
Hamiltonian Systems on Polyhedra

Pedro Duarte

1 Flows on Polyhedra

Let Γ d be a simple polyhedron with dimension d. We say that a vector field X on
Γ d is tangent to ∂Γ d if X is tangent to every face σ of Γ d , i.e., X(p) ∈ Tpσ at each
point p∈ σ . We denote by X (Γ d) the vector space of all analytic vector fields X on
Γ d which are tangent to ∂Γ d . For any given X ∈X (Γ d) the flow φ t

X : Γ d → Γ d of
X is complete and every face of Γ d is invariant under φ t

X . In particular, the vertices
of Γ d are singularities of the vector field X , and many edges will consist of single
orbits flowing from one boundary vertex to the other. Our goal is, for some rather
large class of ”regular” vector fields X ∈X (Γ d), to encapsulate the dynamics of φ t

X
along heteroclinic cycles on ∂Γ d in a simple and ”computable” dynamical system,
that we refer as the skeleton vector field on the dual cone of Γ d .

Fig. 1 The dynamics near the edges for a flow φ t
X on the polyhedron Γ 3 = [0,1]3.
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Before continuing we give precise definitions of the concepts of polyhedron, di-
mension, face, vertex, edge and simplicity, while introducing the notation used in
the sequel. A subset Γ of some Euclidean space RN is called a polyhedron if it is a
compact convex set which can be represented as a finite intersection of closed half-
spaces. Denote by E(Γ ) the smallest affine subspace of RN that contains Γ . The
dimension of a polyhedron Γ is defined to be the dimension of E(Γ ). From now on
Γ d will denote a polyhedron of dimension d, which for the sake of simplicity we as-
sume, unless otherwise said, to live in E(Γ d) = Rd . We call supporting hyperplane
of Γ d to any affine hyperplane H ⊂Rd such that H∩Γ d 6= /0, and Γ d is contained in
one of the two closed half-spaces determined by H. The intersection of Γ d with any
of its supporting hyperplanes is another polyhedron, called a face of Γ d , or an r-face
when its dimension is equal to r. As usual, a vertex is any 0-face, and an edge is any
1-face of Γ d . Capital letters A,B,C will denote vertices of Γ d , while γ will denote a
generic edge of Γ d . By default, the term ”face” shall always refer to a (d−1)-face,
and σ will represent a generic such (d− 1)-face. We represent by V the set of all
vertices, by E the set of all edges, and by F the set of all (d−1)-faces of Γ d .

Definition 1. A family of functions { fσ : Rd → R}σ∈F is called a defining family
for Γ d if for every face σ ∈ F ,

1. fσ : Rd → R is an affine function,
2. fσ (p) = 0 for all p ∈ σ ,
3. fσ (p)≥ 0 for all p ∈ Γ d , and
4. Γ d =

⋂
σ∈F{ fσ ≥ 0}.

We assume a defining family { fσ}σ∈F for Γ d is fixed once and for all.
We call d-simplex to the convex hull of any d + 1 affinely independent points.

These are the simplest polyhedra. A polyhedron Γ d is called simple if each vertex
is incident with exactly d faces (edges). This amounts to the supporting hyperplanes
{ fσ = 0} intersecting each other in general position. A d-simplex is of course sim-
ple in this sense. A polyhedron Γ d is simple if and only if every face of its dual
polyhedron is a (d−1)-simplex.

2 Game Dynamics

Systems as these include many interesting classes from Game Dynamics, for in-
stance the replicator equation. Within a population individuals interact using one of
n possible strategies. The time evolution of a population distribution (x1, . . . ,xn) ∈
∆ n−1 is ruled by

x′i
xi

= fi(x1, . . . ,xn)−
n

∑
k=1

xk fk(x1, . . . ,xn) , (1)

where ∆ n−1 stands for the usual (n−1)-simplex {(x1, . . . ,xn) : xi≥ 0, ∑
n
i=1 xi = 1}.

The value fi(x1, . . . ,xn) measures the absolute fitness of strategy i for the population
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distribution (x1, . . . ,xn) ∈ ∆ n−1. Likewise, the right-hand-side in (1) expresses the
relative fitness of strategy i within the same population. In the replicator equation
model, strategies in the population thrive or recede proportional to their relative
fitnesses. When the functions fi(x) are linear, say fi(x1, . . . ,xn) = ∑

n
j=1 ai j x j, the

system is determined by a matrix A = (ai j ) called the payoff matrix. The payoffs
ai j are the eigenvalues of the singularities at the vertices, for the associated replicator
flow or vector field.

Fig. 2 A point in ∆ 3 is a probability vector in {1,2,3,4}

An important class of equations which reduces to the (linear) replicator equation
are the so called Lotka-Volterra equations. They govern the time evolution of a n-
species ecosystem y = (y1, . . . ,yn) ∈ Rn

+

y′i
yi

= ri +
n

∑
j=1

ai j y j , (2)

where yi measures the size of species i within the ecosystem, ai j is an interaction
coefficient between species i and j, while ri models the interaction of species i with
environment. Every Lotka-Volterra system is equivalent to a replicator system in the
sense that the underlying vector fields are equivalent. The equivalence is given by
the algebraic map defined by

x = (x0, . . . ,xn) ∈ ∆
n ←→ y = (y1, . . . ,yn) =

(
x1

x0
, . . . ,

xn

x0

)
∈ Rn

+ ,

which maps the interior of the simplex ∆ n onto the the interior of Rn
+. In the new

coordinates x = (x0, . . . ,xn) ∈ ∆ n the system becomes (up to a time reparametriza-
tion)

x′i
xi

=
n

∑
j=0

ãi j x j−
n

∑
j,k=0

ãk j xk x j (3)

which is a linear replicator with payoff matrix Ã = ( ãi j ), where ãi j = ai j when
i, j ≥ 1, ãi0 = ri and ã0 i = 0. This reduction, due to J. Hofbauer [6], consists
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roughly in letting the n species together with the environment play the roles of n+1
strategies.

Another important class which falls within the scope of this work is that of asym-
metric games, where two groups of individuals within a population, e.g. males and
females, interact using different sets of strategies, say n strategies for males and m
strategies for females. The phase space of an asymmetric game system is a polyhe-
dron, product of simplices ∆ n−1×∆ m−1, and the time co-evolution of two popula-
tion distributions (x,y) ∈ ∆ n−1×∆ m−1 is governed by

x′i
xi

= fi(y1, . . . ,ym)−∑
n
k=1 xk fk(y1, . . . ,ym) (4)

y′j
y j

= g j(x1, . . . ,xn)−∑
m
k=1 xk gk(x1, . . . ,xn)

The value fi(y) measures the absolute fitness of a male strategy i in a female popu-
lation y∈ ∆ m−1, while g j(x) measures the absolute fitness of a female strategy j in a
male population x ∈ ∆ n−1. The right-hand-sides in (4) express, respectively, the rel-
ative fitnesses of a male strategy i, and of a female strategy j, within the populations
of opposite gender. Once more, in this asymmetric game model strategies in the male
and female populations thrive or recede proportional to their relative fitnesses. When
the functions fi(y) and g j(x) are both linear, say fi(y1, . . . ,ym) = ∑

m
j=1 ai j y j and

g j(x1, . . . ,xn) = ∑
n
i=1 b ji xi, the system is determined by a pair of matrices A = (ai j )

of order n×m and B = (b ji ) of order m×n, called the payoff matrices. Again, the
payoffs ai j and b ji are related to the eigenvalues of the singularities at the vertices,
for the associated asymmetric game flow or vector field.

3 Skeletons and Dual Cones

Assume for a while Γ d ⊂ Rd+1−{0} and the cone Γ̂ d+1 = { t X : t ≥ 0, X ∈ Γ d }
has dimension d +1. In Convex Analysis the dual cone of Γ d is defined to be

(Γ d)∗ = {Y ∈ Rd+1 : Y ·X ≥ 0, ∀X ∈ Γ
d } .

Here we shall call dual cone of Γ d to the boundary of this set, C ∗(Γ d) = ∂ (Γ d)∗.
We give an alternative description of the dual cone, which is more convenient for
our purposes. Denote by Σ d the dual of the polyhedron Γ d . We can identify V ∗ =
V (Σ d)≡ F and F∗ = F(Σ d)≡V . By duality each vertex A∈V stands for a (d−1)-
face in Σ d , each face σ ∈ F represents a vertex of Σ d , and the relation A ∈ σ in Γ d

is equivalent to σ ∈ A in Σ d . We define

C (Σ d) := {x ∈ RV ∗ : ∃A ∈ F∗ for all σ ∈V ∗, xσ ≥ 0 and xσ = 0 if σ /∈ A} ,

and for each face ρ of Σ d we set
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Πρ := {x ∈ RV ∗ : for all σ ∈V ∗, xσ ≥ 0 and xσ = 0 if σ /∈ ρ } .

Then the following properties hold for all faces ρ,ρ ′ of Σ d :

1. dimΠρ = dim
Σd (ρ)+1,

2. Πρ ⊆Πρ ′ ⇔ ρ ⊆ ρ ′ in Σ d ,
3. Πρ ∩Πρ ′ = Πρ∩ρ ′ .

Because Γ d is simple, by duality, every r-face of Σ d is a (r− 1)-simplex, i.e., it
has exactly r vertices. This implies item 1. Properties 2 and 3 are obvious conse-
quences of definitions. Realizing the dual polyhedron Σ d as a transversal section to
the cone (Γ d)∗, we can identify (Γ d)∗ with Σ̂ d+1 = { t X : t ≥ 0, X ∈ Σ d }. Whence,
the faces of ∂ (Γ d)∗ satisfy the exact same properties 1-3 above. In fact, the three
models C (Σ d), ∂ (Γ d)∗ and ∂ Σ̂ d+1 are piecewise-linear isomorphic. From now on
we consider the dual cone of Γ d to be C ∗(Γ d) := C (Σ d). Properties 1-3 above can
be re-interpreted in terms of Γ d’s faces. Since each r-face ρ of Γ d corresponds to a
(d−1− r)-face of Σ d , we have for all faces ρ,ρ ′ of Γ d :

1. dimΠρ = d−dim
Γ d (ρ),

2. Πρ ⊆Πρ ′ ⇔ ρ ′ ⊆ ρ in Γ d ,
3. Πρ ∩Πρ ′ = Πρ∨ρ ′ ,

where ρ ∨ρ ′ stands for smallest face of Γ d containing ρ ∪ρ ′. In particular, the dual
cone C ∗(Γ d) has a face ΠA for each vertex A of Γ d , and the intersection ΠA ∩ΠB
of any two meeting faces corresponds to an edge of Γ d connecting A to B.

Fig. 3 The dual cone of a triangle polyhedron and a skeleton vector field on it.

A skeleton vector field is a piecewise constant vector field on the dual cone
C ∗(Γ d), i.e., one which is constant on each face ΠA, A ∈ V . Any skeleton vec-
tor field is given by the finite data χ = (χA

σ )A∈V,σ∈F with χA
σ = 0 whenever A /∈ σ .

We write χA for the vector (χA
σ )σ∈F in the tangent space to ΠA. Orbits of a skeleton

vector field χ are defined to be the polygonal curves whose intersection with each
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face ΠA of C ∗(Γ d) is a line segment parallel to χA on ΠA. Notice that orbit contin-
uation is essentially unique, because as an orbit through ΠA reaches the intersection
Πγ = ΠA ∩ΠB of two faces ΠA and ΠB of C ∗(Γ d) at some point p interior to Πγ ,
there is at most one possible continuation on ΠB, because ΠB is the unique face
which meets ΠA at p.

Fig. 4 A finite orbit of a skeleton vector field.

Of course some orbits will end in finite time. This definition gives us an incom-
plete piecewise linear flow on C ∗(Γ d). Vertices and edges of Γ d are classified w.r.t.
the skeleton vector field χ as figures 5 and 6 indicate.

Definition 2. Given a vertex A ∈V , we say that A is a

1. χ−attractor ⇔ −χA ∈ΠA
2. χ−repellor ⇔ χA ∈ΠA
3. χ-saddle ⇔ χA /∈ΠA and −χA /∈ΠA

Because we will be looking for recurrent behavior, χ-saddle vertices are the inter-
esting ones, for if a vertex A is a χ−repellor, resp. a χ−attractor, then ΠA is forward,
resp. backward, invariant by the flow of χA.

χ-attractor χ-repellor χ-saddle

Fig. 5 The classification of vertices for a skeleton vector field.
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Let γ be an edge connecting two vertices A,B∈V . Take σ ,ρ ∈F to be the unique
faces such that γ ∩σ = {A} and γ ∩ρ = {B}.

Definition 3. We say that γ is

1. χ-attracting ⇔ χA
σ < 0 and χB

ρ < 0

2. χ-repelling ⇔ χA
σ > 0 and χB

ρ > 0

3. χ-neutral ⇔ χA
σ = 0 and χB

ρ = 0

4. χ-flowing ⇔ χA
σ χB

ρ < 0.

All other edges are said to be χ-undefined.

χ-attracting χ-repelling χ-neutral χ-flowing

Fig. 6 The classification of edges for a skeleton vector field.

We shall not consider skeleton vector fields with χ-undefined edges. When all
vertices are χ-saddles and all edges are either χ-neutral or χ-flowing then some re-
currence occurs. This will be the case of the Hamiltonian systems introduced below.
Note the flowing edges are naturally oriented, from a source vertex, we denote by
s(γ), to a target vertex, denoted by t(γ). Let Gχ(Γ d) be the oriented graph consist-
ing of all vertices, and all oriented edges of χ-flowing type of Γ d . The dynamics
of a skeleton vector field can be described in terms of piecewise linear return maps.
Fixing an edge γ of Gχ(Γ d) we can define the return map Rχ

γ : Πγ → Πγ . These
return maps satisfy:

(1) the domain of Rχ

γ splits into a finite or countable number of open convex cones
Πξ , each associated with a cycle ξ of Gχ(Γ d) starting and ending with γ , and
not passing through γ in between.

(2) the restriction of Rχ

γ to each cone Πξ is a linear map, and
(3) the linear branches of Rχ

γ , as well as their domains, are computable.

The return maps Rχ

γ and their domains Πξ can be expressed in terms of matrices
in RF×F whose coefficients are functions of the data χA

σ . Given an edge γ ∈Gχ(Γ d),
let A = s(γ) be the source of γ , and σ0 ∈ F be the unique face such that σ0 ∩ γ =
{A}. We associate the following F×F matrix to the edge γ ,
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Mγ =

(
δσ ,σ ′ −

χA
σ

χA
σ0

δσ0,σ ′

)
(σ ,σ ′)∈F×F

.

A sequence ξ = (γ0,γ1,γ2, . . . ,γn) is called a chain if s(γi) = t(γi−1), for every
i = 1, . . . ,n. We call sub-chain of ξ to any initial subsequence ξi = (γ0, . . . ,γi) of
ξ with 1 ≤ i ≤ n. For each chain ξ = (γ0,γ1, . . . ,γn) we define the product matrix
Mξ = Mγn · · ·Mγ1 . Note Mγ0 is excluded from this product. The matrix Mξ defines
a linear operator on RF , which projects RF onto the linear subspace spanned by the
cone Πγn . The chain ξ = (γ0,γ1, . . . ,γn) is called a cycle when γn = γ0, in which
case we have for every X ∈ Πξ , Rχ

γ0X = Mξ X . The open convex cone Πξ can be
characterized as the set of all X ∈ Π

χ

γ0 such that for each sub-chain ξi = (γ0, . . . ,γi)
of ξ the vector Mξi X is interior to Πγi .

4 Main Results

We are going to rescale the vector field X around the singularities at the vertices us-
ing some type of logarithmic coordinates. In [3] we single out a class of vector fields,
that we call regular vector fields, for which these coordinates around the vertex sin-
gularities can be glued along the edges to obtain a global rescaling mapping. Regular
vector fields include generic ones, with hyperbolic singularities at the vertices, but
they also comprise many others with non-hyperbolic singularities. This generality
is essential to embrace the Hamiltonian systems in which we are interested. Given
A ∈V and σ ∈ F such that A ∈ σ we denote by γ = γA,σ the edge opposed to σ at A,
which is characterized by σ ∩ γ = {A}. We refer to the pair (A,σ) as an end corner
of γ . Notice each edge has exactly two end corners. Let eA,σ ∈ TAΓ d denote the unit
vector tangent to the edge γA,σ at A. To each vector field X ∈X (Γ d), X 6= 0, we
associate an order function νX : F → N

νX (σ) = max{k ∈ N : D( fσ )pDiXp ≡ 0, ∀ i < k, ∀ p ∈ σ } ,

with the order of the first non-zero derivative at some of the face’s vertices. Remark
each face has finite order because the vector field X is analytic. Then we define the
character of X at the corner (A,σ) by χA

σ =− 1
ν! D( fσ )A Dν XA ·eA,σ

(ν), where ν =
νX (σ). We set χA

σ = 0 if A /∈ σ . The data χ = (χA
σ )A∈V,σ∈F determines a skeleton

vector field we shall call the skeleton of X .

Definition 4. We say that a vector field X ∈X (Γ d) is regular iff for every edge
γ of Γ d , either X = 0 along γ or else X 6= 0 in the interior of γ and X has non-zero
character at both end corners (A,σ) and (A′,σ ′) of γ .

In particular, for the skeleton χ of a regular vector field, every edge γ of Γ d is either
χ-neutral or χ-flowing.
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For each order function ν : F→N we define a one-parameter family of rescaling
co-ordinates Ψ ν

ε : Γ d−∂Γ d→C ∗(Γ d) (ε > 0) by Ψ ν
ε (p) = (Ψ σ

ε (p))σ∈F , where

Ψ
σ

ε (p) :=

{
−ε log fσ (p) if νX (σ) = 1

−ε
1

ν−1

(
1− 1

fσ (p)ν−1

)
if νX (σ)≥ 2

Actually, we take the domain of Ψ ν
ε to be the union of a family of neighborhoods

NA, one for each vertex A ∈V .

BA

C

g

ab

P
C

PA PB

Pg

Pa
Pb

Fig. 7 The rescaling coordinates in the dual cone C ∗(Γ d).

The mapping Ψ ν
ε zooms in a neighborhood of the union of all edges of Γ d . The

first theorem says, given X ∈X (Γ d), the rescaling limit of the flow φ t
X is exactly

the piecewise linear flow of the skeleton χ of X . Given a cycle ξ of χ , starting and
ending with γ ∈ Gχ(Γ d), we denote by PX

ξ
the Poincaré return map along ξ . This

map is defined in a small cross section of φ t
X which is mapped by every Ψ ν

ε into the
face Πγ ⊂ C ∗(Γ d).

Theorem 1. If X ∈X (Γ d) is a regular vector field with order ν , skeleton χ , and
ξ is a cycle in Gχ(Γ d) which starts and ends with γ , then for every compact subset
K ⊂ Πξ , (Ψ ν

ε ) ◦ PX
ξ
◦ (Ψ ν

ε )−1 converges to Rχ

γ : Πξ → Πγ , in the C∞-topology,
uniformly over K, as ε → 0+.

We consider in [3] the vector space, denoted by H (Γ d), of analytic functions
h : Γ d−∂Γ d → R such that for each face σ ∈ F , either h is essentially analytic on
σ , or else dh has a pole of finite order along σ . We say that h is essentially analytic
on σ if h has an analytic extension to a neighborhood of σ minus the union of all
other faces σ ′ ∈ F , σ ′ 6= σ . A similar definition is given for analytic 1-forms. We
say that dh has a pole of order k along σ iff there is a 1-form λ and function g, both
analytic in Γ d − ∂Γ d and essentially analytic on σ , such that dh = λ + g d fσ

( fσ )k . It

follows from this definition that g is constant on σ . Each function h ∈H (Γ d) can
be represented as
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h = G+ ∑
σ∈F

c1,σ log fσ +
c2,σ

fσ

+ · · ·+
ckσ ,σ

( fσ )kσ−1 , (5)

where G is an analytic function on Γ d , each ci,σ is a real constant, and ckσ ,σ 6= 0.
The function κ : σ 7→ kσ is called the order of h.

We define now the skeleton of h ∈H (Γ d) to be the piece-wise linear function
λh : C ∗(Γ d)→R, λh(uσ )σ∈F = ∑σ∈F ckσ ,σ uσ , where ckσ ,σ is the main coefficient
in (5). A function h ∈H (Γ d) with order κ is called regular if κ(σ) ≥ 1, and all
faces of order κ(σ) ≥ 2 are pairwise disjoint. The second theorem states that the
rescaling limit of a function h ∈H (Γ d) is precisely its skeleton λh.

Theorem 2. Given h ∈H (Γ d) regular with order κ , and A ∈ V , resp. γ ∈ E, as
ε → 0+ the rescaled function h ◦ (Ψ κ

ε )−1 : C ∗(Γ d)→ R tends in the C∞-topology
and uniformly on compact subsets in the interior of ΠA, resp. Πγ , to the skeleton
function λh : C ∗(Γ d)→ R.

The class of Hamiltonian systems on polyhedra we are about to introduce uses
Hamiltonian functions in the space H (Γ 2d) and the class of algebraic symplec-
tic structures we now discuss. Consider the finite dimensional space Ω 2(Γ 2d) of
algebraic 2-forms

ω = ∑
(σ1,σ2)∈F×F

ωσ1,σ2

d fσ1 ∧d fσ2

fσ1 fσ2

, (6)

where Ω = (ωσ1,σ2 )(σ1,σ2)∈F×F is a skew-symmetric matrix such that ωσ1,σ2 = 0
whenever σ1 and σ2 are disjoint faces. Any algebraic form ω ∈Ω 2(Γ 2d) determines
the linear 2-form ω̂ : RF ×RF → R, ω̂(X ,Y ) = XT Ω Y , which by restriction in-
duces a piecewise linear 2-form on C ∗(Γ 2d) still denoted by ω̂ . Conversely, assume
we are given a continuous piecewise linear 2-form ω̂ on C ∗(Γ 2d). This is a fam-
ily of linear 2-forms ω̂A : ΠA×ΠA → R, one on each face ΠA with A ∈ V , such
that ω̂A = ω̂B on Πγ , for every pair of vertices A,B ∈ V connected by some edge
γ . Under such conditions the piecewise linear 2-form ω̂ is determined by a skew-
symmetric matrix Ω = (ωσ1,σ2 )(σ1,σ2)∈F×F as above, and is therefore associated to
an algebraic 2-form ω ∈Ω 2(Γ 2d). Given an algebraic 2-form ω ∈Ω 2(Γ 2d), if ω is
non-degenerate at every point interior to Γ 2d then ω is a symplectic structure on the
interior of Γ 2d , that we refer as an algebraic symplectic structure. The third theorem
says the symplectic gradient of a function in H (Γ 2d) w.r.t. an algebraic symplec-
tic structure in Ω 2(Γ 2d) is, up to time reparametrization, a regular vector field in
X (Γ 2d).

Theorem 3. Given an algebraic symplectic structure ω ∈ Ω 2(Γ 2d), and a regular
function h ∈H (Γ 2d) of order κ , the symplectic gradient Xh of h w.r.t. ω is equiva-
lent to the regular vector field X = pXh on Γ 2d with the same order νX = κ , where
p = ∏σ∈F( fσ )κ(σ)−1 ≥ 0.

Given an order function ν : F → N and ω ∈ Ω 2(Γ 2d) given by (6), we define
the reduced algebraic form
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ω
ν = ∑

(σ1,σ2)∈F×F
ω

ν
σ1,σ2

d fσ1 ∧d fσ2

fσ1 fσ2

,

where

ω
ν
σ1 σ2

=
{

ωσ1 σ2 if ν(σ1) = ν(σ2) = 1
0 otherwise .

Next theorem says the rescaling limit of an algebraic form ω ∈ Ω 2(Γ 2d) is the
piecewise linear reduced form ω̂ν .

Theorem 4. Given an order function ν : F → N, ω ∈Ω 2(Γ 2d), and A ∈V , then as
ε → 0+ the rescaled form ε2

[
(Ψ ν

ε )−1
]∗

ω tends in the C∞-topology and uniformly
on compact subsets in the interior of ΠA to the piecewise linear 2-form ω̂ν .

Corollary 1. Consider ω ∈Ω 2(Γ 2d), h∈H (Γ 2d) and X ∈X (Γ 2d) as above. The
skeleton χ of X is, up to some constant, the gradient of the skeleton λh w.r.t. ω̂ν , i.e.,
for every A ∈V and u ∈ ΠA, λh(χA) = 0 and ω̂ν(χA,u) = p(A)λh(u), where p
is the function referred in theorem 3.

Corollary 2. Under the same assumptions, if all components of λh have the same
sign (positive or negative), then every A ∈ V is a χ-saddle and almost all orbits of
χ are defined for all time.

Two important subclasses of Lotka-Volterra systems, already studied by Volterra,
are the so called dissipative and conservative systems. A Lotka-Volterra system,
with interaction matrix A, is said to be conservative if there is a positive diagonal
matrix D such that AD is skew-symmetric. On even dimensions, if conservative
system (2) is Hamiltonian with respect to the symplectic structure on R2d

+

ω =
2d

∑
i, j=1

a−1
i, j

dxi∧dx j

xi x j
,

where a−1
i, j is the coefficient of the inverse matrix A−1. In general, a conservative

Lotka-Volterra system is Hamiltonian with respect to the Poisson structure on Rd
+

{ f ,g}=
1
2

d

∑
i, j=1

ai, j xi x j

(
∂ f
∂xi

∂g
∂x j
− ∂g

∂xi

∂ f
∂x j

)
.

In any case, if q is a solution of the equation r + Aq = 0, where r and A are the
Lotka-Volterra coefficient matrices, then the Hamiltonian function h : Rd

+→ R is

h(x1, . . . ,xd) =
d

∑
i=1

(xi−qi logxi) , (7)
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which is, of course, a first integral for (2).
A Lotka-Volterra is called dissipative if there is a diagonal matrix D > 0 such

that AD ≤ 0. In this case, the system admits the global Lyapounov function (7).
In [4] we have proved a result which further motivates the study of conservative
Lotka-Volterra systems:

Theorem 5. Every stably dissipative Lotka-Volterra system, with a singularity in-
terior to Rd

+, has a global attractor where the dynamics is that of a conservative
Lotka-Volterra system.

The non-zero entries of the matrix A determine a food chain graph G(A) with
the eating relations within the ecosystem {1,2, . . . ,d}. A Lotka-Volterra system is
said to be stably dissipative iff every nearby Lotka-Volterra system with the same
food chain graph is still dissipative. Next theorem states that all linear replicator
systems (3), in the simplex ∆ 2d , which come from a conservative Lotka-Volterra
system, fall in the scope of theorem 3, i.e., they are time reparametrizations of sym-
plectic gradients of functions in H (∆ 2d) w.r.t. algebraic symplectic structures.

Theorem 6. The replicator equation on ∆ 2d corresponding to a conservative Lotka-
Volterra system on R2d given by some invertible coefficient matrix, is, up to equiva-
lence, the symplectic gradient of a regular function h ∈H (∆ 2d) of the form

h(x0, . . . ,x2d) =
2d

∑
i=1

xi

x0
−qi log

xi

x0

w.r.t. to some algebraic symplectic structure ω ∈Ω 2(∆ 2d).

5 An Application

In [4] we have analyzed the following Lotka-Volterra system, a four species food
chain which couples two independent predator-prey systems

y′1 = y1 (−1+ y2)
y′2 = y2 (1− y1 +δ y3)
y′3 = y3 (−1−δ y2 + y4)
y4 = y4 (1− y3)

(8)

where the coupling strength is controlled by the parameter δ . The coefficient matri-
ces of this system are

A =


0 1 0 0
−1 0 δ 0

0 −δ 0 1
0 0 −1 0

 and r =


−1

1
−1

1

 .
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We prove in [4] system (8) is non-integrable for any δ 6= 0. There we pay spe-
cial attention to a family of periodic orbits Γ = Γ (δ ,E) defined, for all δ , as the
intersection of the energy level {h = E} with the following invariant 2-plane

Π = {(y1,y2,y3,y4) ∈ R4
+ : y1 = (1+δ )y3, y4 = (1+δ )y2 } .

There is a 3-plane containing Π , slicing transversally all energy levels in 2-spheres.
The orbit Γ splits each of these 2-spheres in two disks transversal to the flow. The
first return map, along the flow, to any of these disks is a continuous map which
determines the dynamics in that energy level. Finally, the periodic orbit Γ has rota-
tion number which tends to +∞ with the energy level E, and its character alternates
between stable (elliptic) and unstable (hyperbolic), as δ varies in (0,+∞). Further-
more, there is a sequence of small intervals of the parameter δ , where as E →+∞,
the periodic orbit Γ becomes hyperbolic with arbitrary large trace.

In [3] we pursue the analysis of this system proving that

Theorem 7. For 0 < δ < 1, the Lotka-Volterra system (8) has, in all sufficiently
large energy level {h = E }, a non-trivial invariant hyperbolic basic set of saddle
type.

To prove this theorem we consider the replicator vector field X ∈X (∆ 4) in (3),
associated with the Lotka-Volterra system (8). We denote by σi the face of ∆ 4 op-
posed to vertex i, and by γi, j the edge connecting the vertices i and j. We have
νX (σ0) = 2 and νX (σi) = 1, for i = 1,2,3,4. Let χ be the skeleton of X .

Fig. 8 The oriented graph Gχ (∆ 4) consists of the 7 edges.

We can compute the following chains for χ , where ∗ stands for the chain con-
catenation operation.

ξ 0 = (γ4,0,γ0,1) ξ 1 = (γ0,1,γ1,2,γ2,0,γ0,1)
ξ 2 = (γ0,1,γ1,2,γ2,3,γ3,4,γ4,0) ξ 3 = (γ0,1,γ1,2,γ2,0,γ0,3,γ3,4,γ4,0)
ξ 4 = (γ4,0,γ0,3,γ3,4,γ4,0)
ξ 5

n = ξ 0 ∗ (ξ 1)n ∗ξ 2 ξ 6
n = ξ 0 ∗ (ξ 1)n ∗ξ 3 (n≥ 0)
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There are exactly four families of χ-cycles which start and end with γ40 but do not
pass through this edge in between. They are {ξ 4}, {ξ 5

n : n≥ 0} and {ξ 6
n : n≥ 0}.

Whence the first return map Rχ

γ4,0 to Π40 is given by

Rχ

γ4,0(X) =


Mξ 4 X if X ∈Πξ 4

M
ξ 5

n
X if X ∈Π

ξ 5
n
, n≥ 0

M
ξ 6

n
X if X ∈Π

ξ 6
n
, n≥ 0

,

whose domain, the union of the open convex cones Πξ 4 ∪
⋃

∞
n=0 Π

ξ 5
n
∪
⋃

∞
n=0 Π

ξ 6
n
, can

be characterized as follows.

Proposition 1. The open cones Πξ 4 , Π
ξ 5

n
and Π

ξ 6
n

(n≥ 0) are defined by the follow-
ing inequalities:

1. Πξ 4 by u0 = u4 = 0, −u1 +u3 < 0, u1 > 0 and u2 > 0.
2. Π

ξ 5
n

by u0 = u4 = 0, u1 > 0, u2 > 0 and

−u1 +u3

(1+δ )(u1 +u2)
− δ

1+δ
< n <

−u1 +u3

(1+δ )(u1 +u2)
.

3. Π
ξ 6

n
by u0 = u4 = 0, u1 > 0, u2 > 0 and

−u1 +u3

(1+δ )(u1 +u2)
−1 < n <

−u1 +u3

(1+δ )(u1 +u2)
− δ

1+δ
.

A simple computation shows that

Mξ 4 =


0 0 0 0 0
0 1 0 −1 0
0 0 1 1+δ δ

1 0 0 1 1
0 0 0 0 0

 ,

M
ξ 5

n
=


0 0 0 0 0
∗ −n− n+1

δ
−n− n

δ

1
δ

0
∗ (n+1)δ nδ 0 δ

∗ 2n+2+ n+1
δ

2n+1+ n
δ
− 1

δ
1

0 0 0 0 0

 ,

and

M
ξ 6

n
=


0 0 0 0 0
∗ n+2+(n+1)δ n+1+(n+1)δ −1 0
∗ −(n+1)− (n+1)(δ +δ 2) −n− (n+1)(δ +δ 2) 1+δ δ

∗ −(n+1)δ −(n+1)δ 1 1
0 0 0 0 0
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The ’∗’ entries are not important, since we are only interested in the action of these
matrices on the 3-plane u0 = u4 = 0 spanned by the cone Πγ0,4 . Actually, the action
of these matrices on Πγ0,4 is determined by the inner 3×3 submatrices of the above
ones. By theorem 6 this system is, up to a time reparametrization, the symplectic
gradient of the following Hamiltonian

h(x0, . . . ,x4) =
x1+ x2+ x3+ x4

x0
+(1+δ ) log

x1

x0
+ logx2 + logx3 +(1+δ ) log

x4

x0

w.r.t. some algebraic symplectic structure. Whence by corollary 1, λh : C ∗(Γ d)→R
is invariant under the flow of χ . We have λh(u) = (1+δ )u1 +u2 +u3, for every u∈
Πγ0,4 . Consider now the 2-simplex ∆ 2 = {u ∈Πγ0,4 : λh(u) = 1}, which is invariant
under Rχ

γ0,4 , and denote by T : ∆ 2→ ∆ 2 the restriction of Rχ

γ0,4 to this simplex. For
each cycle ξ through γ0,4 we define ∆ξ = {u ∈ Πξ : λh(u) = 1}. Each restriction
Tξ = T |

∆ ξ is an affine map, which we can compute explicitly, as well as its domain
∆ξ and range Tξ (∆ξ ), for every cycle ξ through γ4,0. With this notation, ∆ 2 is the
disjoint union (mod 0) of the polygons

∆ξ 4 , ∆
ξ 5

0
, ∆

ξ 6
0
, ∆

ξ 5
1
, ∆

ξ 6
1
, ∆

ξ 5
2
, ∆

ξ 6
2
, · · · .

Figure 9 shows these polygons, as well as their T -images, labeled in this order.

Fig. 9 Domain and range of the return map T : ∆ 2→ ∆ 2.

We can check that the affine map Tξ : ∆ξ → ∆ 2 is

1. parabolic for ξ = ξ 4, for all 0 < δ < 1,
2. elliptic for ξ = ξ 6

n , n≥ 0, for some 0 < δ < 1,
3. hyperbolic with negative trace for ξ = ξ 5

n , n≥ 0, 0 < δ < 1.

For 0 < δ < 1 we compute the following two hyperbolic fixed points:

1. P0 =
(

1
2+3δ

, δ

2+3δ
, 1+δ

2+3δ

)
∈ ∆

ξ 5
0
, P0 = T

ξ 5
0
(P0), and

2. P1 =
(

1−δ

3+4δ−δ 2 , 2δ

3+4δ−δ 2 , 2+2δ

3+4δ−δ 2

)
∈ ∆

ξ 5
1
, P1 = T

ξ 5
1
(P1).
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We define the local invariant manifolds of these hyperbolic fixed points as fol-
lows: W s

loc(Pi) is the intersection of the line through Pi parallel to the contracting
eigenspace of Pi, w.r.t. the linear part of T

ξ 5
i
, with the polygon ∆

ξ 5
i
, while W u

loc(Pi)
is the intersection of the line through Pi parallel to the expanding eigenspace of Pi
with the image polygon T

ξ 5
i
(∆

ξ 5
i
). Using them we define the global manifolds

W s(Pi) =
⋃
n≥0

T−nW s
loc(Pi) and W u(Pi) =

⋃
n≥0

T nW u
loc(Pi) .

Then we can prove that

Proposition 2. For all δ ∈ (0,1),

W s
loc(P0)∩W u(P1) 6= /0 and W s

loc(P1)∩W u
loc(P0) 6= /0 ,

with transversal intersections.

In figure 10, the filled lines represent unstable manifolds of P0 and P1, while the
dashed lines represent stable manifolds.

Fig. 10 Heteroclinic intersections of the return map T : ∆ 2→ ∆ 2.

By proposition 2, the map T has a transversal heteroclinic cycle formed of two
heteroclinic orbits. Because these orbits accumulate on the fixed points they stay at
positive distance of the boundaries ∂∆

ξ 5
i

(i = 0,1). Using them we can construct an
invariant hyperbolic basic set of saddle type Λ ⊂ ∆

ξ 5
0
∪∆

ξ 5
1
, for the map T , still at a

positive distance of ∂∆
ξ 5

0
∪∂∆

ξ 5
1
. By theorem 1, in all sufficiently large energy level

surface the system must have a conjugate invariant hyperbolic basic set of saddle
type ΛE ⊂ {h = E }, which concludes the argument for theorem 7.
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6 Conclusions

We finish with some related questions and possible generalizations.
The analyticity assumption was mainly aesthetic, everything works fine for

smooth systems. One can also adapt the argument to work with compact manifolds
with boundary, instead of simple polyhedra. Recall that a compact manifold with
boundary, say Md of dimension d, is one which at every point is locally diffeomor-
phic to a model

(
Rk×Rd−k

+ , 0
)
, for some 0≤ k≤ d. The integer k is called the index

of Md at that point. The set of all points with index k, denoted by ∂k(Md), is exactly
the union of all interiors of k-dimensional faces of the manifold Md .

General algorithms can be developed to facilitate the analysis of a skeleton vector
field’s dynamics. In [4] we describe how to derive the skeleton vector field compo-
nents from the payoff matrix of a replicator system. Similar relations can be driven
for other Game Theory systems.

Vicinity relations of a cone domain Πξ should translate to symbolic kneading
relations of the corresponding chain, or cycle, ξ . Such a kneading theory would be
a very useful instrument of analysis.

Given a skeleton vector field, can we realize it as the edge asymptotics of some
regular vector field? This realization is important to construct examples with pres-
cribed dynamical behavior along the edges. For general regular vector fields the
answer to this problem is positive. Every regular skeleton vector field χ in C ∗(Γ d)
is the skeleton of some regular vector field X ∈X (Γ d). For conservative skele-
ton vector fields, the answer is yes locally, in a neighborhood of the 1-dimensional
skeleton of Γ 2d . If a skeleton vector field χ of C ∗(Γ d) is the symplectic gradient of
a skeleton function λ : C ∗(Γ d)→R w.r.t. a piecewise linear symplectic structure ω̂

on C ∗(Γ d) then λ is the skeleton of a function h ∈H (Γ 2d) and ω̂ is associated to
some algebraic form ω ∈ Ω 2(Γ 2d). Whence, the symplectic gradient Xh of h w.r.t.
ω is, as in theorem 3, equivalent to a regular vector field X whose skeleton will
be χ . The problem with this approach is that it’s not clear if ω is non degenerate
everywhere, i.e., if ω is a symplectic structure on the interior of Γ 2d . In this case
the gradient Xh may not be defined everywhere in Γ 2d . This raises the question of
characterizing the subset of symplectic structures in Ω 2(Γ 2d). We can avoid this
problem dealing with Poisson structures instead of symplectic ones. We believe that
a concept of ”algebraic Poisson structure” can be defined on the polyhedron Γ d , as
well as a class of Hamiltonian systems with Hamiltonians in H (Γ d) w.r.t. such al-
gebraic Poisson structures, which up to equivalence give rise to regular vector fields
in X (Γ d). Then theorems 3, 4 and 6 should generalize to arbitrary dimensions.

Skeleton vector field’s bifurcations is another interesting subject of study. These
bifurcations are caused by changes in the geometry and combinatorics of the domain
and image partitions of the return map Rχ

γ : Πγ → Πγ , respectively {Πξ }ξ and
{Rχ

γ (Πξ )}ξ where ξ varies on the set of all χ-cycles which start and end with
γ but do not pass through γ in between. Considering skeletons of regular vector
fields in X (Γ d), it should be possible to relate these skeleton bifurcations with the
bifurcations of the underlying vector field.
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In theorem 7, for simplicity, we have assumed δ ∈ (0,1), but we believe that the
same holds for all δ > 0. The reason we made such restriction is that for δ > 1 the
dynamics is harder to analyze due to the presence of the elliptic fixed point P0 in the
main branch T

ξ 5
0

: ∆
ξ 5

0
→ ∆ 2.

Fig. 11 An elliptic fixed point P0 at δ = 3.7

Figure 11 shows ten different orbits, with a couple of hundred iterates each, for
a particular parameter. The shaded regions represent the polygon ∆

ξ 5
0
, on the left,

and its image T
ξ 5

0
(∆

ξ 5
0
), on the right. The invariant curves break up as they touch the

boundary of their domains. Outside these curves, the dynamics seems to be chaotic,
which indicates the presence of hyperbolicity. Concerning the parameter interval
(0,1), we pose some more questions. Are there elliptic periodic points for param-
eters 0 < δ < 1? Is this true for many parameters? The Newhouse phenomenon,
of persistent homoclinic tangencies associated with large thickness hyperbolic sets,
is a mechanism for the appearance of many elliptic structures in the dynamics of
the underlying Hamiltonian vector field. See for instance [5]. As δ → 0+ can one
find large uniformly hyperbolic basic sets with very large thickness? Is this also a
mechanism for the creation of many elliptic periodic points of the skeleton vector
field? It would be interesting to understand, for conservative skeleton vector fields,
the mechanism for the creation of elliptic structures, and then relate it with the cor-
responding homoclinic bifurcation mechanism of the underlying dynamics of vector
fields in X (Γ 2d).
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