So, as we have seen, throughout history, artisans and non-professional mathematicians 
have contributed to the problem of the regular division of the circle, accepting both exact 
and non-exact methods. Almada is thus part of this tradition. His methods provide very 
reasonable approximations of the regular division of the circle, and in some cases, exact 
methods—even though these usually are lengthier than the known constructions. However, 
there is one case in which Almada provided a remarkable new method: the one that 
provides the division of the circle in 9 parts with an approximation of 0.001%, in drawing 2 
of figure 2. This is the best method known to us for the division of the circle in 9 parts 
(Freitas, 2015), a division that cannot be achieved exactly using straightedge and compass.  
 
Conclusion 

 
11 Le calcul a été poussé jusqu’au polygone de dix-sept cotés que l’on sait maintenat inscrire exactement ; 

mais la construction qui résulterait des calculs de M. Gauss serait tellement pénible, que cette approximation 
vaudrait encore mieux dans la pratique. 
 



 
In the late 19th and early 20th centuries, a speculative use of mathematics took hold in 
some artistic movements. Even though, in most cases, these developments did not lead to 
new results in mathematics, they do have a place in the history of the subject, as they 
reflect a particular way of appropriation of the mathematical concepts, in a non-scientific 
cultural milieu. Among the most famous 20th century artists who used mathematics 
explicitly in their production, not as a tool to design their artworks (as is the case with 
perspective or composition), but as a source of inspiration, or to convey their artistic ideas, 
are Dalí and Le Corbusier, see Banchoff (2014) and Corbusier (1996). Dali’s Corpus 
Hypercubus (1954), for instance, presents a crucifixion scene with a hypercube, whereas 
Corbusier’s system of measurements Modulor is explicitly derived from three mathematical 
principles: the unit, the double and the golden ratio.  
 
Almada’s work in geometric abstractionism places him in this broad movement of 
encompassing mathematical elements in artworks. His aim is, first and foremost, an artistic 
one. He never intended to write a geometry handbook, or to propose new mathematical 
results. His motivations were essentially artistic, although imbued with a philosophical 
stance: that all art would be based on geometry, on a set of constructions he calls the 
canon.  
 
This viewpoint led Almada to produce quite a number of geometric works, which, in spite of 
his own motivations, can be mathematically analyzed. First of all, because his method is 
similar to that of mathematicians: from simple, clear drawings, Almada builds increasingly 
more complicated structures, in order to achieve the objectives of his program, namely, to 
find elegant relations between elements of the canon. Also, besides the method, some of 
the results presented actually have some mathematical relevance, such as the ones 
pertaining to the regular division of the circle.  
 
So, we believe, Almada Negreiros holds a very special place, between artists which usually 
do not provide original mathematical discourses or developments in their work, and 
amateur mathematicians, which usually do not have artistic motivation when they find new 
results. A place we believe should be appreciated as particularly unique in the history of 
mathematics and abstract art.  
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