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1096 Lisboa Codex, Portugal
(e-mail: pduarte@math.ist.utl.pt)

Abstract: We prove a conservative analogue of a theorem of Newhouse on the
abundance of wild hyperbolic sets: Arbitrarily close to some area preserving map
with a homoclinic tangency there are ”wild” hyperbolic sets with persistence of ho-
moclinic tangencies. Furthermore, for a residual subset of nearby systems these
basic sets are accumulated by periodic elliptic islands.

1. Introduction

In 1969, see [AS-70], Abraham and Smale introduced, in a 4 dimensional model,
the concept of persistent homoclinic tangencies in order to disprove the density of
Ω-stable diffeomorphisms. Little after that S. Newhouse, see [N-70], in a much more
elaborated construction, gave examples of open sets of surface diffeomorphisms with
the same phenomenon. He uses the concept of thickness of a Cantor set to measure
the stable and unstable Cantor like foliations of a horse-shoe. Then he shows that
persistent homoclinic tangencies occur near every two dimensional diffeomorphism
with a ”thick” horse-shoe which has already one homoclinic tangency. Afterwards,
in [N-74], Newhouse proved that, for dissipative models, these open sets with persis-
tent homoclinic tangencies always contain residual subsets of diffeomorphisms with
infinitely many coexisting sinks. Finally, in [N-79], he showed the abundance of the
persistence of homoclinic tangencies phenomenon: Near every dissipative surface
diffeomorphism with a homoclinic tangency there are open sets of maps with per-
sistent homoclinic tangencies. In particular, in these open sets of diffeomorphisms,
there are residual subsets with infinitely many sinks. The basic idea for this result
is to show that ”thick” horse-shoes appear at every one parameter unfolding of a
quadratic homoclinic tangency. A proof of this theorem can be found in [PT-93],
where a nice rescaling technique is used to show that for carefully chosen param-
eters there are high iterates of the initial map which, in some small regions near
the homoclinic tangency and in suitable coordinates, are arbitrarily close to a map
of the quadratic family of endomorphisms, fa(x, y) = (y, a − y2) . For the special
parameter a = 2 the map f2 has an invariant Cantor set, conjugated to the full
Bernoulli shift in two symbols, with gaps of zero length, therefore an ”infinitely
thick” Cantor set. It follows that small invertible perturbations of f2 must also
exhibit hyperbolic basic sets with very large thickness. Notice that since the limit
mapping fa is infinitely dissipative, this argument uses disspativeness in a cru-
cial way. This theorem has been generalised to higher dimensions, see [Rom-92]
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and [PV-94]. For the area preserving case and for a long time it has been conjec-
tured by J. Palis that the same theorem should hold with elliptic islands playing
the role of sinks. Such a generalisation is not obvious at all. Although the rescaling
technique has been generalised in [MR1-97] to the conservative case, where the limit
behaviour at the unfolding of a homoclinic tangency is given by the conservative
Henón family, Ha(x, y) = (y,−x + a − y2) , the major difficulty is that no special
parameter, like a = 2 , exists where the family Ha exhibits some distinctly ”thick”
horse-shoe.

In the present work we prove the conjecture of J. Palis working the Henón model
at its first bifurcation, a saddle-centre bifurcation where a hyperbolic saddle and
an elliptic centre are created. The crucial step for the proof was established in a
previous work [D-98]. Recently we were told by D. Turaev of his work [T-98] where
he proves the same result using a very different mechanism. We also mention the
work of L. Mora and N. Romero in this direction [MR2-97] where the authors
show that every area preserving diffeomorphism having one homoclinic tangency
is in the boundary of an open set where maps with homoclinic tangencies are
dense. During the years 94 and 95, the author was supported by JNICT grant
PRAXIS/2/2.1/MAT/19/94. Since 1996 he was supported in part by JNICT grant
PBIC/C/MAT/2140/95 and also by FCT and PRAXIS XXI through the Research
Units Pluriannual Funding Program and Project 2/2.1/MAT/199/94.

2. Reference Definitions

Let P be a periodic hyperbolic point, with period n , of a diffeomorphism f ∈
Diff r (M) . A tangency between the stable and unstable manifolds, W s(P, fn)
and Wu(P, fn) of P , is called a homoclinic tangency of P . If Λ is a hyperbolic
invariant set of f ∈ Diff r (M) , a tangency between stable and unstable leaves
W s(x, f) , Wu(y, f) of two points x, y ∈ Λ will be called a homoclinic tangency
of Λ . Given a basic set Λ of a map f , there is always a compact neighbourhood U
of Λ and a neighbourhood U of f in Diff r (M) such that Λ =

∩
n∈Z f

−n(U) and
for every g ∈ U , Λg =

∩
n∈Z g

−n(U) is also a basic set, topologically conjugated

to Λ . From now on M2 will always denote a compact two dimensional manifold
and ω a non-degenerated 2-form on M2 , in other words a symplectic form. We
will consider only smooth, that is of class C∞ , symplectic diffeomorphisms. A
map f :M2 →M2 is called symplectic if f⋆ω = ω , which means that f is area
and orientation preserving. We denote by Diff∞ (

M2, ω
)
the space of all smooth

symplectic diffeomorphisms and consider in it the usual weak C∞ topology, of
uniform convergence of derivatives on compact sets. The proof of next proposition
is quite standard and will be omitted. See [PT-93], or [D-94] for a conservative
argument.

Proposition 2.1. Let Λ be a basic set of a symplectic map f ∈ Diff∞ (
M2, ω

)
,

U ⊆ M2 be a neighbourhood of Λ and U ⊆ Diff∞ (
M2, ω

)
a neighbourhood of f

such that for every g ∈ U Λg =
∩
n∈Z g

−n(U) is a basic set conjugated to Λ . If
for every g ∈ U the basic set Λg has some homoclinic tangency then

(1) Given a fixed point P ∈ Λ of f there is a dense subset D ⊆ U , such that
for every g ∈ D the unique fixed point Pg ∈ Λg corresponding to P has
some homoclinic tangency.
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(2) there is a residual subset R ⊆ U , i.e. a countable intersection of open
subsets dense in U , such that for every g ∈ R the basic set Λg is contained
in the closure of all generic elliptic periodic points of g .

Definition 2.1. Given f ∈ Diff∞ (M) and an invariant basic set Λ of f we
say that (f,Λ) has persistent homoclinic tangencies if there are neighbourhoods
U ⊆ Diff∞ (M) of f and U ⊆ M of Λ such that for every g ∈ U there is some
homoclinic tangency of Λg =

∩
n∈Z g

−n(U) .

Definition 2.2. A periodic point P of f ∈ Diff∞ (
M2, ω

)
is said to be a generic

elliptic point if both eigenvalues of DfnP , where n is the minimal period, sit in the

unit circle without resonances of order ≤ 3, that is λ, λ ∈ SS1 with λ2 ̸= 1 and
λ3 ̸= 1 , and the first coefficient of f ’s Birkhoff normal form at point P is nonzero.

This implies that KAM theory applies and P is a full density point of ”Cantor
set” of invariant curves around P .

Definition 2.3. Given a symplectic diffeomorphism f ∈ Diff r
(
M2, ω

)
, a periodic

point fn(P ) = P , with minimal period n , is called extremal if:

(1) Spec (DfnP ) = {1}
(2) dim Ker (DfnP − Id) = 1
(3) D2fnP (v, v) /∈ Ker (DfnP − Id) for any v ̸= 0 such that DfnP v = v .

Item 3 should be read in coordinates. It is not difficult to check this is an intrinsic
condition. Let now f : ]a0 − δ0, a0 + δ0[×M2→M2 , fa( . ) = f(a, . ) , be a smooth
family of symplectic diffeomorphisms.

Definition 2.4. We say that (a0, P0) is a generic saddle-centre bifurcation of the
family fa or, in other words that fa unfolds generically at (a0, P0) a saddle-centre
bifurcation, when:

(1) P0 is an extremal fixed point of fna0
(2) ∂

∂a (f
n
a (P ))a=a0 /∈ Ker

(
Dfna0(P )− Id

)
The name ”saddle centre” is justified by the following proposition. See [Mey-70].

Proposition 2.2. There are smooth curves a : [−δ, δ]→R and P : [−δ, δ]→M2

such that

(1) a(0) = a0 , a
′(0) = 0 and a′′(0) ̸= 0

(2) P (0) = P0 and P ′(0) ∈ Ker
(
Dfna0(P )− Id

)
− {0}

(3) fa(t)(P (t)) = P (t)

(4) if τ(t) = trace
(
Dfa(t)P (t)

)
then τ(0) = 2 and τ ′(0) ̸= 0 .

By this proposition there is one side of a0 in the parameter line where for each a
we can find two fixed points P (t−) and P (t+) given by the solutions t− < 0 < t+
of the equation a(t) = a . By item 4. one is hyperbolic (saddle) and the other is
elliptic (centre).
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Figure 1. Hyperbolic and elliptic fixed point created at a saddle centre

3. Renormalization at homoclinic tangencies

Consider a one-parameter family of surface diffeomorphisms φµ :M
2→M2 of

class C∞, generically unfolding a quadratic homoclinic tangency at point Q and
at parameter µ = 0 . Renormalization near the homoclinic tangency (0, Q) means
the following: For every large n ≥ 0 one finds a small box near (0, Q) ∈ R×M ,
shrinking to this point as n→∞ , which is mapped by (µ, x) 7→

(
µ, φnµ(x)

)
near

itself. Then in this tiny box one computes adequate rescaling changes in phase and
parameter coordinates,

R3 ∋ (a, x, y) 7→ (µn(a),Ψn,a(x, y)) ∈ R×M

such that in these new coordinates the map φnµ ,

i.e. Ψ−1
n,a ◦ φnµn(a)

◦Ψn,a ,

converges to a normal form fa(x, y) in the C∞ topology. Thus any feature or
property of the dynamics of normal form fa , which is stable under small perturba-
tions, will also be present in the dynamics of φµ for parameter values very close to
parameter µ = 0. For dissipative systems, in fact it is enough to assume the saddle
P associated to the tangency is dissipative |detDφµ(P )| < 1 , the above scheme
works having as limit the quadratic family of endomorphisms,

fa(x, y) = (y, a− y2).

Of course area expansive saddles |detDφµ(P )| > 1 , reduce to dissipative ones
considering φ−1

µ . In the conservative case, that is if all φµ preserve the same area
form, it turns out that the same scheme works having as limit the conservative
Henón family

Ha(x, y) = (y,−x+ a− y2).

This was established by L. Mora and N. Romero, see [MR1-97].

Theorem A
Let {φµ} ⊆ Diff∞ (

M2, ω
)

be a smooth family of area preserving maps unfolding
generically a quadratic homoclinic tangency at the point Q0 ∈ M and parameter
µ = 0 . Then there are, for all large enough n ∈ N , reparametrizations µ = µn(a)
of the parameter variable µ and a-dependent coordinates

(x, y) 7→ Q = Ψn , a(x, y) ∈M2
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such that

(1) for each compact K , in the (a, x, y)-space, the images of K under the
maps

(a, x, y) 7→ (µn(a) , Ψn , a(x, y))

converge to (0, Q0) ∈ R×M2 , as n→ ∞ ,
(2) the domains of the maps

(a, x, y) 7→
(
a , Ψ−1

n , a ◦ φ n
µn(a)

◦Ψn , a (x, y)
)

converge to R3 as n → ∞ and the maps converge in the C∞ topology to
the conservative Henón map

(a, x, y) 7→
(
y , −x+ a− y2

)
For the Henón family we can easily compute that a pair of fixed points is created

through the unfolding of a saddle centre bifurcation at the parameter a = −1 .
An elliptic fixed point Qea =

(
−1 +

√
1 + a , −1 +

√
1 + a

)
and a hyperbolic one

Qha =
(
−1−

√
1 + a , −1−

√
1 + a

)
. Then as a runs between −1 and 3 , the

eigenvalues of Qea go through the unit circle from 1 to −1 and at parameter a =
3 the point Qea goes through a period doubling bifurcation becoming thereafter
hyperbolic. In [MR1-97] the authors compute the first coefficient of the Birkhoff
normal form at point Qea and show that for almost all parameters a ∈]− 1, 3[, Qea
is a generic elliptic point. Thus since generic elliptic points are persistent under
conservative perturbations they derive the following conclusion.

Theorem B
Let φµ :M

2 →M2 be a family of area preserving diffeomorphisms of class C∞,
Pµ be a continuous curve of periodic hyperbolic saddles of φµ with period k, and
assume W s(Pµ) and Wu(Pµ) generically unfold a quadratic homoclinic tangency
at µ = 0 . Then there is a sequence (µn, Qn) ∈ R ×M , indexed in n ≥ n0 for
some n0 ∈ N, such that:

• (µn, Qn) converges to (0, P ), as n→ ∞,
• Qn is a generic elliptic periodic point of φµn with period kn .

4. Statement of Results

In the present work the following theorems will be established:

Theorem 1. Let f ∈ Diff∞ (
M2, ω

)
have an extremal fixed point P . Then there

is a sequence of basic sets (fn,Λn) such that:

(1) fn converges to f in Diff∞ (
M2, ω

)
.

(2) (fn,Λn) has persistent homoclinic tangencies.
(3) Λn converges to P in the Hausdorff metric.

Theorem 2. Let f ∈ Diff∞ (
M2, ω

)
have an orbit O of homoclinic tangencies

associated to some hyperbolic fixed point P . Then there is a sequence of basic sets
(fn,Λn) such that:

(1) fn converges to f in Diff∞ (
M2, ω

)
.

(2) (fn,Λn) has persistent homoclinic tangencies.
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(3) Λn converges to O in the Hausdorff metric.
(4) There is a sequence of fixed points Pn ∈ Λn converging to P .

Theorem 3. Let f ∈ Diff∞ (
M2, ω

)
have an orbit O of homoclinic tangen-

cies associated to some hyperbolic fixed point P . Then there is an open set U ⊆
Diff∞ (

M2, ω
)
, with f ∈ U , and a family of g invarinat basic sets {Λg : g ∈ U}

such that:

(1) Λg contains the unique fixed point Pg near P , and
(2) Λg has a homoclinic tangency for every g ∈ U .

Furthermore there are subsets D , R ⊆ U such that

(1) D is dense in U and for every g ∈ D there is some homoclinic tangency
of the fixed point Pg .

(2) R is residual in U , and for every g ∈ R , Λg is accumulated by g ’s
generic elliptic periodic points.

In the next section we prove some abstract perturbation lemmas. Then in sec-
tion 6 we state and prove a theorem which implies theorem 1. Finally in section 7 we
prove theorem 2 from theorem 1 which in turn, and together with proposition 2.1,
implies easily theorem 3.

As a final comment, a ”one parameter” version of theorem 3 could be proved
using, instead of theorem 1 in [D-98], the parametric version of this theorem stated
in section 2, just after remark 2.4, of the cited work, if, and this is a big ”if”,
one could estimate and control the geometry of the splitting of separatrices at the
(first) bifurcation (a, x, y) = (−1,−1,−1) of the conservative Henón family Ha .

More precisely, if H̃δ is the variation of the identity, c.f. next section, obtained
rescaling as in section 6 the family Ha at (a, x, y) = (−1,−1,−1) , then it would be

enough to know that the splitting of separatrices of the fixed point (0, 0) = H̃δ(0, 0)
is described by some Melnikov function of the form ψ(δ)µ(t) , where ψ(δ) has
nonzero germ at δ = 0 and µ(t) is some periodic Morse function.

5. Perturbations of the identity

Given a curve δ 7→ fδ ∈ G in some finite dimensional Lie Group which goes
through the unit element, f0 = 1 ∈ G , we can always find an associated curve
δ 7→ Fδ ∈ G , in the Lie algebra of G , such that fδ = exp (δ Fδ) for all sufficiently
small δ . In this section we prove an abstract perturbation lemma for smooth one
parameter families of diffeomorphisms unfolding the identity, which is an infinite
dimensional analogue of the fact just stated. Let G be an infinite dimensional Lie
group of smooth diffeomorphisms f : Rp → Rp and G = TIdG be the associated
Lie algebra. The flow of a vector field in G is a one parameter subgroup of G . A
smooth map f :R×Rp→Rp , f(δ, x) = fδ(x) , such that fδ ∈ G for all δ , can be
regarded as a smooth parameterized curve in G . If f0 = Id we call f a variation
of the identity in G .
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Proposition 5.1. Given a smooth variation of the identity fδ in G there is a
smooth family Xδ(x) = X(δ, x) , of vector fields in G , such that the family φδ =
ϕ δ
Xδ

of time one maps of δ Xδ has the same infinite jet at δ = 0 as the family fδ ,
i.e. for all n ∈ N and x ∈ Rp ,

∂nf

∂δn
(0, x) =

∂nφ

∂δn
(0, x) .

Proof. For each n ∈ N write Fn(x) = dnf
dδn (0, x) . Then we have the following

formal Taylor development in δ

fδ(x) ∼
∞∑
n=0

Fn(x)

n!
δn

Now, consider a formal vector field

Xδ(x) ∼
∞∑
n=0

Xn(x)

n!
δn

in the unknowns X0, X1, · · · to be found in G . Let ϕ tXδ
be the formal flow of Xδ .

Set t = δ and compute the formal Taylor development in δ ,

ϕ δXδ
∼

∞∑
n=0

Yn
n!
δn .

Each coefficient Yn in this formal series represents a smooth vector field in Rp
which can be explicitly calculated in terms of the unknowns Xi

Yn = Yn(X0, · · · , Xn−1)

Our task is then to show that the (infinite) system of equations

(1) Yn(X0, X1, · · · , Xn−1) = Fn , n = 0, 1, · · ·

has a unique solution (X0, X1, · · · ) ∈ GN . We start looking for a solution of 1. in
the Lie algebra X of all smooth vector fields in Rp . The existence and uniqueness
of a solution in XN will follow because Yn depends on Xn−1 in the following
invertible way:

Yn(X0, X1, · · · , Xn−1) = nXn−1 + Zn(X0, X1, · · · , Xn−2)

which shows that the sequence of unknowns can be recursively determined from
system of equations 1. To compute the dependence of Yn in the Xi variables we
deduce the formal Taylor expansion in time of a smooth vector field’s flow. Let ϕt

be the flow of a vector field X ∈ X . Given any other vector field Y ∈ X we have

d

dt
(Y ◦ ϕt) = DXY ◦ ϕt

and since d
dtϕ

t = X ◦ ϕt we obtain by induction

dn+1

dtn+1
ϕt =

n︷ ︸︸ ︷
DX DX · · ·DX X ◦ ϕt
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which shows that ϕt has the following power series expansion in t

ϕt ∼ Id+ tX +

∞∑
n=2

D n−1
X X

n!
tn

Making the substitutions t = δ , X = Xδ =
∑∞
r=0

Xr

r! δ
r , and expanding, we obtain

ϕ δ
Xδ

∼ Id+

∞∑
n=1

Xn−1

(n− 1)!
δn +

+

∞∑
k=2

∞∑
r1=0

· · ·
∞∑
rk=0

DXr1
· · ·DXrk−1

Xrk

r1! · · · rk! k!
δr1+···+rk+k

∼ Id+

∞∑
n=1

nXn−1

n!
δn +

∞∑
n=1

Zn
n!

δn ∼
∞∑
n=0

Yn
n!
δn

where Y0 = Id , Yn = nXn−1 + Zn and

Zn =

n∑
k=2

∑
r1+···+rk=n−k

n!

r1! · · · rk! k!
DXr1

· · ·DXrk−1
Xrk

depends only on X0, X1, · · · , Xn−2 .

Let us now prove by induction that Xn ∈ G for all n ∈ N . Of course X0 =
F1 = df

dδ (0, ·) ∈ Tf0G = G . Now assume that X0, X1, · · · , Xn−1 ∈ G and define

ψδ to be the time-δ map of the flow of the vector field Xn−1, δ =
∑n−1
i=0

Xi

i! δ
i ∈ G .

The curve δ 7→ ψδ is a variation of the identity in G tangent to δ 7→ fδ at the
identity, and having order of contact ≥ n+ 1

dif

dδi
(0, x) = Fi(x) = Yi(X0, · · · , Xi−1)(x) =

diψ

dδi
(0, x) i = 0, 1, · · · , n .

Thus the difference between the derivatives of order n+ 1 at δ = 0 is tangent to
G at the identity:

dn+1f

dδn+1
(0, x)− dn+1ψ

dδn+1
(0, x) ∈ TIdG = G .

This is a well known fact from Differential Geometry. But since

dn+1f

dδn+1
(0, ·)− dn+1ψ

dδn+1
(0, ·) = Fn+1 − Yn+1(X0, · · · , Xn−1, 0) =

= Fn+1 − Zn+1(X0, · · · , Xn−1)

we get

Xn =
1

n+ 1
(Fn+1 − Zn+1(X0, · · · , Xn−1)) ∈ G .

Now let, for each n ∈ N , βn :R→R be a smooth function such that βn(δ) = 1
for all δ ∈

(
− 1
n ,

1
n

)
and βn(δ) = 0 when δ /∈

(
− 2
n ,

2
n

)
. Consider the series

Xδ(x) =

∞∑
n=0

βn(δ) δ
n Xn(x)

n!

For δ = 0 every summand above is zero and so the series adds up to X0(x) . On
the other hand in a neighbourhood of δ ̸= 0 not containing 0 there is only a finite
number of nonzero terms in this series. Xδ(x) is thus a finite linear combination
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of vector fields in G , and therefore belongs to G . Of course this smooth family
admits the following Taylor expansion at δ = 0 ,

Xδ(x) ∼
∞∑
n=0

δn
Xn(x)

n!
.

Thus, denoting by ϕ t
Xδ

the flow of Xδ ,

ϕ δ
Xδ

(x) ∼
∞∑
n=0

δn
Fn(x)

n!
∼ fδ(x)

which proves the proposition. �

For symplectic maps we have,

Proposition 5.2. Let Xδ :R2 →R2 , δ ∈ R , be a smooth family of Hamiltonian
vector fields with a saddle connection γδ associated to some hyperbolic fixed point
family Pδ . Denote by φδ :R2→R2 the time δ flow of Xδ . Then there is a smooth
family of area preserving diffeomorphisms fδ,µ :R2→R2 such that

(1) fδ,0 = φδ . Therefore fδ,µ and Xδ satisfy the assumptions H1 and H2
in [D-98].

(2) The Melnikov function of the family fδ,µ , see definition 2.1 of [D-98], has
the form Mδ(t) = ψ(δ) sin(t) for some analytic function ψ(δ) which has
at most a countable number of zeros accumulating at δ = 0 .

(3) There is some compact set K ⊆ R2 such that for all δ , µ and (x, y) /∈ K ,
fδ,µ(x, y) = φδ(x, y) .

Proof. Let qδ(t) be a smooth family of solutions, q ′
δ(t) = Xδ (qδ(t)) , parametrizing

the homoclinic connection γδ . Chose smooth symplectic coordinates Ψδ :U ⊆ R2→
]− 1, 1[2 such that t ∈] − 1, 1[ if and only if qδ(t) ∈ U and for all t ∈] − 1, 1[ ,
Ψδ (qδ(t)) = (t, 0) . Take now any even nonzero smooth function β :R→R , with

compact support contained in ]−1, 1[ . The vector field Ỹδ(x, y) = (β′(y) , −β′(x))
is Hamiltonian and so is the pull-back

Yδ(x, y) =

{
DΨδ(x, y)

−1Ỹδ (Ψδ(x, y)) if (x, y) ∈ U

0 if (x, y) /∈ U

which is a smooth vector field with compact support contained in U .

Consider now the rapidly oscillatory perturbation of Xδ ,

dx

dt
= Xδ(x) + µ cos

(
t

δ

)
Yδ(x) .

The slowing change in the time variable τ = t
δ takes this equation into,

dx

dτ
= δ (Xδ(x) + µ cos (τ) Yδ(x) ) ,

which, in turn, is equivalent to the autonomous system{
x′ = δ (Xδ(x) + µ cos (θ) Yδ(x) )

θ′ = 1
.

Because this system is periodic in the variable θ it induces a flow in the cylinder
ϕ t
δ,µ : R2×(R/2πZ)→ R2×(R/2πZ) . We define fδ,µ to be the return map ϕ 2π

δ,µ
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to the cross-section R2 = R2 × {0} . Let us compute the Melnikov function of the
family fδ,µ . Notice q̃δ(t) = qδ(δ t) is a family of solutions of δ Xδ parametrizing
the homoclinic connection γδ . Using now a well known formula for the Melnikov
function of a periodically perturbed system, see for instance [GH-83], we have

Mδ(τ0) =

∫ +∞

−∞
δ2 cos(τ) Xδ (q̃δ(τ − τ0)) ∧ Yδ (q̃δ(τ − τ0)) dτ

=

∫ +∞

−∞
δ cos(τ0 +

t

δ
) Xδ (qδ(t)) ∧ Yδ (qδ(t))︸ ︷︷ ︸

=−β′(t)

dt

= −
∫ +∞

−∞
δ β′(t) cos(τ0 +

t

δ
) dt

= −δ cos(τ0)

∫ +∞

−∞
β′(t) cos(

t

δ
) dt︸ ︷︷ ︸

=0

+ δ sin(τ0)

∫ +∞

−∞
β′(t) sin(

t

δ
) dt

= ψ(δ) sin(τ0)

where

ψ(δ) = δ

∫ +∞

−∞
β′(t) sin(

t

δ
) dt .

Remark that since β′(t) is an odd function
∫ +∞
−∞ β′(t) cos( tδ ) dt = 0 . Remark also

that, since Ψδ is symplectic,

Xδ (qδ(t)) ∧ Yδ (qδ(t)) = DΨδ(qδ(t)) ·
dqδ
dt

(t) ∧ Ỹδ(t, 0)

= det

(
1 β′(0)
0 β′(t)

)
= −β′(t)

for all t ∈]− 1, 1[ . For t /∈]− 1, 1[ this wedge product is zero since Yδ(qδ(t)) = 0 .
The function ψ(δ) is analytic in C − {0} since β′(t) has compact support. It

is not identically zero because this would imply that the nonzero function β′(t)
would have zero Fourier Transform. Therefore it has at most a countable number of
(real) zeros accumulating at δ = 0 . Finally item 3. is clear since the perturbation
term µ cos(τ)Yδ(x) vanishes outside some compact subset of U . �

Proposition 5.3. Let X0(x, y) be a Hamiltonian vector field with a saddle connec-
tion γ0 associated to some hyperbolic fixed point P0 and gδ :R2→R2 be a smooth
variation of the identity in the group of symplectic diffeomorphisms of

(
R2, ω

)
,

ω = dx ∧ dy , such that gδ = Id+ δ X0 + · · · .
Given a compact set K ⊆ R2 and integers r, p ∈ N , there is, for all small

enough δ ̸= 0 , a map fδ ∈ Diff∞ (
R2, ω

)
with a basic set Λδ , containing the

unique fixed point Pδ near P0 , such that:

(1) (fδ,Λδ) has persistent homoclinic tangencies.

(2) ∥fδ − gδ∥K,Cr = max
1≤i≤r

max
x∈K

∥∥Difδ(x)−Digδ(x)
∥∥ ≤ δp .

Proof. By proposition 5.1 there is a smooth family of Hamiltonian vector fields
Xδ : R2 → R2 such that the family φδ of time one maps of δ Xδ has the same
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infinite jet at δ = 0 as gδ . Therefore, if δ is small enough, we can assume that
∥φδ − gδ∥K,Cr ≤ δp+1 .

To the family φδ we can associate, by proposition 5.2, a two parameter family
fδ,µ satisfying the assumptions H1 and H2 of [D-98]. Then, as we have proved
in [D-98], if δ is small enough, and ψ(δ) ̸= 0 , there are parameters µ arbitrarily
close to 0 such that fδ,µ has a basic set Λδ,µ with very large left-right thickness
and such that some positive tangency occurs between stable and unstable leaves of
a fixed point in Λδ,µ . Furthermore this tangency unfolds generically with µ . The
same argument of proposition 3.2 in [D-98] proves that unfolding these tangencies
we get pairs (fδ,µ,Λδ,µ) with persistent homoclinic tangencies. Taking µ small
enough we get ∥fδ,µ − φδ∥K,Cr ≤ δp+1 . Thus

∥g − gδ∥K,Cr ≤ ∥g − φδ∥K,Cr + ∥φδ − gδ∥K,Cr ≤ 2 δp+1 < δp .

If ψ(δ) = 0 we take some pair (fδ+h, µ , Λδ+h, µ) having persistent homoclinic
tangencies with ψ(δ + h) ̸= 0 and h small enough.

�

6. Perturbations near conservative bifurcations

Let {φµ : R2 → R2} be a smooth family of area preserving maps unfolding a
generic saddle centre bifurcation at (µ, x, y) = (0, 0, 0) . Then after some linear
change of (µ, x, y)-coordinates, non necessarily symplectic, the family φµ takes
the following form

(2) φµ(x, y) =
(
x+ y + g1(µ, x, y) , y + µ− x2 + g2(µ, x, y)

)
where g1(µ, x, y) and g2(µ, x, y) are smooth functions such that

g1(0, 0, 0) =
∂g1
∂x

(0, 0, 0) =
∂g1
∂y

(0, 0, 0) = 0(3)

g2(0, 0, 0) =
∂g2
∂x

(0, 0, 0) =
∂g2
∂y

(0, 0, 0) =
∂g2
∂µ

(0, 0, 0) =
∂2g2
∂x2

(0, 0, 0) = 0

Proposition 6.1. Given a smooth family of area preserving maps {φµ :R2→R2}
unfolding a generic saddle centre bifurcation at (µ, x, y) = (0, 0, 0) there is a smooth
rescaling in parameter-phase coordinates

Ψ:R3→R3 (µ, x, y) = Ψ(δ, u, v) = (µ(δ), ψδ(u, v))

such that

(1) µ(δ) = c δ4 +O(δ6) , with c ̸= 0 ,
(2) for each δ ̸= 0 the map ψδ is affine,
(3) the rescaled family φ̃δ = ψ−1

δ ◦ φµ(δ) ◦ ψδ is a smooth variation of the
identity, formed by area preserving maps,

φ̃δ = Id+ δ X0 + · · ·
with X0(u, v) = (v, 2u+ u2) ,

(4) for δ ̸= 0 , φ̃δ(0, 0) = (0, 0) is a hyperbolic fixed point of φ̃δ .
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Proof. We may assume the family φµ is already in the form 2. Let µ(x) and y(x)
be defined implicitly by the system of equations

φµ(x, y) = (x, y) ⇔
{
y + g1(µ, x, y) = 0
x+ µ− x2 + g2(µ, x, y) = 0

Differentiating these relations at x = 0 , we get

(∗) µ(0) = µ′(0) = y(0) = y′(0) = 0 and µ′′(0) = 2 .

Then we define µ(δ) = µ(δ2) and

ψδ

(
u
v

)
=

(
δ2

y(δ2)

)
+

(
δ2 0
0 δ3

)(
u
v

)
One can easily compute for the rescaled map ψ−1

δ ◦ φµ(δ) ◦ ψδ (u, v) the following
expression(

y(δ2) + δ2 u+ δ3 v + g̃1
δ2

,
δ3 v + µ(δ2)− δ4 (1 + u)2 + g̃2

δ3

)
=

=

(
u+ δ v +

y(δ2)

δ2
+
g̃1
δ2

, v + δ (2u+ u2) +
µ(δ2)

δ3
− δ +

g̃2
δ3

)
=

= (u, v) + δ X0(u, v) +O(δ2)

where
y(δ2)

δ2
= O(δ2) and

µ(δ2)

δ3
− δ = O(δ3) ,

because of (∗), and

g̃1 = g1
(
µ(δ2) , δ2 (1 + u) , δ3 (O(δ) + v)

)
= O(δ4) ,

g̃2 = g2
(
µ(δ2) , δ2 (1 + u) , δ3 (O(δ) + v)

)
= O(δ5) .

Notice that, in general, given a smooth function g(µ, x, y) , we have

g
(
µ(δ2) , δ2 (1 + u) , δ3 (O(δ) + v)

)
= δpG(δ, u, v) ,

for some G(δ, u, v) smooth and

p = min

{
4α1 + 2α2 + 3α3 :

∂α1+α2+α3g

∂µα1xα2yα3
(0, 0, 0) ̸= 0

}
.

Finally to prove item 4. just remark that, for each δ , ψδ(0, 0) = (µ(δ2), δ2, y(δ2))
is a fixed point of φµ(δ) . It is hyperbolic since (0, 0) is a hyperbolic fixed point of
X0 . �

Theorem 1 follows easily from the next one.

Theorem 4. Let {φµ :R2→R2}µ be a smooth family of area preserving maps un-
folding a generic saddle-centre bifurcation at (µ, x, y) = (0, 0, 0) . Given a compact
set K ⊆ R2 and positive integers r, p ∈ N there is, for all small enough µ ̸= 0 , a
map fµ ∈ Diff∞ (

R2, ω
)
and a basic set Λµ , containing the unique fixed point Pµ

near (0, 0) , such that:

(1) (fµ,Λµ) has persistent homoclinic tangencies.

(2) ∥fµ − φµ∥K,Cr = max
1≤i≤r

max
x∈K

∥∥Difµ(x)−Diφµ(x)
∥∥ ≤ µp .
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Proof. Let φ̃δ = Id + δ X0 + · · · = ψ−1
δ ◦ φµ(δ) ◦ ψδ be the variation of the

identity obtained rescaling the family φµ as in proposition 6.1. Then given in-
tegers r, p0 ∈ N , by proposition 5.3 there is a map g̃δ ∈ Diff∞ (

R2, ω
)

and a

basic set Λ̃δ of g̃δ such that
(
g̃δ, Λ̃δ

)
has persistent homoclinic tangencies and

∥g̃δ − φ̃δ∥B(10), Cr ≤ δp0 . Consider the mapping Φ obtained from lemma 6.1 with

R = 5 and define f̃δ = Φ
(
g̃δ ◦ φ̃−1

δ

)
◦ φ̃δ . Now, given p1 ∈ N , since Φ is continu-

ous, taking p0 large enough we will have
∥∥∥f̃δ − φ̃δ

∥∥∥
B(10), Cr

< δp1 . We also have

f̃δ = φ̃δ outside B(10) and f̃δ = g̃δ inside B(5) . Notice that B(5) is sufficiently

large to contain Λ̃δ and all the local stable and unstable manifolds of Λ̃δ with
persistent tangencies. Just observe that B(5) contains the homoclinic connection

of X0(u, v) =
(
v, 2u+ u2

)
. Therefore the pair

(
f̃δ, Λ̃δ

)
also has persistent homo-

clinic tangencies. We use the affine rescaling operator Rδ : h̃ 7→ ψδ ◦ h̃ ◦ ψ−1
δ , to

define fµ = Rδ

(
f̃δ

)
, where µ = µ(δ) . Then fµ = φµ outside ψδ (B(10)) , because

φµ = Rδ (φ̃δ) and f̃δ = φ̃δ outside B(10) . Given p ∈ N we set p1 = 5 p + 3 r .
Since Rδ clearly satisfies

∥Rδ(g̃)−Rδ(h̃)∥ψδ(K), Cr ≤ 1

δ3 r
∥g̃ − h̃∥K,Cr ,

we have

∥fµ − φµ∥Cr = ∥fµ − φµ∥ψδ(B(10)), Cr

≤ 1

δ3 r
∥f̃δ − φ̃δ∥B(10), Cr ≤ δ5 p ≤ µp .

Finally the rescaled pair (fµ,Λµ) =
(
ψδ ◦ f̃δ ◦ ψ−1

δ , ψδ

(
Λ̃δ

) )
has also persistent

homoclinic tangencies. �

Lemma 6.1. Given R > 1 there is a neighbourhood U of the identity in Diff∞ (
R2, ω

)
and a continuous mapping Φ:U→Diff∞ (

R2, ω
)
such that:

(1) Φ(Id) = Id ,
(2) Φ(f)(x, y) = (x, y) if ∥(x, y)∥ ≥ 2R , and
(3) Φ(f)(x, y) = f(x, y) if ∥(x, y)∥ ≤ R .

Proof. A smooth function S(x, Y ) , S :U ⊆ R2→R , is called a generating function
of f ∈ Diff∞ (

M2, ω
)
if

f

(
x , Y +

∂S

∂x
(x, Y )

)
=

(
x+

∂S

∂Y
(x, Y ) , Y

)
,

for every (x, Y ) ∈ U . Notice that if S :R2 →R is a generating function defined
everywhere with uniformly small first and second order derivatives then the maps

φS :R2→R2 , φS(x, Y ) =

(
x , Y +

∂S

∂x
(x, Y )

)
,

ψS :R2→R2 , ψS(x, Y ) =

(
x+

∂S

∂Y
(x, Y ) , Y

)
,

are diffeomorphisms and f = ψS ◦ φ−1
S .
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Define Vϵ as the neighbourhood of the identity formed by all maps f ∈ Diff∞ (
R2, ω

)
such that for all ∥(x, y)∥ ≤ 3R ,

|f2(x, y)− y| < ϵ and
∂f2
∂y

(x, y) > 1− ϵ .

Then if ϵ > 0 is small enough we can associate to each f = (f1, f2) ∈ Vϵ a
generating function Sf over the ball B(2R) = { (x, Y ) : ∥(x, Y )∥ ≤ 2R} . Let
yf (x, Y ) and Xf (x, Y ) be defined implicitly by

f (x , yf (x, Y ) ) = (Xf (x, Y ) , Y )

or, equivalently, by

f2 (x , yf (x, Y ) ) = Y and Xf (x, Y ) = f1 (x, yf (x, Y )) .

The condition on Vϵ implies that for small ϵ > 0 yf (x, Y ) is well defined all over
B(2R) . On the other hand, the symplectic character of f implies that

∂yf
∂Y

(x, Y ) =
∂Xf

∂x
(x, Y ) ,

and so there is a unique function S = Sf on B(2R) such that S(0, 0) = 0 and

∂S

∂x
(x, Y ) = yf (x, Y )− Y and

∂S

∂Y
(x, Y ) = Xf (x, Y )− x ,

which implies that S is the generating function of f . The mapping f 7→ Sf from
Vϵ to C∞ (B(2R),R) is clearly continuous.

Take a smooth function ρ :R2 → [0, 1] vanishing outside B
(
7R
4

)
and constant

equal to 1 inside B
(
5R
4

)
. Taking a smaller neighbourhood of the identity V ⊆ Vϵ

we can make ρSf to have small first and second order derivatives for all f ∈
V . Just notice SId = 0 . This implies that φρSf

and ψρSf
, defined above, are

diffeomorphisms. Setting Φ(f) = ψρSf
◦φ −1

ρSf
, Φ(f) is a symplectic diffeomorphism

with generating function ρSf and, of course, Φ(Id) = Id . Since the mappings
f 7→ φρSf

and f 7→ ψρSf
are continuous so is Φ : V → Diff∞ (

R2, ω
)
. Since

ρ = 1 on B
(
5R
4

)
we have Φ(f)(x, y) = f(x, y) over φρSf

(
B
(
5R
4

))
. Similarly

Φ(f)(x, y) = (x, y) outside φρSf

(
B
(
7R
4

))
, because ρ = 0 out of B

(
7R
4

)
. But

since φρSId
= Id taking, if necessary, a smaller neighbourhood V we may assume

that B(R) ⊆ φρSf

(
B
(
5R
4

))
and φρSf

(
B
(
7R
4

))
⊆ B(2R) for all f ∈ V . Items 2.

and 3. then follow. �

7. Proof of Theorems 2. and 3

Proof of theorem 3. Follows from Theorem 2 by standard arguments, since the un-
folding of a homoclinic tangency creates elliptic periodic orbits which shadow the
orbit of homoclinic tangencies. The creation of these generic elliptic points can be
seen from the renormalization at conservative homoclinic tangencies, outlined in
section 1.4. See [MR1-97]. �
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Proof of theorem 2. Assume f has a homoclinic tangency q between the branches
of invariant manifolds, γs(P ) ⊆W s(P ) and γu(P ) ⊆Wu(P ) , of some hyperbolic
fixed point P , as well as a transversal intersection between the same branches
γs(P ) and γu(P ) . If these branches do not have transversal intersections we
perturb f creating transversal homoclinic orbits together with a new tangency.
Second we perturb f to make the homoclinic tangency quadratic and then em-
bed the perturbed diffeomorphism, still denoted by f , in a one parameter family
of diffeomorphisms {φµ} which unfolds generically at φ0 = f the quadratic ho-
moclinic tangency q . The conservative Henón family, {Ha : R2 → R2| a ∈ R },
Ha(x, y) = (y,−x + a − y2) , shows up through renormalization, infinitely often
in very small scales near the orbit of homoclinic tangencies and for carefully cho-
sen parameters very near the tangency at µ = 0. The Henón family unfolds at
a = −1 its first bifurcation, a generic saddle-centre, where a pair of fixed points
is created. Thus, using the notation of Mora-Romero’s Renormalization Theorem
stated in section 3 , the family of diffeomorphisms φµ goes through a sequence
of generic saddle-centre bifurcations (νn, Qn) ≈ (µn(−1),Ψn ,−1(−1,−1)) , where
(νn, Qn) → (0, q) . Denote by In ≈ µn([−1, 3]) a sequence of one sided neighbour-
hoods of νn . For each µ ∈ In let Qn(µ) be the unique n−periodic point of φµ
close to Qn , which is hyperbolic for µ ̸= νn . From Theorem 1 there is a map fn
near φνn and some basic set Λn containing the hyperbolic periodic point Qn and
such that the pair (fn,Λn) has persistent homoclinic tangencies. The sequence
(fn,Λn) satisfies items 1.,2. and 3. but does not satisfy item 4. . To fulfil this
last item we just need to enlarge the basic set Λn in order to contain the unique
hyperbolic fixed point Pn = fn(Pn) near P . This is be possible since Pn and Qn
are homoclinically related. In the following, and last, lemma we prove this fact. �

Lemma 7.1. For each µ ∈ In and all sufficiently large n ∈ N , the hyperbolic
n−periodic point Qn(µ) of φµ is homoclinically related with the unique hyperbolic
fixed point Pµ of φµ near P , meaning that

(1) W s(Pµ) intersects transversally Wu(Qn(µ)) , and
(2) Wu(Pµ) intersects transversally W s(Qn(µ)) .

Figure 2. Stable and unstable manifolds of the periodic point Qn
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Proof. This fact has a dissipative analogue which is used in the proof of Newhouse’s
Theorem to be found in [PT-93], c.f. proposition 1 of section 6.4. Roughly, we look
at the open branches of Qn(µ) , i.e. the opposite branches of those involved in
the basic set Λn , and see large pieces of them accumulating, as n → ∞ , on
corresponding large arcs of the branches γs (Pµ) and γu (Pµ) . Large here means
covering many fundamental domains of the invariant manifolds. But γs (Pµ) and
γu (Pµ) do intersect transversally and so the lemma follows. Because the proof
is entirely analogous to that of proposition 6.4-1 in [PT-93] we just outline some
of the differences here. The neighbourhood U of q and the C1 invariant stable
and unstable foliations Fs

µ, and Fu
µ in a neighbourhood of the fixed point P

are taken exactly as in [PT-93]. As there, the proof is worked in three different
scales. The first and smaller scale is the one covered by the coordinate system
(x̃, ỹ) = Ψ−1

n,a . The same picture depicted in figure 6.6 holds but now σ = λ−1 . The
foliations Fs

µ and Fu
µ , expressed in the (x̃, ỹ) coordinates, converge as n→ +∞

to the horizontal foliation and the foliation by parabolas
{
ỹ = a− x̃2 : a ∈ R

}
.

The convergence is uniform in the C1 topology on compact parts of the (x̃, ỹ)−
plane. The explanation of these facts is simple. In the definition of the rescaling
map Ψn,a one first chooses coordinates (x, y) around Pµ in which φµ is almost
linear, φµ(x, y) = (λx + O(x2 y), λ1y + O(x y2)) c.f. lemma 2.3 in [MR1-97].
Then with respect to these coordinates (x̃, ỹ) = Ψn,a(x, y) is almost affine with
almost diagonal linear part, and it maps a large region of the (x̃, ỹ)− plane onto a
microscopic rectangle located just above the point of homoclinic tangency in the xx
axes. This should be understood as an asymptotic statement as n → +∞ . Thus
the stable foliation in the (x̃, ỹ)−coordinates converges to the horizontal foliation
because its leaves in the (x, y)−coordinates accumulate on the horizontal axes.
Since the iterates φiµ(x, y) , i = 0, 1, · · · , n , of points (x, y) in the ”microscopic”

rectangular domain of Ψ−1
n,a stay very close to the union of the axes, where the

nonlinearity of φµ is negligible, the iterates of both vertical lines, as well as of
unstable leaves, accumulate on the yy axes. Thus the unstable leaves approach,

in the (x̃, ỹ)− coordinates, to the Ψ̂n,a = Ψ−1
n,a ◦ φµn(a) ◦ Ψn,a images of vertical

lines, which in turn converge to the parabola foliation above, since Ψ̂n,a → Ha as
n→ +∞ .

Given K > 0 large, for all sufficiently large n , say n ≥ n(K) , and all µ ∈ In ,
there are compact arcs σsn(µ) ⊆W s(Qn(µ)) and σun(µ) ⊆Wu(Qn(µ)) , see figure 2,
and such that:

• these arcs contain at least K fundamental domains of φnµ ,
• the angles between leaves of Fs

µ and σun(µ) , respectively between leaves
of Fu

µ and σsn(µ) , are at least arctanK , when measured in the (x̃, ỹ)−
coordinates,

• the angles between leaves of Fs
µ and σsn(µ) , respectively between leaves of

Fu
µ and σun(µ) , are at most 1/K , when measured in the (x̃, ỹ)− coordi-

nates.

These facts are consequences of the following one which can be proved with a simple
argument. The open separatrices of the fixed point Qha = Ha(Q

h
a) , for any a ≥ −1 ,

are graphs γu(Qha) = {(x, ga(x)) : x < Aa } and γs(Qha) = {(ga(x), x) : x < Aa }
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where Aa = −1−
√
1 + a and ga : ]−∞, Aa[→R is a smooth function satisfying,

lim
x→−∞

ga(x)

x2
= −1 and lim

x→−∞

(ga)
′(x)

2x
= −1 ,

and where the convergence is uniform for a ∈ [−1, R] with R > −1 .
The argument in the larger scales is now entirely similar to that of proposition

6.4-1 in [PT-93]. �
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Abondance des ı̂les elliptiques aux bifurcations conservatives

Résumé: On démontre une version conservative d’ un théorème de Newhouse
sur l’ abondance des ensembles hyperboliques sauvages: Arbitrairement proche d’
une application qui conservent l’ aire avec une tangence homoclinique il y a des
ensembles hyperboliques sauvages avec persistence des tangences homocliniques.
En outre, pour un ensemble résiduel des systèmes proches ces ensembles basiques
sont accumulés par des ı̂les elliptiques périodiques.


