
HAMILTONIAN EVOLUTIONARY GAMES

HASSAN NAJAFI ALISHAH AND PEDRO DUARTE

Abstract. We introduce a class of o.d.e.’s that generalizes to polymatrix games
the replicator equations on symmetric and asymmetric games. We also introduce
a new class of Poisson structures on the phase space of these systems, and
characterize the corresponding subclass of Hamiltonian polymatrix replicator
systems. This extends known results for symmetric and asymmetric replicator
systems.

1. Introduction

State of the art. Evolutionary Game Theory (EGT) originated from the work
of John Maynard Smith and George R. Price who applied the theory of strategic
games developed by John von Neumann and Oskar Morgenstern to evolution prob-
lems in Biology. Unlike Game Theory, EGT investigates the dynamical processes
of biological populations.

Independently A. Lotka and V. Volterra introduced the following class of o.d.e.’s

dxi
dt

= xi

(
ri +

n∑
j=1

aij xj

)
(1 ≤ i ≤ n) ,

currently known as Lotka-Volterra (LV) systems, and usually taken as models for
the time evolution of ecosystems in n species. Although historically this class
of systems preceded EGT it plays an important role in this theory. The entries
aij represent interactions between different species, while the coefficients ri stand
for the species’ natural growth rates. In his studies [22] V. Volterra gave special
attention to predator-prey systems and their generalization to food chain systems
in n species, which fall in the category of dissipative and conservative LV systems.
Denoting by A = [ aij]ij its interaction matrix, a LV system is said to be dissipative,
resp. conservative, if there exists a positive diagonal matrix D such that AD +
DAt ≤ 0, resp. AD is skew symmetric. The entries di of the diagonal matrix D
were interpreted by Volterra as some sort of normalization factors related with the
average weights of the different species. If the LV system admits an equilibrium
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point q ∈ Rn the following function H : int(Rn
+)→ R

H(x) =
n∑
j=1

d−1j (xj − qj log xj)

is either a decreasing Lyapunov function, if the system is dissipative, or else a con-
stant of motion, if the system is conservative. Volterra proved that the dynamics
of any n species conservative LV system can be embedded in a Hamiltonian system
of dimension 2n. More recently, in the 1980’s, Redheffer et al. developed further
the teory of dissipative LV systems, introducing and studying the class of stably
dissipative systems [17, 18]. In [2] a re-interpretation was given for the Hamilton-
ian character of the dynamics of any conservative LV system: there is a Poisson
structure on Rn

+ which makes the system Hamiltonian. The Hamiltonian struc-
tures for Lotka-Volterra equations were also studied in [15]. Another interesting
fact from [2], which stresses the importance of studying Hamiltonian LV systems,
is that the limit dynamics of any stably dissipative LV system is described by a
conservative LV system.

Another class of o.d.e.’s, which plays a central role in EGT, is the replicator
equation defined on the simplex ∆n−1 = {x ∈ Rn

+ |
∑n

i=1 xi = 1} by

dxi
dt

= xi

(
n∑
j=1

aij xj −
n∑

k,j=1

akj xk xj

)
(1 ≤ i ≤ n) .

The coefficients of this o.d.e. are stored in an n×n real matrix A = [ aij]ij, that is
referred as the payoff matrix. A game theoretical interpretation for this equation is
provided in section 3. Check [8] on the history of this equation. In [7] J. Hofbauer
introduced a change of coordinates, mapping Rn

+ to the simplex ∆n minus one face,
which conjugates any LV system in Rn

+ to a time re-parametrization of a replicator
system in ∆n, and vice-versa. Thus when a LV system is conservative then the
corresponding replicator system is orbit equivalent to a Hamiltonian system. On
the other hand, any replicator system on ∆n−1 with skew symmetric payoff matrix
extends to a LV system on Rn

+ with ri = 0, and hence can be viewed as a restriction
of a Hamiltonian LV system on Rn

+. The Hamiltonian character of this special
subclass of replicator equations with skew-symmetric payoff matrices was studied
by E. Akin and V. Losert in [1]. Other Hamiltonian replicator systems were
identified by Plank [14,15].

Asymmetric or bimatrix games lead to another fundamental class of models in
EGT, the following system of o.d.e.’s whose coefficients are displayed in two payoff
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matrices, A of order n×m and B of order m× n.

dxi
dt

= xi

(
m∑
j=1

aij yj −
n∑
k=1

m∑
j=1

akj xk yj

)
i = 1, .., n

dyj
dt

= yj

(
n∑
i=1

bji xi −
m∑
k=1

n∑
i=1

bki yk xi

)
j = 1, ..,m

The phase space of this equation is the prism ∆n−1 ×∆m−1. A game theoretical
interpretation is given in section 3. It was remarked by I. Eshel and E. Akin [4]
that these systems preserve a certain volume form in the interior of the prism
∆n−1 × ∆m−1. For λ-zero-sum games (λ < 0) and λ-partnership games (λ >
0), with an interior equilibrium point in the prism ∆n−1 × ∆m−1, J. Hofbauer
proved in [6] that this bimatrix system is Hamiltonian with respect to some Poisson
structure in the interior of the prism.

The theory of equilibria for n-person games started with the work of J. Nash [11].
A subclass of n-person games, referred as polymatrix games, where the payoff of
each player is the sum of the payoffs corresponding to simultaneous contests with
the opponents, was studied by J. Howson [9] who attributes the concept to E.
Yanovskaya (1968). The replicator equation for n-person games with multi-linear
payoffs1 was formulated first by Palm [12] and studied by Ritzberger, Weibull [19],
Plank [16] among others.

Main results. We introduce a class of o.d.e’s, referred as polymatrix replicator
equation, that includes the symmetric and asymmetric replicator equations, as well
as the subclass of the n-player replicator equation in [12, 16, 19] associated to the
polymatrix games studied by Howson and Yanovskaya. However, the polymatrix
replicator equation studied here should not be seen as the dynamical counterpart
of a polymatrix game, which is only true for a subclass of equations where some
block diagonal matrices vanish (i.e., Aα,α = 0 in (3.3)). More general versions
of the n-player replicator equation, that include the mentioned subclass of our
polymatrix replicator equation, have been studied before, see e.g. [20, exercise
3.3.5].

The phase space of these systems are finite products of simplexes. We introduce
the concept of conservative polymatrix game, which in the case of bimatrix games
extends the λ-zero-sum games (λ < 0) and the λ-partnership games (λ > 0). In
Theorem 3.13 we introduce a class of stratified Poisson structures on finite products
of simplexes. Then in Theorem 3.20 we show that any conservative polymatrix
game determines a Hamiltonian polymatrix replicator equation. This work extends
and unifies several known facts on Hamiltonian replicator o.d.e.’s. In the end of

1a multi-linear payoff is a function which is linear in each player’s mixed strategy, when all other
players’ strategies are fixed.
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Section 3 we compare our results with known facts mentioned in the state of the
art subsection.

The paper is organized as follows. In Section 2 we introduce the needed concepts
from Poisson geometry. In Section 3 we state and prove the main results. In Section
4 we work out a couple of examples.

2. Generalities on Poisson Structures

In this section we will provide a short introduction to Poisson geometry focused
on some dynamical aspects, see any standard textbook on Poisson manifolds and
related topics, for example [3, 13].

Let M be an n-dimensional smooth manifold. We denote by C∞(M) the space
of smooth functions on M . A Poisson structure on M is an R-bilinear bracket
{., .} : C∞(M)× C∞(M)→ C∞(M) which satisfies:

i) Anti-symmetry i.e. {f, g} = −{g, f} for every f, g ∈ C∞(M).
ii) Leibniz’s rule i.e. {fg, h} = f{g, h}+ g{f, h} for every f, g, h ∈ C∞(M).

iii) Jacobi identity i.e. {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0

The Leibniz’s rule says that for any smooth function H : M → R the map {., H} :
f 7→ {f,H} is a deriviation on C∞(M) which in turn yields a vector XH on
M defined by the equality {f,H} = df(XH). The vector field XH is called the
Hamiltonian vector field associated to H on the Poisson manifold M .

The singular distribution D(x) := {Xf (x) | f ∈ C∞(M)} is called the character-
istic distribution of M . As a consequence of the Jacobi identity this distribution
integrates to a singular foliation. Denote by Sx the leaf of this foliation through a
point x. The Poisson structure induces a symplectic form on each leaf Sx, passing
through arbitrary point x ∈ M , of this foliation defined by ωSx(Xf , Xh) = {f, h}.
The foliation S := {Sx|x ∈ M} is called the symplectic foliation of the Poisson
manifold M .

Remark 2.1. The following are well known properties of Poisson structures:

1) By (i), dH(XH) = {H,H} = −{H,H} = 0. Thus H is an integral of
motion for the vector field XH .

2) The dimension of the linear subspace D(x) is called the rank of the Poisson
structure at point x, which is equal to the dimension of the leaf Sx. Since
this leaf is a symplectic manifold on its own it has even dimension.

3) The symplectic foliation S := {(Sx, ωSx)|x ∈M} completely determines the
Poisson structure.

4) By definition, it is clear that every symplectic leaf Sx is an invariant sub-
manifold for any Hamiltonian vector filed XH . In fact, the restriction of
XH to Sx is Hamiltonian with respect to the symplectic structure ωsx.
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5) Every symplectic manifold (N,ω) is a Poisson manifold with Poisson bracket
defined by {f, g}N := ω(Xf , Xg), where Xf and Xg are the Hamiltonian
vector fields associated to f and g by symplectic structure.

6) A function f is called Casimir if {., f} = 0. Note that Casimirs are
constants of motion for any Hamiltonian vector field. Furthermore, if f1, f2
are two Casimirs then {f1, f2} is also a Casimir due to Jacobi identity.

In a local coordinate chart (U, x1, .., xn), or equivalently whenM = Rn, a Poisson
bracket takes the form

{f, g}(x) = (dxf)t [ πij(x)]ij dxg =
∑
i<j

πij(x)

(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi

)
,

where π(x) = [ πij(x)]ij = [ {xi, xj}(x)]ij is a skew symmetric matrix valued smooth
function, and for every function f we write

dxf =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 .

The Jacobi identity translates to:
n∑
l=1

∂πij
∂xl

πlk +
∂πjk
∂xl

πli +
∂πki
∂xl

πlj = 0 ∀i, j, k , (2.1)

or equivalently

{{xi, xj}, xk}+ {{xj, xk}, xi}+ {{xj, xk}, xj} = 0 ∀i, j, k . (2.2)

Clearly, every skew symmetric matrix valued function π : Rn → Matn×n(R) sat-
isfying condition (2.1) defines a Poisson structure on Rn. In the next section we
shall introduce our Poisson structures through their associated skew symmetric
matrix valued functions, referred as a bivectors π : Rn → Matn×n(R). The term
bivector means that π(x) is as a linear operator π(x) : (Rn)∗ → Rn.

Remark 2.2. Regarding the function π we have

1) For any function H the associated Hamiltonian vector field is defined by

XH = π dH,

2) The characteristic distribution Dπ(x) is the one generated by the columns
of the matrix π(x).

3) It transforms under a change of variable ψ : Rn → Rn by

(dmψ)π(m)(dmψ)t = π(ψ(m)), (2.3)

4) A function f ∈ C∞(Rn) is a Casimir if

Xf = π df = 0.

Let (M, {, }M) and (N, {., .}N) be two Poisson manifolds.
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Definition 2.3. A smooth map ψ : M → N will be called a Poisson map if and
only if

{f ◦ ψ, h ◦ ψ}M = {f, h}N ◦ ψ ∀f, h ∈ C∞(N).

In local coordinate, this condition reads as

(dmψ)πM(m)(dmψ)t = πN(ψ(m)), (2.4)

where πM and πN are skew symmetric matrix valued maps associated to Poisson
structures of M and N , respectively, and dmψ is the Jacobian matrix of the map
ψ at point m.

3. Polymatrix games

In this section we introduce the evolutionary polymatrix games to which our
main result applies. This class of systems contains both the replicator equations
and the bimatrix replicator equations.

Consider a population whose individuals interact with each other using one of n
possible pure strategies. The state of the population is described by a probability
vector p = (p1, . . . , pn), with the usage frequency of each pure strategy. This vector
is a point in the n− 1-dimensional simplex

∆n−1 = { (x1, . . . , xn) ∈ Rn : x1 + . . .+ xn = 1, xi ≥ 0 } .
A symmetric game is specified by a n × n payoff matrix A = [ aij]ij, where the
entry aij represents the payoff of an individual using pure strategy i against another
using pure strategy j. Given x ∈ ∆n−1, the value (Ax)i =

∑n
j=1 aij xj represents

the average payoff of strategy i within a population at state x. Similarly, the value
xtAx =

∑n
i,j=1 aij xi xj stands for the overall average of a population at state x,

while the difference (Ax)i−xtAx measures the relative fitness of strategy i in the
population x. The replicator model is the following o.d.e. on ∆n−1

dxi
dt

= xi
(
(Ax)i − xtAx

)
1 ≤ i ≤ n (3.1)

which says that the logarithmic growth rate of each pure strategy’s frequency
equals its relative fitness. The flow of this o.d.e. is complete and leaves the
simplex ∆n−1 invariant, as well as every of its faces.

Next we introduce the class of evolutionary asymmetric, or bimatrix, games,
where two groups of individuals within a population (e.g. males and females), or
two different populations, interact using different sets of strategies, say n strategies
for the first group and m strategies for the second. The state of this model is a pair
of probability vectors in the n + m − 2-dimensional prism Γn,m = ∆n−1 × ∆m−1.
There are no interactions within each group. The game is specified by two payoff
matrices: a n×m matrix A = [ aij]ij, where aij is the payoff for a member of the
first group using strategy i against an individual of the second group using strategy
j, and a m× n matrix B = [ bij]ij with the payoffs for the second group members.
Assuming the first and second group states are x and y, respectively, the value
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(Ay)i is the average payoff for a first group individual using strategy i, the number
xtAy is the overall average payoff for the first group members, and the difference
(Ay)i− xtAy measures the relative fitness of the first group strategy i. Similarly,
(B x)j − ytB x measures the relative fitness of the second group strategy j when
the group states are x and y. The bimatrix replicator equation is the following
o.d.e. on the prism Γn,m

dxi
dt

= xi
(
(Ay)i − xtAy

)
1 ≤ i ≤ n (3.2)

dyj
dt

= yj
(
(B x)j − ytB x

)
1 ≤ j ≤ m

which again says that the logarithmic growth rate of each strategy’s frequency
equals its relative fitness. The flow of this o.d.e. is complete and leaves the prism
Γn,m invariant, as well as every of its faces.

Finally we introduce the class of polymatrix replicator equations. Consider p
different populations, or else a single population stratified in p groups. We shall
use greek letters like α and β to denote these groups. Assume that for each
group α ∈ {1, . . . , p}, there are nα pure strategies for interacting with members of
another group, including its own. Let us call signature of the game to the vector
n = (n1, . . . , np). The total number of strategies is therefore n = n1 + . . . + np.
The polymatrix game is specified by a single n × n matrix A = [ aij]ij with the
payoff aij for a user of strategy i, member of one group, against a user of strategy
j, member of another group, possibly the same. The main difference between
polymatrix games and the symmetric game, also specified by a single matrix A,
is that in the polymatrix game competition is restricted to members of the same
group. This means that the relative fitness of each strategy refers to the overall
average payoff of strategies within the same group. To be more precise we need to
introduce some notation. We decompose A in blocks, A =

[
Aα,β

]
α,β

, where each

block Aα,β =
[
aα,βij

]
ij

is a nα × nβ matrix. Similarly we decompose each vector

x ∈ Rn as x = (xα)α, where xα ∈ Rnα . We say that a strategy i belongs to a group
α, and write i ∈ α, if and only if n1 + . . .+ nα−1 < i ≤ n1 + . . .+ nα. Similarly we
write (i, j) ∈ α× β when i ∈ α and j ∈ β. With this notation we have

(a) xαi = xi if i ∈ α, and

(b) aα,βij = aij if (i, j) ∈ α× β.

Hence the difference (Ax)i −
∑p

β=1(x
α)tAα,βxβ represents the relative fitness of a

strategy i ∈ α within the group α. The polymatrix replicator equation is the o.d.e.

dxαi
dt

= xαi

(
(Ax)i −

p∑
β=1

(xα)tAα,βxβ

)
∀ i ∈ α, α ∈ {1, . . . , p} , (3.3)
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which once more says that the logarithmic growth rate of each pure strategy’s
frequency equals its relative fitness. The flow of this o.d.e. is complete and leaves
the prism Γn = ∆n1−1 × . . . × ∆np−1 invariant. The underlying vector field on
Γn will be denoted by XA. The pair G = (n,A) will be referred as a polymatrix
game, and the dynamical system determined by XA = X(n,A) as the associated
polymatrix replicator equation on Γn.

Remark 3.1. When p = 1, Γn = ∆n−1 and the evolutionary polymatrix game (3.3)
coincides with the replicator o.d.e. (3.1).

Remark 3.2. When p = 2 and A1,1 = 0, A2,2 = 0 system (3.3) coincides with the
bimatrix replicator equation (3.2) on Γn = ∆n1−1×∆n2−1. This case with non-zero
diagonals was considered by Schuster et al [21].

The proofs of the following three propositions are easy exercises.

Proposition 3.3 (Identity). The correspondence A 7→ X(n,A) is linear and its
kernel is formed by matrices A ∈ Matn×n(R) such that the block matrix Aα,β has
equal rows for all α, β = 1, . . . , p. Thus, two matrices A,B ∈ Matn×n(R) determine
the same vector field X(n,A) = X(n,B) on Γn iff the block matrix Aα,β − Bα,β has
equal rows for all α, β = 1, . . . , p.

Definition 3.4. Given a signature n = (n1, . . . , np) and matricesA,B ∈ Matn×n(R),
we say that the polymatrix games (n,A) and (n,B) are equivalent, and write
(n,A) ∼ (n,B), iff Aα,β −Bα,β has equal rows for all α, β = 1, . . . , p.

Equivalent games determine the same polymatrix replicator equation on Γn. In
other words (n,A) ∼ (n,B) iff X(n,A) = X(n,B). We denote by Γ◦n the topological
interior of Γn in the affine subspace of Rn spanned by Γn.

Proposition 3.5 (Equilibria). A point q ∈ Γn is an equilibrium of X(n,A) if
(Aq)i = (Aq)j, for all α = 1, . . . , p and every i, j ∈ α.

Moreover, if q ∈ Γ◦n is an equilibrium point then (Aq)i = (Aq)j, for all α =
1, . . . , p and every i, j ∈ α.

Definition 3.6. Given a signature n = (n1, . . . , np), we define the set

In := { I ⊂ {1, . . . , n} : #(I ∩ α) ≥ 1, ∀α = 1, . . . , p } ,
where I ∩α := I ∩ [n1 + . . .+nα−1 + 1, n1 + . . .+nα]. A set I ∈ In determines the
face σI := {x ∈ Γn : xj = 0, ∀ j /∈ I } of Γn.

The correspondence between sets in In and faces of Γn is bijective.

Definition 3.7. Consider a polymatrix game G = (n,A). Given a set I ∈ In
the pair G|I = (nI , AI), where nI = (nI1, . . . , n

I
p) with nIα = #(I ∩ α), and AI =

[ aij]i,j∈I , is called the restriction of the polymatrix game G to the face I.
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The following proposition says that the restriction of a polymatrix replicator
system to a face is another polymatrix replicator system.

Proposition 3.8 (Inheritance). Consider the system (3.3) associated to the poly-
matrix game G = (n,A). Given I ∈ In, the face σI of Γn is invariant under the
flow of X(n,A) and the restriction of (3.3) to σI is the polymatrix replicator system
associated to the restricted game G|I .

We set some notation in order to produce neater formulas. In any matrix equal-
ity the vectors in Rn, or Rnα , should be identified with column vectors. We set
1 = 1n = (1, 1, .., 1)t ∈ Rn and will omit the subscript n whenever the dimension
of this vector is clear from the context. Similarly, we write I = In for the n × n
identity matrix, and we omit the subscript n whenever its value is clear. Given
x ∈ Rn, we denote by Dx the n × n diagonal matrix Dx = diag(xi)i. For each
α ∈ {1, . . . , p} we define the nα × nα matrix

Tαx := xα 1t − I ,
and set Tx to be the n× n block diagonal matrix Tx = diag(Tαx )α.

Given a polymatrix game G = (n,A), we define the matrix valued mapping
πA : Rn → Matn×n(R)

πA(x) := (−1)TxDxADx T
t
x. (3.4)

We haveDxADx =
[
Dxα A

α,βDxβ
]
α,β

whereDxα A
α,βDxβ =

[
aα,βij x

α
i x

β
j

]
i∈α,j∈β

.

Simple calculations show that πA(x) = [ πA,ij(x)]i,j where for all (i, j) ∈ α× β

πA,ij(x) = xαi x
β
j

(
−aα,βij + (Aα,βxβ)i + ((Aα,β)t xα)j − (xα)tAα,βxβ

)
. (3.5)

These computations reduce to the simple case p = 1, n1 = n where

πA(x) = (−1) (x1t − I)DxADx (1xt − I) ,

and
πA,ij(x) = xixj(−aij + (Ax)i + (Atx)j − xtAx) .

Remark 3.9. Notice that πA is a skew symmetric matrix valued map whenever A
is a skew symmetric matrix.

Definition 3.10. A formal equilibrium of a polymatrix game G = (n,A) is any
vector q ∈ Rn such that

(a) (Aq)i = (Aq)j for all i, j ∈ α, and all α = 1, . . . , p,
(b)

∑
j∈α qj = 1 for all α = 1, . . . , p.

Remark 3.11. A formal equilibrium of G = (n,A) is an equilibrium of the natural
extension of X(n,A) to the affine subspace spanned by Γn.
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Next proposition says that the existence of a formal equilibrium is a sufficient
condition for the vector field X(n,A) of system (3.3) to be a gradient of a simple
function H with respect to πA.

Proposition 3.12. Given A ∈ Matn×n(R), assume there exists a formal equilib-
rium q ∈ Rn of G = (n,A). Then, setting H(x) =

∑n
i=1 qi log xi,

X(n,A)(x) = πA(x) dxH for every x ∈ Γ◦n .

Proof. Consider the vector field Z = πA dH. For any α, and i ∈ α, denote by
Zα
i (x) the i-th component of Z(x). Using that

∑
j∈β q

β
j = 1 we have

Zα
i (x) =

(
k∑

β=1

πα,βA (x)
qβ

xβ

)
i

=
k∑

β=1

(∑
j∈β

πα,βA,ij(x)
qβj

xβj

)
i

= xαi

k∑
β=1

[
((Aα,βxβ)i − (xα)tAα,βxβ)(

∑
j∈β

qβj ) + (−Aα,βqβ)i + (xα)tAα,βqβ

]

= xαi

(Ax)i −
k∑

β=1

(xα)tAα,βxβ +

=0︷ ︸︸ ︷
(−Aq)i +

∑
i∈α

xαi (Aq)i


= xαi

[
(Ax)i −

k∑
β=1

(xα)tAα,βxβ

]
= Xα

A,ij(x) ,

where the vanishing term follows from q being an equilibrium point and xα ∈
∆nα−1. This completes the proof. �

For every α = 1, . . . , p consider the (nα − 1)× nα matrix

Eα :=


−1 0 · · · 0 1

0 −1 · · · 0 1
...

...
. . .

...
...

0 0 · · · −1 1


and set

E := diag(E1, . . . , Ep),

B := (−1)EAEt . (3.6)

Note that E ∈ Mat(n−p)×n(R) and B ∈ Mat(n−p)×(n−p)(R). Next we introduce a
mapping φ : Rn−p → Γ◦n. We write a vector u ∈ Rn−p = Rn1−1 × . . . × Rnp−1 as
u = (uα)α, where uα := (uα1 , . . . , u

α
nα−1), and the components of φ as φ(uα)α :=
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(φα(uα))α, where each φα : Rnα−1 → (∆nα−1)◦ is the map defined by

φα(uα) :=

 eu
α
1

1 +
nα−1∑
i=1

eu
α
i

, . . . ,
eu

α
nα−1

1 +
nα−1∑
i=1

eu
α
i

,
1

1 +
nα−1∑
i=1

eu
α
i

 .

The following is our main result. Consider a polymatrix game G = (n,A).

Theorem 3.13. If A is skew symmetric then the mapping πA in (3.4) defines
a Poisson structure on Γn. Moreover the mapping φ : Rn−1 → Γ◦n is a Poisson
diffeomorphism if we endow Rn−p with the constant Poisson structure associated
to the skew symmetric matrix B defined in (3.6).

Proof. The map φ : Rn−1 → Γ◦n is a diffeomorphism whose inverse is easily com-
puted. If A is skew symmetric then so is B. Hence this matrix induces a constant
Poisson structure on Rn−p. We want to prove that πA determines a Poisson struc-
ture on Γ◦n which makes φ a Poisson map. By (2.3) we just need to show that for
every u ∈ Rn−p and x = φ(u),

(duφ)B(duφ)t = (−1)TxDxADxT
t
x = πA(x) . (3.7)

The fact that πA also determines a Poisson structure on Γn, and on Rn, will be
proved later. See Remark 3.15. In order to prove (3.7), it is enough to see that for
every x = φ(u)

(duφ)E = TxDx .

Writting the components of φα as φα(uα) = (φα1 (uα), . . . , φαnα(uα)) we compute for
every i = 1, . . . , nα and j = 1, . . . , nα − 1,

∂φαi
∂uαj

= δij φ
α
i − φαi φαj .

Hence if x = φ(u), the Jacobian of φ at the point u is

duφ = diag(Jα(xα))α,

where for every α = 1, . . . , p,

Jα(x1, . . . , xnα) :=



x1 − x21 −x1 x2 −x1 x3 . . . −x1 xnα−1
−x2 x1 x2 − x22 −x2 x3 . . . −x2 xnα−1
−x3 x1 −x3 x2 x3 − x23 . . . −x3 xnα−1

...
...

...
. . .

...
−xnα−1 x1 −xnα−1 x2 −xnα−1 x3 . . . xnα−1 − x2nα−1
−xnα x1 −xnα x2 −xnα x3 . . . −xnα xnα−1


A simple multiplication of matrices, using the relation x1 + . . . + xnα = 1, shows
that Jα(xα)Eα = TxαDxα for every α = 1, . . . , p. Therefore

(duφ)E = diag(Jα(xα)Eα)α = diag(TxαDxα)α = TxDx ,
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which completes the proof. �

The next corollary gives a complete description of the symplectic foliation of
(Γ◦n, πA). Two examples will be given in section 4.

Corollary 3.14 (Symplectic Foliation). The symplectic leaves of (Γ◦n, πA) are the
images of the symplectic leaves of (Rn−p, B) under the diffeomorphism φ. The
symplectic leaf Su of (Rn−p, B) is the (even dimensional) affine subspace through
u parallel to the subspace generated by the columns of B.

Remark 3.15. Given a face I ∈ In consider the payoff matrix AI , see Defini-
tion 3.7. Applying Theorem 3.13 to any face σI of Γn we see that σI is a Poisson
manifold on its own with the Poisson structure πAI . Moreover (σI , πAI ) is the
restriction of (Γn, πA) in the sense that the inclusion map i : σI → Γn is a Poisson
map. Hence the interiors of the faces of Γn, regarded as Poisson manifolds, give
(Γn, πA) the structure of a Poisson stratified space. The proof of this fact is a
simple adaptation of example 2.5 in [5].

Proposition (3.12) together with Theorem (3.13) yields the following corollary.

Corollary 3.16. If A is skew symmetric and q ∈ Rn is a formal equilibrium of
G = (n,A) then X(n,A) is a Hamiltonian vector field, with Hamiltonian H(x) =∑n

i=1 qi log xi, w.r.t. the Poisson structure πA in Γ◦n.

Definition 3.17. A polymatrix game G = (n,A) is said to be conservative iff

(a) G has a formal equilibrium,
(b) there are matrices A0, D ∈ Matn×n(R) such that

(i) A ∼ A0D,
(ii) A0 is a skew symmetric,
(iii) D = diag(λ1 In1 , . . . , λp Inp) with λβ 6= 0 for every β = 1, . . . , p.

The matrix A0 will be referred as a skew symmetric model for G, and (λ1, . . . , λp) ∈
(R∗)p as a scaling co-vector.

Remark 3.18. Given a skew symmetric matrix A0 ∈ Matn×n(R), a signature n
and a point q̃ ∈ Rn such that

(a) (A0 q̃)i = (A0 q̃)j for all i, j ∈ α, and all α = 1, . . . , p,
(b)

∑
j∈α q̃j 6= 0 for all α = 1, . . . , p,

then G = (n,A0D) is a conservative polymatrix game, where D = diag(λα Inα)α
with λα :=

∑
j∈α q̃j, and q = D−1q̃ is a formal equilibrium of G.

It follows from the previous remark that any generic skew symmetric matrix can
be taken as a model for a conservative polymatrix game. More precisely,

Proposition 3.19. Given a signature n = (n1, . . . , np) with
∑p

α=1 nα = n, the
set of skew symmetric matrices A0 ∈ Matn×n(R) such that G = (n,A0D) is a
conservative polymatrix game for some diagonal matrix D is an open and dense
subset of the space of skew symmetric matrices.
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Next theorem basically says that the replicator system (3.3) is Hamiltonian for
every conservative polymatrix game.

Theorem 3.20. Consider a conservative polymatrix game G = (n,A) with formal
equilibrium q, skew symmetric model A0 and scaling co-vector (λ1, . . . , λp). Then
X(n,A) is Hamiltonian in the interior of the Poisson stratified space (Γn, πA0), with
Hamiltonian function

H(x) =

p∑
β=1

λβ
∑
j∈β

qβj log xβj . (3.8)

Proof. In view of definition 3.4 we can assume that A = A0D. For every α, β,

Tαx Dxα A
α,β
0 Dxβ (T βx )tλβ

qβ

xβ
= Tαx Dxα A

α,βDxβ (T β)t
qβ

xβ
,

where qβ/xβ stands for the componentwise division of the vectors. Adding up in
β, and using Proposition 3.12, we get

πA0(x) dxH = πA(x) dx

(
n∑
j=1

qj log xj

)
= X(n,A)(x) .

�

In the next paragraphs we compare our results with previously known facts.
Given a skew symmetric matrix A ∈ Matn×n(R), since xtAx = 0 for all x ∈ Rn,
the replicator equation (3.1) reduces to a Lotka-Volterra equation with growth
rates ri = 0

dxi
dt

= xi (Ax)i 1 ≤ i ≤ n . (3.9)

For any q ∈ Rn such that Aq = 0 the function H(x) =
∑n

j=1 xj − qj log xj
is a constant of motion for (3.9). The Hamiltonian character of these models
was first studied in [1] using symplectic formalism instead of Poisson structures.
The authors prove that these systems are Hamiltonian in the symplectic leaves
described in corollary 3.14, with respect to the symplectic structures induced by
the Poisson structure πA. A Poisson structure on Rn defined by the bivector
π̂A(x) = DxADx was introduced in [2]. System (3.9) is Hamiltonian in the interior
of Rn

+ w.r.t. π̂A having H as Hamiltonian function. Like π̂A the Poisson structure
πA introduced here can be extended to Rn, but unlike πA the structure π̂A does not
restrict to a Poisson structure on the simplex ∆n−1. Using the Poisson structure
πA we can now say, if there exists q ∈ Rn such that Aq = 0 and

∑n
j=1 qj 6= 0, that

the system (3.9) is Hamiltonian in the interior of the simplex ∆n−1. Furthermore,
here we study the replicator equation itself, not topologically equivalent LV systems
which have non-compact domains. Our approach makes it possible to extend the
results regarding symmetric and asymmetric games to general polymatrix games.
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Consider now a bimatrix game with signature (n1, n2) and matrix

A =

(
0 A12

A21 0

)
.

If λ > 0, resp. λ < 0, the polymatrix game ((n1, n2), A) is conservative with
scaling vector (1, λ) if and only if it has a formal equilibrium and the bimatrix
game (A12, A21) is λ-zero-sum game, resp. λ-partnership game, (see definitions
in Section 11.2 of [8]). Theorem 3.20 generalizes the main result in [6, Section
5], which says that the evolutionary system (3.2) associated to a λ-zero-sum or
λ-partnership game is Hamiltonian w.r.t. some Poisson structure in the interior
of the prism. We obtain here the same constant of motion (3.8), and the same
Poisson structure in the interior of ∆n1−1 ×∆n2−1 that was obtained in [6].

We finish this section with an extension of the class of Hamiltonian polymatrix
replicator equations. Given p smooth functions λα : Γn → R∗, α = 1, . . . , p,
consider the matrix valued smooth function D : Γn → Matn×n(R), D(x) =
diag(λα(x)Inα)α, and the system of o.d.e.’s

dxαi
dt

= xαi

(
(AD(x)x)i −

p∑
β=1

λβ(x) (xα)tAα,βxβ

)
∀ i ∈ α, 1 ≤ α ≤ p (3.10)

associated with the vector field Y (x) = X(n,AD(x))(x) on Γn.

Proposition 3.21. Let A ∈ Matn×n(R) be a skew symmetric matrix, q ∈ Rn a
formal equilibrium of G = (n,A), and consider the 1-form

ξ(x) =

p∑
α=1

∑
j∈α

λα(x) qαj
dxαj
xαj

.

Then system (3.10) is the gradient of the 1-form ξ w.r.t. the Poisson structure πA
in the interior of Γn, i.e.,

Y (x) = πA(x) ξ(x) .

System (3.10) is Hamiltonian if the form ξ is exact, i.e., there exists a smooth
function H such that ξ = dH. But even if ξ is not exact, the dynamics of Y leaves
invariant the symplectic foliation of (Γ◦n, πA).

Proof. The proof is similar to that of Theorem 3.20. �

The previous model (3.10) contains the following class of o.d.e.’s introduced by
J. Maynard Smith as an extension of the asymmetric replicator equation (3.2).

dxi
dt

= xi
(
(A12 y)i − xtA12 y

)
m1(x, y) 1 ≤ i ≤ n (3.11)

dyj
dt

= yj
(
(A21 x)j − ytA21 x

)
m2(x, y) 1 ≤ j ≤ m
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See appendix J of [10], and system (9.1) in [6]. Taking

A =

[
0 A12

A21 0

]
and D(x) =

[
m2(x, y) Im 0

0 m1(x, y) In

]
system (3.11) reduces to (3.10). Since system (3.11) has a dissipative character
for certain choices of the functions m1(x, y) and m2(x, y) it would be interesting
to investigate analogous properties of system (3.10).

4. Examples

It is possible to fully classify the dynamics of 2D and 3D conservative polymatrix
replicator systems, but in this section we just briefly describe two examples of 3D
polymatrix replicator systems.

First Example. Consider the signature n = (2, 2, 2), take the skew symmetric
matrix

A0 =


0 −1 0 1

2
0 1

1 0 0 −1
2
−1 1

2
0 0 0 0 1

2
−1

−1
2

1
2

0 0 0 0
0 1 −1

2
0 0 −1

2
−1 −1

2
1 0 1

2
0

 ,

and the point p =
(
7
4
, 3
4
, 5
4
, 1, 1, 1

)
such that A0 p =

(
3
4
, 3
4
,−1

2
,−1

2
,−3

8
,−3

8

)
. Con-

sider the matrix A = A0D, where D = diag
(
5
2
, 5
2
, 9
4
, 9
4
, 2, 2

)
. This matrix is

A =


0 −5/2 0 9/8 0 2

5/2 0 0 −9/8 −2 1
0 0 0 0 1 −2

−5/4 5/4 0 0 0 0
0 5/2 −9/8 0 0 −1

−5/2 −5/4 9/4 0 1 0

 .

By remark 3.18 ((2, 2, 2), A) is a conservative polymatrix game. The phase space
of the associated replicator system is the cube

Γ(2,2,2) = ∆1 ×∆1 ×∆1 ≡ [0, 1]3 .

In the model [0, 1]3, the equilibrium point q = D−1p has coordinates q =
(

7
10
, 5
9
, 1
2

)
,

and hence is an interior point. The line through q with direction v =
(
6
5
,−4

9
,−1

)
intersects the cube [0, 1]3 along the set Σ of equilibria of this replicator system.
This set Σ is a line segment joinning two points in the faces {x = 1} and {z = 1}.
To compute the symplectic foliation of ]0, 1[3 consider the matrix

E =

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
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and define B = −E A0E
t. A simple calculation gives

B =

 0 1 −1
2

−1 0 −3
2

1
2

3
2

0

 .

Figure 1. Phase portraits of 3D polymatrix replicator systems

The vector w =
(
−3

2
, 1
2
, 1
)

is orthogonal to the space spanned by the columns of
B. The symplectic leaves of the constant Poisson structure on R3 defined by the
skew symmetric matrix B are the planes orthogonal to w. Thus, if we consider
the Poisson diffeomorphism φ : R3 →]0, 1[3,

φ(u1, u2, u3) =

(
eu1

1 + eu1
,

eu2

1 + eu2
,

eu3

1 + eu3

)
,

the symplectic leaves on ]0, 1[3 are the φ images of these planes. Inverting the map
φ, the symplectic leaves are given by the equations(

x

1− x

)−3/2(
y

1− y

)1/2(
z

1− z

)
= ec

⇔ (1− x)3/2y1/2z = ecx3/2(1− y)1/2(1− z) ,

with c ∈ R. Let U+, resp. U−, be the union of the faces {x = 1}, {y = 0}, {z = 0},
resp. {x = 0}, {y = 1}, {z = 1}. On the interiors of these two open subsets of
the cube’s boundary the equation above is never satisfied. Therefore the closure
of every symplectic leaf intersects the cube’s boundary along the closed curve
C = ∂U+ = ∂U− ⊂ ∂[0, 1]3. Because Σ intersects both U− and U+, it follows that
every symplectic leaf must intersect Σ, hence having a unique equilibrium. The
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orbits of our polymatrix replicator system foliate each symplectic leaf into closed
curves around that equilibrium point. We can also check that C is a heteroclinic
cycle of the vector field X(2,2,2),A. See Figure 1(a).

Second Example. Consider the signature n = (3, 2), take the skew symmetric
matrix

A0 =


0 0 1

2
1
2
−1

0 0 −1
2

1
2
−1

2
−1

2
1
2

0 1 1
2

−1
2
−1

2
−1 0 0

1 1
2
−1

2
0 0

 ,

and the point p =
(

9
10
,−8

5
, 1
2
, 0, 1

)
such that A0 p =

(
−3

4
,−3

4
,−3

4
,− 3

20
,− 3

20

)
. Con-

sider the matrix A = A0D, where D = diag
(
−1

5
,−1

5
,−1

5
, 1, 1

)
. This matrix is

A =


0 0 − 1

10
1
2
−1

0 0 1
10

1
2
−1

2
1
10
− 1

10
0 1 1

2
1
10

1
10

1
5

0 0
−1

5
− 1

10
1
10

0 0

 .

By remark 3.18 ((3, 2), A) is a conservative polymatrix game. The phase space of
the associated replicator system is the prism

Γ(3,2) = ∆2 ×∆1 ≡ { (x, y, z) : 0 ≤ x, y, z ≤ 1, x+ y ≤ 1 } =: P .

In the model P ⊂ R3 the equilibrium point q = D−1p has coordinates q =(
−9

2
, 8, 0

)
, and hence is not interior to P . The line of equilibria goes through q

with direction v =
(
−5

2
, 5,−1

)
and does not intersect the prism P . To compute

the symplectic foliation of P ◦ consider the matrix

E =

 1 −1 0 0 0
1 0 −1 0 0
0 0 0 1 −1


and define B = −E A0E

t. A simple calculation gives

B =

 0 1 −1
2

−1 0 −1
1
2

1 0

 .

The vector w =
(
−1, 1

2
, 1
)

is orthogonal to the space spanned by the columns of
B. The symplectic leaves of the constant Poisson structure on R3 defined by the
skew symmetric matrix B are the planes orthogonal to w. Thus, if we consider
the Poisson diffeomorphism φ : R3 → P ◦,

φ(u1, u2, u3) =

(
eu1

1 + eu1 + eu2
,

eu2

1 + eu1 + eu2
,

eu3

1 + eu3

)
,
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the symplectic leaves on P ◦ are the φ images of these planes. Inverting the map
φ, the symplectic leaves are given by the equations(

x

1− x− y

)−1(
y

1− x− y

)1/2(
z

1− z

)
= ec

⇔ (1− x− y)1/2y1/2z = ecx(1− z) ,

with c ∈ R. Let U+, resp. U−, be the union of the faces {x + y = 1}, {y = 0},
{z = 0}, resp. {x = 0}, {z = 1}. On the interiors of these two open subsets of
the prism’s boundary the equation above is never satisfied. Therefore the closure
of every symplectic leaf intersects the prism’s boundary along the closed curve
C = ∂U+ = ∂U− ⊂ ∂P . The points r = (1, 0, 0) and s = (0, 0, 1) on C are
respectively a global repeller and a global sink of the polymatrix replicator system,
and every symplectic leaf is foliated into orbits flowing from the repeller r to the
sink s. The closed curve C is also the union of two heteroclinic chains from r to
s. See Figure 1(b). Note that this dynamical behaviour does not contradict the
Hamiltonian character of the system because the area of each symplectic leaf is
infinite.
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