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Abstract: For families of conservative maps near the identity we prove the existence
of open sets of parameters with persistence of homoclinic tangencies between stable and
unstable leaves of ”thick” horse-shoes. Such families are obtained, for instance, by per-
turbing integrable Hamiltonian systems in R2 with a rapidly periodic oscillatory term
and then performing a slowing change in the time variable.

1. Introduction

Even for simple dynamical systems as surface diffeomorphisms there is a vast diversity
of possible orbit structure. This makes virtually impossible any attempt to extend to all
generic diffeomorphisms the well understood classification of structurally stable maps
via topological conjugacy. One of the phenomena that best illustrates this diversity
is the persistence, in some open set U of diffeomorphisms, of ”homoclinic” tangencies
between stable and unstable leaves of the same hyperbolic basic set Λ . If we focus on
one of these ”homoclinic” tangencies then a convenient perturbation of the system inside
U will destroy it but other tangencies appear instead. This is the meaning of persistent
tangencies. An example of this phenomenon was first given on a 4 dimensional model by
R. Abraham and S. Smale [AS-70] to disprove the density of Ω-stable diffeomorphisms.
In the context of surface diffeomorphisms the construction of such examples appears
with S.Newhouse [N-70] to disprove the density of Axiom A on S2 . Let us briefly
discuss the mechanism behind these examples on surfaces. Look at one ”homoclinic”
tangency H between stable and unstable leaves of a basic set Λ . Near it we have
two Cantor like foliations, those of stable, and unstable, leaves of Λ . Extend them
into C1 foliations over a neighborhood of H . Then there is a C1 curve ` through H
consisting of tangencies between these extended foliations. Consider the Cantor sets Ks

and Ku formed by the points where the stable, resp. unstable, foliation intersects the
curve ` . By definition of ` , Λ has a ”homoclinic” tangency at each point in Ks ∩Ku .
With this construction the initial problem of finding persistent homoclinic tangencies
is transformed into a new problem, that of finding persistent intersections between two
Cantor sets. The key in [N-70] to ensure that Ks and Ku intersect persistently is the
concept of thickness τ(K) of a Cantor set K , which is used through the following
gap lemma If the product of the thicknesses of two interconnected Cantor sets Ks

and Ku is larger then 1 then they must intersect.
The thickness of a Cantor set measures the relative size of its gaps, large thickness cor-

responding to small gaps. It is only invariant under isometries which, in general, makes
it much more difficult to compute, or even to estimate, then the Hausdorff dimension,
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which is invariant under Lipschitz homeomorphisms. Nevertheless, due to their dynam-
ical definitions, it can be proved that the thicknesses of the Cantor sets Ks and Ku

depend continuously on the diffeomorphism. Therefor if the initial map is chosen such
that Ks and Ku are interconnected and τ(Ks) τ(Ku) > 1 , then in a neighborhood of
this map these Cantor sets will persistently intersect.

Now, if U is an open set of diffeomorphisms with persistence of ”homoclinic” tan-
gencies between stable and unstable leaves of Λ and we pick a fixed point in Λ then its
invariant manifolds will have true homoclinic tangencies for a subset of systems dense in
U . Unfolding these tangencies new hyperbolic structures are created around Λ which
can only be detected in very long iterates and at microscopic scales. In this creation
process non-hyperbolic long periodic orbits are formed close to the orbit of tangencies,
which therefore go near Λ for many iterates. These non-hyperbolic periodic orbits are
either sinks in the dissipative case or elliptic isles for conservative systems. A simple
argument then shows that for almost all systems of U in a topological sense, i.e. in
countable intersection of open dense subsets of U , every arbitrarily small neighborhood
of a point in Λ is visited by non-hyperbolic periodic orbits. In other words Λ is ac-
cumulated by sinks, in the dissipative case, or by elliptic islands, in the conservative
one. These implications of the persistent tangencies phenomenon go back to [N-74].
See [D-94] for a conservative example. This gives us a small idea of how complex the
dynamics of such systems can be. But there is more to it. If we look deep into ever
smaller dynamical details of ever longer iterates of the initial map in U we will see the
same type of picture repeated indefinitely. In the dissipative case, for instance, we will
see the basic set Λ accumulated by periodic sinks with long periods but also by small
periodic basic sets Λ1 which exhibit persistent homoclinic tangencies too. Furthermore
we will see transversal heteroclinic orbits flowing from Λ to Λ1 and vice versa. This
means that the hyperbolic structures of the large and the small basic sets are intercon-
nected. Then for Λ1 we will see a similar picture: Λ1 accumulated by even longer
periodic sinks and smaller periodic basic sets Λ2 with persistent homoclinic tangencies
... And we will see the same type of picture repeated ad infinitum. Of course at any
given scale we need to know where to look for the smaller basic sets with persistence of
homoclinic tangencies and to allow ourselves to perform ever smaller perturbation ad-
justments to the initial system as we go deep into the microscopic dynamical structure.
This folkloric description can be stated and proved rigorously from the theorem below,
see [N-79].
Theorem [S. Newhouse] Let f be a surface diffeomorphism with an orbit O of homo-
clinic tangencies between stable and unstable manifolds of some dissipative hyperbolic
fixed point P . Then there is a sequence of open sets Un with persistence of homoclinic
tangencies between stable and unstable leaves of some periodic basic set Λn such that:

(1) Un approaches f as n→ +∞ ,
(2) Λn converges to the closure O as n→ +∞ ,
(3) There are transversal heteroclinic orbits flowing from P to Λn and vice versa.

Furthermore, for each n there is a residual subset of Un for which systems the basic
set Λn is accumulated by periodic sinks.

A similar result for area preserving diffeomorphisms, as it has been conjectured by
J. Palis to be true, is still missing. We should mention however that L. Mora and N.
Romero have have exploited other mechanisms, then the persistence of a basic set’s
homoclinic tangencies, to obtain similar consequences. See [MR1-97] and [MR2-97].
The present work grew out of the proof of Newhouse’s conservative version theorem,
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to appear [D-98]. During the years of 94 and 95 the author was supported by JNICT
grant PRAXIS/2/2.1/MAT/19/94. Since 1996 he was supported in part by JNICT grant
PBIC/C/MAT/2140/95 and also by FCT and PRAXIS XXI through the Research Units
Pluriannual Funding Program and Project 2/2.1/MAT/199/94.

2. Results

Let Xδ be a smooth family of Hamiltonian vector fields in R2, with respect to the
canonical symplectic form ω = dx ∧ dy, and fδ,µ : R2 → R2 be a smooth family of
symplectic diffeomorphisms such that:

H1) Xδ has a saddle connection γδ at some hyperbolic fixed point family Pδ ,
H2) fδ,0 is the time δ map of the Hamiltonian flow of Xδ .

Through this article smooth will always mean C∞ .

Families like these arise naturally in the following way:
Let X0(x, y) and Y0(x, y, t) be a Hamiltonian vector fields in R2 such that X0 has

a saddle connection γ0 and Y0(x, y, t) is periodic with period T in the time variable
t . Consider the perturbation of X0 with a rapidly periodic oscillatory term,

d

dt
(x, y) = X0(x, y) + µY0

(
x, y,

t

δ

)
,

where δ and µ are small parameters. If we perform the slowing change in the time
variable θ = t

δ then the corresponding autonomous system is given by,{
d
dt(x, y) = δ (X0(x, y) + µYδ(x, y, θ))

dθ
dt = 1

.

It induces a flow φtδ,µ : R2×S1→ R2×S1 with a return map fδ,µ = φTδ,µ , to the cross

section R2 = R2×{0} ⊆ R2×S1, that satisfies hypothesis H1) and H2).

Two typical examples to which the main theorem below applies are the following:

Example 2.1.

ẍ = 2x+ x2 + µ cos

(
2π t

δ

)
or equivalently 

ẋ = δ y
ẏ = δ

(
2x+ x2 + µ cos(2π θ)

)
θ̇ = 1

which is a perturbation of the Hamiltonian vector field X0(x, y) =
(
y , 2 x+ x2

)
de-

picted in figure 1.

Example 2.2.

ẍ = 2x− x3 + µ cos

(
2π t

δ

)
,

which is equivalent to 
ẋ = δ y
ẏ = δ

(
2x− x3 + µ cos(2π θ)

)
θ̇ = 1

a perturbation of the Hamiltonian vector field X0(x, y) =
(
y , x− x3

)
of figure 2.
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Figure 1. The Hamiltonian vector field X0(x, y) =
(
y , 2 x+ x2

)

Figure 2. The Hamiltonian vector field X0(x, y) =
(
y , x− x3

)
Given a family fδ,µ satisfying the assumptions H1) and H2) above consider the smooth

family of Hamiltonians Hδ associated with the vector field family δ Xδ:

δ Xδ = J ∇Hδ where J =

(
0 −1
1 0

)
Definition 2.1. Let qδ(t) = q(δ, t) be a smooth family of solutions,

d

dt
qδ = δ Xδ (qδ(t)) ∀ t ∈ R ,

whose orbits {qδ(t) : −∞ < t <∞} describe the homoclinic connections γδ . Denote by
Pδ,µ the unique (hyperbolic) fixed point of fδ,µ near Pδ . For each t ∈ R define qsδ,µ(t) ,

respectively quδ,µ(t) , to be the last point in W s(Pδ,µ) , resp. first point in W u(Pδ,µ) ,

that intersects the line through qδ(t) with direction ∇Hδ (qδ(t)) in a small neighborhood
of qδ(t). The Melnikov function of fδ,µ , w.r.t. qδ(t) , is defined to be

Mδ(t) = ∇Hδ (qδ(t)) ·
∂

∂µ

(
quδ,µ(t)− qsδ,µ(t)

)
µ=0

.

Although the Melnikov function seems to depend on the euclidean structure of R2

it really does not. The Melnikov function is a symplectic invariant of the family fδ,µ ,
c.f. proposition 5.2. It is a periodic function, with period one, in variable t and it is
dominated, in absolute value, by any power δN if δ > 0 is small enough. See propo-
sition 5.1. Finally, it is well known that each simple zero tδ of the Melnikov function,
Mδ(tδ) = 0 with d

dtMδ(tδ) 6= 0 , corresponds to some transversal homoclinic point
Hδ,µ = qδ(tδ) +O(µ) ∈W s(Pδ,µ) ∩W u(Pδ,µ) for all small enough µ 6= 0 .
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In the two examples above one can compute, by the Poincaré-Melnikov method,
explicit expressions for the Melnikov function which have the following form:

Mδ(t) = ψ(δ) sin(2π t)

where for some constants C and D the smooth function ψ(δ) has the following as-
ymptotic expression

ψ(δ) ∼ D

δ
exp

(
−C
δ

)
Define for i = 0, 1, 2,

Mi(δ) = max

{ ∣∣∣∣ didtiMδ(t)

∣∣∣∣ : t ∈ R
}
,(1)

m1(δ) = min

{ ∣∣∣∣ ddtMδ(t)

∣∣∣∣ : Mδ(t) = 0

}
and

m2(δ) = min

{ ∣∣∣∣ d2dt2Mδ(t)

∣∣∣∣ :
d

dt
Mδ(t) = 0

}
.

Theorem 1. Assume there is C > 0 such that for all small enough δ > 0 the Melnikov
function satisfies Cm1(δ) > M2(δ) and Cm2(δ) > M0(δ) .
Then there is an open set U in the (δ, µ) plane, whose closure contains some interval
[0, δ0)×{0} , with δ0 > 0 , and there is a (discontinuous) family of basic sets {Λδ,µ}(δ,µ)∈U
of fδ,µ containing the fixed point Pδ,µ and such that:

i For each (δ, µ) ∈ U there is a quadratic homoclinic tangency between a pair of
stable and unstable leaves of Λδ,µ which unfolds generically with µ .

ii There is a residual subset R ⊆ U of parameters (δ, µ) ∈ R such that the closure
of fδ,µ ’ generic elliptic periodic points contains Λδ,µ .

iii There is a dense subset D ⊆ U of parameters (δ, µ) ∈ D at which W s(Pδ,µ) and
W u(Pδ,µ) generically unfold a quadratic homoclinic tangency in the parameter
µ .

Remark 2.1. The hypothesis is trivially fulfilled for the families fδ,µ associated with
examples 2.1 and 2.2.

Remark 2.2. Consider the open set

W = {δ > 0 : Cm1(δ) > M2(δ) and Cm2(δ) > M0(δ) }

and assume 0 ∈ W . Then there is an open set U in the (δ, µ) plane, whose clo-
sure contains ([0, δ0) ∩W )×{0} for some δ0 > 0 , and there is a family of basic sets
{Λδ,µ}(δ,µ)∈U of fδ,µ , containing the fixed point Pδ,µ, for which the same conclusions of

theorem 1 hold. This stronger statement follows also from the proof of theorem 1.

Remark 2.3. The symplectic character of fδ,µ implies that the Melnikov function Mδ(t)
must have zeros. By the assumption all zeros of Mδ(t) are simple and, therefore, each
of them corresponds to a transversal homoclinic orbit of fδ,µ which is created for small
µ 6= 0 as the homoclinic connection γδ breaks down. It follows also that all critical points
of Mδ(t) are non degenerated.
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Remark 2.4. From the assumption of theorem 1 it follows easily that all the functions
of δ : M0 , M1 , M2 , m1 and m2 are asymptoticly equivalent, in the sense that the
quotient of any pair is bounded from 0 and from ∞ . In particular we see that all them
are dominated by powers δN , N ∈ N , as δ tends to zero. See proposition 5.1. Finally,
the distance between consecutive zeros of Mδ(t) is at least 2/C and so in each period
Mδ(t) has at most C/2 zeros.

Consider now smooth one parameter families of symplectic diffeomorphisms fδ :R2→
R2 such that: f0 = Id , and

(
d
dδfδ

)
δ=0

= X0 is a Hamiltonian vector field with a saddle

connection associated to some hyperbolic singularity X0(P0) = 0 , P0 ∈ R2 . Such
families can be obtained from the previous two parameter families fδ µ by considering
the second parameter µ = µ(δ) to be a smooth function of δ such that µ(0) = 0 . For
these families a similar theorem could be proved, namely that:

If there is a Melnikov function Mδ(t) = ψ(δ)µ(t) ”describing the unfolding” of the
saddle connection at δ = 0 such that µ(t) is a smooth periodic Morse function, and
the function ψ(δ) does not vanish identically in any neighborhood of δ = 0 , then there
is an open set I ⊆ (0,+∞) accumulating on δ = 0 and there is a family of basic sets
{Λδ}δ∈I of fδ containing the (continuation) of the fixed point P0 for which the same
conclusions i), ii), iii) of theorem 1 hold.

A word of caution: in this new context a Melnikov function can not be uniquely
determined by the family fδ as it was in the previous context of two parameter fami-
lies. A rigorous meaning for the sentence ”Mδ(t) describes the unfolding of the saddle
connection at δ = 0 ” will be omitted since we will not prove this theorem here. Notice
however that, in any concrete analytic example, in order to verify the assumption in
the statement above we have to face the hard problem of estimating the exponentially
small size (in δ ) of the splitting angle of the separatrices of P0 , see for instance [G1-97]
and [G2-97]. On the other hand checking the assumption of theorem 1 is usually an
easy task using the Poincaré-Melnikov method. Our motivation to prove theorem 1,
instead of this seemingly more natural one parameter statement, was to simplify things
in [D-98] where we use this theorem to prove the conservative version of the theorem of
S. Newhouse mentioned in the introduction.

Proof of theorem 1. Apply proposition 3.2 to the combination of corollary 8.1 with corol-
lary 9.1. Remark, as in the beginning of section 8, that Λδ,µ is part of a basic set of
fδ,µ , viewed in the Φδ,µ coordinates. �

We use the geometric assumption on the Melnikov function to construct a family of
basic sets Λδ,µ , horse-shoes conjugated to the full Bernoulli shift in two symbols, for
some return map

Tδ,µ(x, y) =

{
fδ,µ(x, y) if (x, y) ∈ Sδ,µ(0)

f 2n
δ,µ (x, y) if (x, y) ∈ Sδ,µ(1)

,

where n = n(δ, µ) tends to infinity as (δ, µ) → (0, 0) . See figure 3. These horse-
shoes will be ”thick” in some sense which, once a tangency is found, implies persistent
homoclinic tangencies. We use here a generalization of the usual gap lemma in [Mo-96]
that introduces lateral thicknesses.
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Figure 3. Scales of the construction

One of the technical difficulties in the proof of theorem 1 is getting uniform lower
bounds of the lateral thicknesses of the Cantor sets associated with Λδ,µ . For this
we need also uniform estimates on the distortion of these Cantor sets. The material
in section 3 is well known and may be found, with some modifications, in [PT-93]
and [Mo-96]. There we recall dynamically defined Cantor sets, their lateral thicknesses,
distortion, and relation between them. We also remember the construction of the stable
and unstable Cantor sets associated with a horse-shoe type basic set and define the
left-right thickness of the basic set. Finally we state and prove an abstract proposition,
prop 3.2, relating lateral thicknesses with persistent homoclinic tangencies.

Bounds on distortion involve very technical and fastidious estimates on the differen-
tiability of the invariant foliations (stable and unstable). It would be very nice to have
a formula giving an upper bound for the distortion of stable and unstable foliations, of
a given basic set, based in the following quantities:

i first and second order derivatives of the map and its inverse on a Markov parti-
tion,

ii the scale, or diameter, of the basic set, and
iii the sizes of its larger gaps, i.e. the distances between rectangles of the Markov

partition.

To my knowledge there is no such distortion bounding formula available. In section 4
we describe a general setting where distortion of a conservative basic set is bounded
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in function of the quantities i, ii and iii above. This section was written completely
independent of the rest so that the main result in it, theorem 2, could be easily exported.
The conservativeness assumption simplifies things but it shouldn’t be crucial.

In section 5 we adapt, to our context of families satisfying the assumptions H1) and
H2), some well-known facts about Melnikov functions.

In section 6 we translate the geometric assumption on the Melnikov function into
conditions on the map along the homoclinic connection. The return map Tδ,µ is defined
without yet specifying its domain. We also obtain some estimates on the derivatives of
the map which are needed to obtain the bounds on distortion.

In section 7 we introduce rescaling coordinates which will bring the tiny basic set
Λδ,µ to unit square. Some more estimates on derivatives are obtained there.

In section 8 the basic set Λδ,µ , together with its Markov partition, is constructed.
All estimates on quantities i,ii and iii, needed to obtain small distortion according to
theorem 2, are checked. It is then shown that the basic set Λδ,µ has left-right thickness
tending to infinity as (δ, µ)→ (0, 0) .

Finally, in section 9 we prove the existence of homoclinic tangencies unfolding gener-
ically, which are needed to complete the proof of theorem 1.

3. Left-right thickness

We call dynamically defined Cantor set to any pair (K,ψ) such that K ⊆ R is a
Cantor set and ψ :K→K is a locally Lipschitz expanding map, topologically conjugated
to some subshift of finite type of a Bernoulli shift σ : {0, 1, · · · , p}N→ {0, 1, · · · , p}N .
For the sake of simplicity, and because this is enough for our purpose, we will restrict
ourselves to the case where ψ is conjugated to the full Bernoulli shift σ : {0, 1}N →
{0, 1}N . Moreover we will assume that there is a partition of K , K = K0 ∪K1 , into
disjoint Cantor subsets such that the restriction of ψ to each Ki , ψ :Ki→K is a strictly
monotonous Lipschitz expanding homeomorphism. P = {K0,K1} is called a Markov
partition of (K,ψ) . Given a symbolic sequence (a0, · · · , an−1) ∈ {0, 1}n writing,

K(a0, · · · , an−1) =
n−1⋂
i=0

ψ−i(Kai) ,

the map ψn :K(a0, · · · , an−1)→K is a Lipschitz expanding homeomorphism.
A bounded component of the complement R − K is called a gap of K . For a

dynamically defined Cantor set (K,ψ) the gaps are ordered in the following way. Denote

by Â the convex hull of a subset A ⊆ R . Then the interval K̂ − K̂0 ∪ K̂1 is called a
gap of order zero. A connected component of

K̂ −
⋃

(a0,··· ,an−1)∈{0,1}n

̂K(a0, · · · , an−1)

that is not a gap of order ≤ n − 1 is called a gap of order n . It is straightforward
to check that every gap of K is a gap of some finite order, and also that, given a gap
U = (x, y) of order n , for every 0 ≤ k ≤ n the open interval bounded by ψk(x) and
ψk(y) is a gap of order n− k .

Following [Mo-96] we define

Definition 3.1. Given a gap U of K with order n , we denote by LU , resp. RU ,

the unique interval of the form ̂K(a0, · · · , an−1) , with (a0, · · · , an−1) ∈ {0, 1}n , that is
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left, resp. right, adjacent to U . The greatest lower bounds

τL(K) = inf

{
|LU |
|U |

: U is a gap of K

}
τR(K) = inf

{
|RU |
|U |

: U is a gap of K

}
are respectively called the left and right thickness of K . Similarly, the ratios

τL(P) =
|LU0 |
|U0|

and τR(P) =
|RU0 |
|U0|

,

where U0 is the unique gap of order zero, are called the left and right thickness of the
Markov partition P .

We should remark that this definition differs slightly from the correspondent in [Mo-96].
The reason is that we have ordered gaps not by their lengths but by the order in which
they appear as pull-backs of gaps of zero order by the map ψ . However, for the binary
Cantor sets, to which we have restricted our attention, the two definitions coincide.

When the restriction of ψ to each Ki is affine we have

τL(K) = τL(P) and τR(K) = τR(P) ,

but in general these thicknesses may be very different due to the nonlinearity of ψ .

We now give precise definition of distortion. Given a Lipschitz expanding map (in-
jective in particular) g :J→R , defined on some subset J ⊆ R , we call distortion of g
on J to the lowest upper bound,

Dist (g, J) = sup
x,y,z∈J

log

{
|g(y)− g(x)|
|g(z)− g(x)|

|z − x|
|y − x|

}
∈ [0,+∞]

where the sup is taken over all x, y, z ∈ J such that z 6= x and y 6= x , which implies,
because g is injective, g(z) 6= g(x) and g(y) 6= g(x) . Reversing the roles of y and z we
see that the distortion is always ≥ log 1 = 0 . If Dist (g, J) = c then for all x, y, z ∈ J
with z 6= x and y 6= x we have

(2) e−c
|y − x|
|z − x|

≤ |g(y)− g(x)|
|g(z)− g(x)|

≤ ec |y − x|
|z − x|

The distortion of a dynamically defined Cantor set (K,ψ) is defined to be the lowest
upper bound

Distψ(K) = sup Dist (ψn,K(a0, · · · , an−1))
taken over all sequences (a0, · · · , an−1) ∈ {0, 1}n . Distortion is the key to estimate
thickness.

Lemma 3.1. Let (K,ψ) be a dynamically defined Cantor set with a Markov Partition
P and distortion Distψ(K) = c . Then

e−c τL(P) ≤ τL(K) ≤ ec τL(P)

e−c τR(P) ≤ τR(K) ≤ ec τR(P)

Proof. Follows by a well known argument. See [PT-93]. �

We will need the following improvement of the usual gap lemma [Mo-96]:
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Lemma 3.2 ( left-right gap lemma). Let (Ks, ψs) , (Ku, ψu) be dynamically defined
Cantor sets such that the intervals supporting Ks and Ku do intersect, Ks is not
contained inside a gap of Ku and neither Ku is contained inside a gap of Ks. If
τL(Ks) τR(Ku) > 1 and τR(Ks) τL(Ku) > 1 , then both Cantor sets intersect, Ks ∩
Ku 6= ∅.

Proof. The same proof as in [Mo-96] works. Just argue that one could obtain pairs of
linked gaps with ever higher order, instead of ever smaller lengths. The result is the
same because as we consider gaps with strictly increasing order their lengths converge
to zero. �

Let us see now how this lemma will be applied to get open sets of persistent homoclinic
tangencies in the following class of ”horse-shoes”.

Definition 3.2. Define F to be the set of all maps f :S0 ∪ S1→R2 such that:

(1) S0 and S1 are compact subsets, diffeomorphic to rectangles, with nonempty
interior.

(2) f is a map of class C2 , in a neighborhood of S0 ∪ S1 , mapping this compact
set diffeomorphically onto its image f(S0) ∪ f(S1) .

(3) the maximal invariant set Λ(f) =
⋂
n∈Z f

−n(S0 ∪ S1) is a hyperbolic basic set

conjugated to the Bernoulli shift σ :{0, 1}Z→{0, 1}Z .
(4) P = {S0, S1} is a Markov partition for f : Λ(f)→ Λ(f) , in particular f has

two fixed points, P0 ∈ S0 and P1 ∈ S1 , whose stable and unstable manifolds
contain the boundaries of S0 and S1 .

(5) Both fixed points P0 and P1 have positive eigenvalues.

The action of f and f−1 resp. on the stable, and unstable, foliation of Λ ,

Fs = { connected comp. of W s(Λ) ∩ (S0 ∪ S1) },
Fu = { connected comp. of W s(Λ) ∩ (f(S0) ∪ f(S1)) } ,

is described in the following way. Define

Is∗ = W s
loc(P0) ∩ S0 and Iu∗ = W u

loc(P0) ∩ f(S0) .

Is∗ and Iu∗ are stable and unstable leaves of Λ respectively transversal to the foliation
Fu and Fs . Then the Cantor sets

Ks = Λ ∩ Iu∗ and Ku = Λ ∩ Is∗ ,
can be identified with the set of stable leaves of Fs , resp. unstable leaves of Fu . Define
the projections πs : Λ→Ks and πu : Λ→Ku in the obvious way: πs(P ) is the unique
point in W s

loc(P )∩ Iu∗ , and similarly πu(P ) is the unique point in W u
loc(P )∩ Is∗ . The

maps ψs :Ks→Ks and ψu :Ku→Ku

ψs = πs ◦ f and ψu = πu ◦ f−1 ,
describe the action of f , resp. f−1 , on stable, resp. unstable leaves of Λ . The pairs
(Ks, ψs) and (Ku, ψu) are dynamically defined Cantor sets, topologically conjugated to
the Bernoulli shift σ :{0, 1}N→{0, 1}N , with Markov partitions Ps = {Iu∗ ∩S0, Is∗ ∩S1}
and Pu = {Is∗ ∩ f(S0), I

s
∗ ∩ f(S1)} .

Given a map f ∈ F we define the left-right thickness of Λ(f) to be

τLR (Λ) = min {τL(Ks) τR(Ku), τL(Ku) τR(Ks)} .
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In order to estimate this thickness we define the left-right thickness of P as

τLR (P) = min {τL(Ps) τR(Pu), τL(Pu) τR(Ps)} .
If the distortion on both dynamically defined Cantor sets (Ks, ψs), (Ku, ψu) is small,
say less or equal than c , then it follows from proposition 3.1 that

e−2 c τLR(P) ≤ τLR(Λ) ≤ e2 c τLR(P) .

Bounding distortion is the key to the next

Proposition 3.1. The map τLR :F→R, f 7→ τLR (Λ(f)) , is continuous.

Proof. As it is remarked in [Mo-96] the lateral thicknesses may be discontinuous for non
binary dynamically defined Cantor sets. However if one adapts instead the more dynam-
ical definition 3.1 then lateral thicknesses are always continuous. The same argument
as for the usual tickness applies, e.g. see [PT-93]. �

For one parameter families of maps, the usual gap lemma establishes a connection
between thickness of the invariant, stable and unstable, foliations and the existence of
parameter intervals with persistence of homoclinic tangencies. The left-right gap lemma
establishes a new, but entirely similar, connection which we now state.

Definition 3.3. Given a hyperbolic fixed point P of some surface diffeomorphism, with
both its eigenvalues positive, we orient the stable and unstable branches of W s(P ) − P
and W u(P ) − P so that orbits increase along them. A homoclinic tangency of P is
called positive if both the orientations, on the stable and unstable branches, agree near
the point of tangency.

Proposition 3.2. Let ϕµ ∈ Diff 2
(
M2
)

be a smooth family of diffeomorphisms, on

some surface M2, and Λµ = ϕµ(Λµ) be an invariant basic set family. Assume there
are coordinates (possibly depending on the parameter) in a neighborhood of Λµ in which
the diffeomorphism ϕµ is expressed by a map fµ ∈ F , and that the left-right thickness
of the basic set, in these coordinates, satisfies τLR (Λµ) > 1 . If a fixed point Pµ ∈ Λµ ,
with both its eigenvalues positive, unfolds generically, at the parameter µ0 , an orbit of
quadratic positive homoclinic tangencies , then there is an open interval I with µ0 ∈ I
such that:

i For each µ ∈ I there is a quadratic homoclinic tangency between a pair of stable
and unstable leaves of Λµ which unfolds generically with µ .

ii If all ϕµ preserve some area form then there is a residual subset R ⊆ I of
parameters µ ∈ R such that the closure of ϕµ ’s generic elliptic periodic points
contains Λµ .

iii There is a dense subset D ⊆ I of parameters µ ∈ D where W s(Pµ) and
W u(Pµ) generically unfold quadratic homoclinic tangencies.

Proof. We will just outline the proof to stress the point where the positive tangency
hypothesis plays its role. Let us identify ϕµ with fµ and look at F as a subset

of Diff 2
(
M2
)
. For every parameter µ sufficiently close to µ0 , we extend the sta-

ble and unstable foliations of Λµ filling in all S0(µ) ∪ S1(µ) with a foliation Fsµ and

all fµ(S0(µ)) ∪ fµ(S1(µ)) with a foliation Fuµ , respectively invariant by f −1µ and fµ .
Let H0 ∈ W s(Pµ0) ∩ W u(Pµ0) be a positive homoclinic tangency of fµ0 , which un-
folds generically with µ. Take n,m ≥ 1 such that f nµ0(H0) ∈ S0(µ0) ∪ S1(µ0) and

f −mµ0 (H0) ∈ fµ0(S0(µ0)) ∪ fµ0(S1(µ0)) . Then for all µ in a small neighborhood U of

µ0 there is, near H0 , a line of tangencies `µ between f−nµ (Fsµ) and fmµ (Fuµ ) . `µ is a
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curve of class C1 which depends C1 continuously on µ . The line `µ0 goes through H0 .
We denote by πs :Iu∗→`µ and πu :Is∗→`µ the projections along f−nµ (Fsµ) and fmµ (Fuµ )

respectively. These are C1 diffeomorphisms depending continuously on µ . Defining
Cuµ = πs(K

u
µ) and Csµ = πs(K

s
µ)) we have:

• Points in Csµ ∩ Cuµ are homoclinic tangencies of Λµ .
• Because the tangency is positive, both orientations induced in `µ by the projec-

tions πu and πs agree. Therefor the products τL(Csµ) τR(Cuµ) and τR(Csµ) τL(Cuµ)
are close to τL(Ks

µ) τR(Ku
µ) and τR(Ks

µ) τL(Ku
µ) , at least if we restrict the

Cantor sets Csµ, C
u
µ to a very small neighborhood of H0 , where the distortion

due to the nonlinearity of the projection diffeomorphisms πu, πs is also small.
Thus, by continuity of τLR, if U is a sufficiently small neighborhood of µ0 we
have τL(Csµ) τR(Cuµ) > 1 and τR(Csµ) τL(Cuµ) > 1.

At µ0 we have Cuµ0 ∩ C
s
µ0 6= ∅ . Now define I to be the open subset of U formed by

all µ such that the Cantor sets Csµ and Cuµ have supporting intervals whose interiors
intersect but such that no one of them is contained inside a gap of the other. By the
left-right gap lemma it follows that ∀µ ∈ I , Csµ ∩ Cuµ 6= ∅ and so I is an open interval

with persistence of homoclinic tangencies of Λµ . By definition it is clear that µ0 ∈ I.
Because the tangency H0 at parameter µ0 is quadratic and unfolds generically, if I is
sufficiently small then all these tangencies will be quadratic and unfold generically too.

Finally, items ii and iii are standard consequences of item i. See [D-94] for the con-
clusion in ii, and [PT-93] for item iii. �

4. Uniformly Bounded Distortion

In this section we describe a class of conservative horse-shoe maps where the dynamics
of the stable and unstable foliations have small uniformly bounded distortion.

Definition 4.1. Given positive small numbers ε > 0 and γ > 0 define F(ε, γ) to be
the class of all maps f :S0 ∪ S1→R2, f ∈ F , such that:

(1) diam (S0 ∪ S1) = diam (f(S0) ∪ f(S1)) = 1 .

(2) The derivative of f , Df(x,y) =

(
a b
c d

)
, where a , b , c and d are C1

functions, satisfies all over S0 ∪ S1
(a) detDf = a d− b c = 1
(b) |d| < 1 < |a| ≤ 2/ε
(c) |b| , |c| ≤ ε (|a| − 1)

(3) The C1 functions on f(S0) ∪ f(S1) , ã = a◦f−1 , b̃ = b◦f−1 , c̃ = c◦f−1 and

d̃ = d◦f−1 , i.e. Df−1(x,y) =

(
d̃ −b̃
−c̃ ã

)
, satisfy

(a)

∣∣∣∣∣ ∂b̃∂x
∣∣∣∣∣ =

∣∣∣∣∣∂d̃∂y
∣∣∣∣∣ ,

∣∣∣∣∣∂b̃∂y
∣∣∣∣∣ ,

∣∣∣∣ ∂c̃∂x
∣∣∣∣ , ∣∣∣∣∂ã∂x

∣∣∣∣ =

∣∣∣∣∂c̃∂y
∣∣∣∣ ≤ γ (|ã| − 1)

(b)

∣∣∣∣∂a∂y
∣∣∣∣ =

∣∣∣∣ ∂b∂x
∣∣∣∣ , ∣∣∣∣∂b∂y

∣∣∣∣ , ∣∣∣∣ ∂c∂x
∣∣∣∣ , ∣∣∣∣∂c∂y

∣∣∣∣ =

∣∣∣∣∂d∂x
∣∣∣∣ ≤ γ (|a| − 1)

(c)

∣∣∣∣∂ã∂y
∣∣∣∣ ,

∣∣∣∣∣∂d̃∂x
∣∣∣∣∣ ≤ γ |ã| (|ã| − 1)
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(d)

∣∣∣∣∂a∂x
∣∣∣∣ , ∣∣∣∣∂d∂y

∣∣∣∣ ≤ γ |a| (|a| − 1) .

(4) The variation of log |a(x, y)| in each rectangle Si is less or equal than γ (1−
α−1i ) , where αi = max(x,y)∈Si |a(x, y)| .

(5) Finally, the gap sizes satisfy:

dist (S0, S1) ≥
ε

γ
and dist (f(S0), f(S1)) ≥

ε

γ
.

Remark 4.1. Coments on some items of the definition of class F(ε, γ) ,

(1) This normalizing condition is to avoid having all subsequent items refering to
the scale of the basic set.

(2) This item says that f is symplectic and hyperbolic with stable direction close to
vertical and unstable direction nearly horizontal. Notice, however, that expansion
and contraction in (2b) may be arbitrarily weak.

(3) Here bounds are given on the second derivatives of f and f−1 in terms of the

norms |a(x, y)| =
∥∥Df(x,y)∥∥ and |ã(x, y)| =

∥∥∥Df−1(x,y)

∥∥∥ . Notice that the second

derivatives in (3c) and (3d) can be very large compared with linear terms.

Remark 4.2. The class F(ε, γ) is symmetric with respect to inversion. Take the linear
involution I :R2→R2 I(x, y) = (y, x) as a coordinate transformation. Then if we write,

as above, Df(x,y) =

(
a b
c d

)
the inverse map, in the new coordinates, g = I−1◦f−1◦I

has derivative Dg(x,y) =

(
ã −c̃
−b̃ d̃

)
. Looking at the conditions defining F(ε, γ) we

see that
f ∈ F(ε, γ) ⇔ g = I−1 ◦ f−1 ◦ I ∈ F(ε, γ) .

Thus any proof of a statement about differentiability of the stable foliations of maps in
F(ε, γ) can be transformed into a proof of a similar statement about unstable foliations.

Remark 4.3. For the sake of simplicity, and because this is enough for our purposes,
we have restricted ourselves to the case of basic sets conjugated to the full Bernoulli shift
σ :{0, 1}Z→{0, 1}Z . But adapting assumption 5., in the definition of class F(ε, γ) , the
main theorem in this section holds for any class of basic sets modeled in any subshift of
finite type.

Theorem 2. For all small enough ε > 0 and γ > 0 , given f ∈ F(ε, γ) , the ba-
sic set Λ(f) gives dynamically defined Cantor sets (Ku, ψu) and (Ks, ψs) with small
distortion, bounded by D(ε, γ) = 20 γ + 2 ε . In particular

e−2D(ε,γ) τLR (P) ≤ τLR (Λ(f)) ≤ e2D(ε,γ) τLR (P) .

Lemma 4.1. For all small enough ε > 0 and γ > 0 , given f ∈ F(ε, γ) there are
functions of class C1

σs :W s(Λ) ∩ (S0 ∪ S1)→R and σu :W u(Λ) ∩ (f(S0) ∪ f(S1))→R
such that vector fields Xu(x, y) = (1, σu(x, y)) and Xs(x, y) = (σs(x, y), 1) respectively
generate the line fields of stable and unstable directions of Λ(f) and the following esti-
mations hold:
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(1) |σs| , |σu| ≤ ε ,
(2) Lip (σs) , Lip (σu) ≤ 8 γ ,

where the Lipschitz seminorm Lip(σ) is taken w.r.t. the norm ‖(x, y)‖ = |x| + |y| in
R2 .

In the lemma just stated we have chosen the norm ‖(x, y)‖ = |x|+ |y| of R2 in order
to have the following easy properties:

(1) Given functions σ :R2→R and T :S ⊆ R2→R2 , respectively Lipschitz and of
class C1 , we have

Lip(σ ◦ T ) ≤ Lip(σ) ‖DT‖ ,

where ‖DT‖S is the maximum absolute value, over S , of the first partial deriva-
tives of the components of T .

(2) If σ :R2→R is of class C1 then for all (x, y) ∈ R2 ,∣∣∣∣∂σ∂x (x, y)

∣∣∣∣ , ∣∣∣∣∂σ∂y (x, y)

∣∣∣∣ ≤ Lip(σ) .

It is well known, see [HP-70], that the stable and unstable invariant line fields of any
hyperbolic set of a surface diffeomorphism of class C2 are always of class C1 . The point
here is to give explicit bounds on the derivatives of these line fields. Before doing it, in
fact we will only estimate the unstable line field σu , let us introduce some notation and
state some easy facts. Using the notation of assumption 6. on the class F(ε, γ) define
ρ = ρf :f(S0) ∪ f(S1)× R→R

ρ(x, y, s) =
c̃(x, y) + d̃(x, y) s

ã(x, y) + b̃(x, y) s
.

The relation between Df(x,y) and ρ(x, y, s) is given in the formula,

Df(x,y) ( 1, s ) = (a+ b s) ( 1, ρ( f(x, y), s) ) .

Notice that since ã d̃− b̃ c̃ = 1 we have,

∂ρ

∂s
(x, y, s) =

1

(ã+ b̃ s)2
.

In the lemma below we give a list of inequalities which are simple consequences of
the mean value theorem and the definition of class F(ε, γ) . We will use the notation
‖h‖S = max {|h(x, y)| : (x, y) ∈ S } for a given continuous function h(x, y) on S .

Lemma 4.2. For all small enough ε > 0 and γ > 0 , given f ∈ F(ε, γ) and |s| ≤ ε ,
if ρ = ρf then the following inequalities hold:

(1) ‖ρ(s)‖f(Si) ≤ ε .

(2)

∥∥∥∥∂ρ∂s (s)

∥∥∥∥
f(Si)

≤ 1

α2
i

e2(ε+γ)(1−α
−1
i ) ≤ 1

αi
.

(3)

∥∥∥∥∂ρ∂x(s)

∥∥∥∥
f(Si)

,

∥∥∥∥∂ρ∂y (s)

∥∥∥∥
f(Si)

≤ 6 γ (1− α−1i ) .
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Proof of lemma 4.1. We only estimate σu , the stable case being entirely analogous.
Given f ∈ F(ε, γ) consider the forward f−1-invariant compact set,

Σu(f) = W u(Λ) ∩ (f(S0) ∪ f(S1)) =
⋂
k≥1

fk(S0 ∩ S1)

and define the operator Ff :C0(Σu(f))→C0(Σu(f)) ,

Ff (σ) (x, y) = ρ
(
x, y, σ f−1(x, y)

)
.

Here C0(Σu(f)) denotes the Banach space of all real valued functions over the compact
set Σu(f) , with the usual maximum norm denoted by ‖·‖ . Remarking that Ff (σ) = σ
is equivalent to

Df (1, σ) = (a+ b σ)◦f · ( 1 , σ ◦ f )

we see that a fixed point σ of this operator corresponds to a f -invariant line field
generated by X(x, y) = (1, σ(x, y)) . To prove that σu satisfies the inequalities 1. and
2. we define the closed subset X ⊆ C0 (Σu(f)) ,

X = { σ ∈ C0(Σu(f)) : ‖σ‖ ≤ ε and Lip(σ) ≤ 8 γ } ,

and show that Ff (X ) ⊆ X and Ff is a Lipschitz contraction on X . Then Ff has a
unique fixed point in X which must coincide with σu , therefore proving that σu ∈ X .
Let us now prove that Ff (X ) ⊆ X . Item 1. of lemma 4.2 immediately shows that
‖σ‖ ≤ ε implies ‖Ff (σ)‖ ≤ ε . Assume σ ∈ X . We have to see that σ∗ = Ff (σ) is also
Lipschitz with constant Lip(σ∗) ≤ 8 γ . Given (x, y) ∈ f(S0) and (x′, y′) ∈ f(S1) , we
have ∣∣σ∗(x, y)− σ∗(x′, y′)

∣∣ ≤ 2 |σ∗| ≤ 2 ε

‖(x− x′, y − y′)‖
∥∥(x− x′, y − y′)

∥∥
≤ 2 ε

ε/γ

∥∥(x− x′, y − y′)
∥∥ = 2 γ

∥∥(x− x′, y − y′)
∥∥ .

This inequality takes care of the case when the two points belong to different rectangles
f(Si) i = 0, 1 . If both (x, y) and (x′, y′) belong to the same f(Si) then, by inequalities
2. and 3. of the previous lemma, we have

|σ∗(x, y)− σ∗(x′, y′)|
‖(x− x′, y − y′)‖

≤
∥∥D(x,y)ρ

∥∥
f(Si)

+

∥∥∥∥∂ρ∂s
∥∥∥∥
f(Si)

Lip(σ)
∥∥Df−1∥∥

f(Si)

≤ 6 γ (1− α−1i ) +
e2 (γ+ε) (1−α

−1
i )

α2
i

8 γ αi

= 8 γ (
3

4
(1− α−1i ) + α−1i e2 (γ+ε) (1−α

−1
i )) ≤ 8 γ

Finally from item 2. of lemma 4.2 we get that Ff is a Lipschitz contraction with

constant k = max{α−10 , α−11 } . �

In the following three lemmas we will be dealing with a map f ∈ F(ε, γ) where ε > 0
and γ > 0 are small enough constants fixed according to lemmas 1. and 2.

Lemma 4.3. Each leaf F u0 ∈ Fu , resp. F s0 ∈ Fs , is the graph of a class C2 function
g0 : I0→R , F u0 = {(x, g0(x)) : x ∈ I0 } , resp. F s0 = {(g0(x), x) : x ∈ I0 } , such that
|g′0(x)| ≤ ε .
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Proof. Take one point (x0, y0) ∈ Λ and the unstable leaf F0 ∈ Fu through it. Since
the vector field Xu(x, y) = (1, σu(x, y)) is tangent to F0 at every point (x, y) ∈ F0 ,
the graph of the maximal solution g0 :I0→R of the Cauchy problem{

g ′0 (x) = σu(x, g0(x))
g0(x0) = y0

must coincide with F0 . By the previous lemma∣∣g ′0 (x)
∣∣ ≤ |σu| ≤ ε .

For stable leaves a similar proof holds. �

Lemma 4.4. Given F s, F̃ s ∈ Fs and F u0 , F
u
1 ∈ Fu with intersection points P0 =

(x0, y0) ∈ F s ∩ F u0 , P1 = (x1, y1) ∈ F s ∩ F u1 , P̃0 = (x̃0, ỹ0) ∈ F̃ s ∩ F u0 , and P̃1 =

(x̃1, ỹ1) ∈ F̃ s ∩ F u1 the following inequalities hold

(1) exp (−ε− 8 γ) ≤ |x0 − x̃0|
|x1 − x̃1|

≤ exp (ε+ 8 γ)

(2) exp (−ε− 8 γ) ≤ |y0 − y1|
|ỹ0 − ỹ1|

≤ exp (ε+ 8 γ)

Proof. Let g :I→R , g̃ : Ĩ→R , g0 :I0→R and g1 :I1→R be C2 functions such that

F s = {( g(y), y ) : y ∈ I } , F̃ s = {( g̃(y), y ) : y ∈ Ĩ } ,

F u0 = {(x, g0(x) ) : y ∈ I0 } , F u1 = {(x, g1(x) ) : y ∈ I1 } .
Using the mean value theorem and the fact that |g̃′| , |g ′1 | ≤ ε we have

|x1 − x̃1| ≤ |x1 − g̃(y1)|+ |g̃(y1)− x̃1|
≤ |x1 − g̃(y1)|+ ε |y1 − ỹ1|
≤ |x1 − g̃(y1)|+ ε2 |x1 − x̃1|

Therefore

|x1 − x̃1| ≤ (1− ε2)−1 |x1 − g̃(y1)| .
On the other hand, since for y ∈ I∩ Ĩ we have |y − y0| ≤ 1 , and by item 2 of lemma 4.1

|g(y)− g̃(y)| ≤ |g(y0)− g̃(y0)|+
∫ y

y0

|σs(g(s), s)− σs(g̃(s), s)| ds

≤ |x0 − g̃(y0)|+ 8 γ

∫ y

y0

|g(s)− g̃(s)| ds ,

using Gronwall inequality we obtain

|x1 − g̃(y1)| = |g(y1)− g̃(y1)| ≤ |x0 − g̃(y0)| exp (8 γ) ,

and so

|x1 − x̃1| ≤ (1− ε2)−1 exp (8 γ) |x0 − g̃(y0)| .
Finally using the mean value theorem again and the fact that |g̃′| , |g ′0 | ≤ ε we obtain

|x0 − g̃(y0)| ≤ |x0 − x̃0|+ |x̃0 − g̃(y0)|
≤ |x0 − x̃0|+ ε |ỹ0 − y0|
≤ |x0 − x̃0|+ ε2 |x̃0 − x0| = (1 + ε2) |x0 − x̃0|
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This proves that

|x1 − x̃1| ≤
1 + ε2

1− ε2
exp (8 γ) |x0 − x̃0| ≤ exp (8 γ + ε) |x0 − x̃0| .

Reversing the roles of x0, x̃0 and x1, x̃1 we obtain the opposite inequality, thus proving
item 1. A completely analogous calculation proves item 2. �

Figure 4. F s, F̃ s, F u0 , F
u
1

Lemma 4.5. Given two unstable leaves F u0 , F
u
1 ∈ Fu consider the functions of class

C2 g0 : I0→ R and g1 : I1→ R such that F0 = graph (g0) and F1 = graph (g1) and
define for i = 0, 1 φi :I0 ∩ Si→I1 by,

f (x, g0(x) ) = (φi(x), g1 φi(x) ) ∀x ∈ I0 ∩ Si .

Then φi is of class C2 and the following inequalities hold

(1) |φ′i(x)| ≥ αi e−(γ+ε)(1−α
−1
i )

(2) | log |φ′i(x)| − log |φ′i(y)| | ≤ 2 γ (1− α−1i ) |φi(x)− φi(y)|
A similar result holds for stable leaves.

Proof. Differentiating the identity that defines φi we get

Df(x,g0(x)) ( 1, σu(x, g0(x)) ) = φ′i(x) ( 1, σu(x, g1 φi(x)) )

Thus

φ′i(x) = (a+ b σu)(x, g0(x)) .

A simple estimation, using the mean value theorem, shows that∣∣φ ′i (x)
∣∣ ≥ |a| − ε2 (|a| − 1) ) ≥ αi

∣∣∣∣ aαi
∣∣∣∣ (1− ε2 (1− α−1i ) )

≥ αi e
−(γ+ε)(1−α−1

i ) .

Using the notation introduced in lemma 4.1 we can write the second derivative as

φ′′i (x) = (∂ua+ ∂ub σ
u + b ∂uσ

u) (x, g0(x))
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Thus, ∣∣φ′′i (x)
∣∣ ≤ |∂ua|+ ε |∂ub|+ |b| |∂uσu|
≤ (1 + ε) γ αi (αi − 1) + ε (1 + ε) γ (αi − 1) + ε (αi − 1) 8 γ

≤ (1 + 10 ε) γ αi (αi − 1) ,

and ∣∣∣∣ φ′′i (x)

φ′i(x)2

∣∣∣∣ ≤ e(γ+ε)(1−α−1
i )(1 + 10 ε) γ (1− α−1i ) ≤ 2 γ (1− α−1i ) .

Finally, given x, y ∈ I ∩Si write zt = t x+(1− t) y for t ∈ [0, 1] . Then using the mean
value theorem, and the fact that φ′i(z) has constant sign, we have∣∣log

∣∣φ′i(x)
∣∣− log

∣∣φ′i(y)
∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣φ′′i (zt)φ′i(zt)

∣∣∣∣ dt |x− y|
≤ 2 γ (1− α−1i )

∫ 1

0

∣∣φ′i(zt)∣∣ dt |x− y|
= 2 γ (1− α−1i )

∣∣∣∣∫ 1

0
φ′i(zt) dt (x− y)

∣∣∣∣
= 2 γ (1− α−1i ) |φi(x)− φi(y)| .

�

Proof of theorem 2 . We will estimate the distortion of (Ks, ψs) . The unstable case is
worked in the same way. Recall that the Cantor set Ks lies inside the unstable leaf
Iu∗ , which is the graph of a C2 function g∗ . Consider in Iu∗ the length induced by the
parameterization x 7→ (x, g∗(x)) . Distortion will be estimated w.r.t. this metric. For
notation convenience we will write ψ instead of ψs . Now, fix some symbolic sequence
(ν0, · · · , νn−1) ∈ {0, 1}n and the corresponding Cantor set

Ks(ν0, · · · , νn−1) =
n−1⋂
i=0

ψ−i (Iu∗ ∩ Sνi) .

We are going to estimate the distortion of the map ψn : Ks(ν0, · · · , νn−1) → Ks .
Take three points (x0, y0), (x̃0, ỹ0), (x̂0, ŷ0) ∈ Ks(ν0, · · · , νn−1) . Then for every i =
0, 1, · · · , n− 1 the three iterates

(xi, yi) = f i(x0, y0), (x̃i, ỹi) = f i(x̃0, ỹ0), (x̂i, ŷi) = f i(x̂0, ŷ0),

belong to the same rectangle Sνi . Defining

(x∗n, y
∗
n) = πs(xn, yn) = πs f

n(x0, y0) ,

(x̃∗n, ỹ
∗
n) = πs(x̃n, ỹn) = πs f

n(x̃0, ỹ0) ,

(x̂∗n, ŷ
∗
n) = πs(x̂n, ŷn) = πs f

n(x̂0, ŷ0) ,

our goal is to find the upper bound D(ε, γ) = 20 γ + 2 ε for the logarithm,

log
|x̃∗n − x∗n|
|x̂∗n − x∗n|

|x̂0 − x0|
|x̃0 − x0|

.

This expression is the sum of the following two logarithms:

log
|x̃∗n − x∗n|
|x̂∗n − x∗n|

|x̂n − xn|
|x̃n − xn|

= log
|x̃∗n − x∗n|
|x̃n − xn|

+ log
|x̂n − xn|
|x̂∗n − x∗n|

,
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that, by lemma 4.4, is dominated by 16 γ + 2 ε and

log
|x̃n − xn|
|x̂n − xn|

|x̂0 − x0|
|x̃0 − x0|

,

to be estimated next. Consider the sequence of unstable leaves recursively defined by
F0 = Iu∗ and Fi+1 = f(Fi∩Sνi) . For each i = 0, 1, · · · , n−1 let gi :Ii→R be the class
C2 function whose graph coincides with Fi and define φi :Ii ∩ Sνi→Ii+1 by

f (x, gi(x)) = (φi(x) , gi+1 φi(x) ) (x, gi(x)) ∈ Fi ∩ Sνi

as in lemma 4.5. Then the map Φ = φn−1 ◦ · · · φ1 ◦ φ0 satisfies

fn (x,Φ(x)) = ( Φ(x) , gn Φ(x) ) for (x, g0(x)) ∈ Ks(ν0, · · · , νn−1) ,

which shows that

xn = Φ(x0) , x̃n = Φ(x̃0) , and x̂n = Φ(x̂0) .

By the mean value theorem there are points ξ̃0 , between x̃0 and x0 , and ξ̂0 , between
x̂0 and x0 , such that

Φ′(ξ̃0) =
x̃n − xn
x̃0 − x0

and Φ′(ξ̂0) =
x̂n − xn
x̂0 − x0

.

Thus

log
|x̃n − xn|
|x̂n − xn|

|x̂0 − x0|
|x̃0 − x0|

= log

∣∣∣Φ′(ξ̃0)∣∣∣∣∣∣Φ′(ξ̂0)∣∣∣ ≤
∣∣∣ log

∣∣∣Φ′(ξ̃0)∣∣∣− log
∣∣∣Φ′(ξ̂0)∣∣∣ ∣∣∣

≤
n−1∑
i=0

∣∣∣ log
∣∣∣φ′i(ξ̃i)∣∣∣− log

∣∣∣φ′i(ξ̂i)∣∣∣ ∣∣∣
≤

n−1∑
i=0

2 γ (1− α−1νi )
∣∣∣φi(ξ̃i)− φi(ξ̂i) ∣∣∣

≤
n−1∑
i=0

2 γ (1− α−1νi )
∣∣∣ξ̃i+1 − ξ̂i+1

∣∣∣
where ξ̃i = φi−1◦· · ·◦φ0(ξ̃0) and ξ̂i = φi−1◦· · ·◦φ0(ξ̂0) . Now for each i = 0, 1, · · · , n−1
define

λi = α−1νi e
(γ+ε)(1−α−1

νi
) (0 < λi < 1)

From lemma 4.5 one has,∣∣∣ξ̃i+1 − ξ̂i+1

∣∣∣ ≤ λi+1 · · · λn−1
∣∣∣ξ̃n − ξ̂n∣∣∣︸ ︷︷ ︸
≤1

≤ λi+1 · · · λn−1 .

A simple computation gives (
1− α−1νi

)
≤ 1− λi

1− 2 (γ + ε)
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and so

log
|x̃n − xn|
|x̂n − xn|

|x̂0 − x0|
|x̃0 − x0|

≤
n−1∑
i=0

2 γ (1− α−1νi )
∣∣∣ξ̃i+1 − ξ̂i+1

∣∣∣
≤

n−1∑
i=0

2 γ

1− 2 (γ + ε)
(1− λi)λi+1 · · · λn−1

=
2 γ

1− 2 (γ + ε)
(1− λ0 λ1 · · · λn−1) ≤ 3 γ

This gives the desired bound D(ε, γ) = 20 γ + 2 ε for the logarithm,

log
|x̃∗n − x∗n|
|x̂∗n − x∗n|

|x̂0 − x0|
|x̃0 − x0|

≤ 16 γ + 2 ε+ 3 γ ≤ 20 γ + 2 ε

�

5. The Melnikov Function

Let Xδ and fδ,µ : R2 → R2 be smooth families of Hamiltonian vector fields and
symplectic maps satisfying hypothesis H1) and H2) of section 2.

The first lemma shows that the Melnikov function is unique up to time shifts.

Lemma 5.1. Given two smooth families qδ(t) and q̃δ(t) of homoclinic solutions parametriz-
ing the connection γδ , if we denote the respective Melnikov functions by Mδ(t) and

M̃δ(t) then for some smooth function τ(δ) we will have for all t ∈ R , M̃δ(t) =
Mδ(t+ τ(δ)) .

Proof. Since qδ(t) and q̃δ(t) parametrize the same orbit, for some τ(δ) and all t ∈ R ,

q̃δ(t) = qδ(t+ τ(δ)) . It follows that M̃δ(t) = Mδ(t+ τ(δ)) . �

Lemma 5.2. Given open sets I ⊆ R , U ⊆ R2 , and smooth families of maps γsδ,µ, γ
u
δ,µ :

I→U and Hδ,µ :U ⊆ R2→R such that:

(1) δ Xδ = J ∇Hδ,0 on U ,
(2) fδ,µ is the time one map of J ∇Hδ,µ on U ,
(3) γsδ,0(t) = γuδ,0(t) = qδ(t) ,

(4) γsδ,µ and γuδ,µ are, respectively, parametrizations of W s(Pδ,µ) and W u(Pδ,µ).

Then, for all t ∈ I , the Melnikov function is given by

Mδ(t) =
∂

∂µ

(
Hδ,µ(γuδ,µ(t))−Hδ,µ(γsδ,µ(t))

)
µ=0

.

Proof. From item 1. it follows that Hδ,0 = Hδ + Const where Hδ is the family of
Hamiltonians that appears in definition 2.1. Write

∆δ(t) =
∂

∂µ

(
Hδ,µ(γuδ,µ(t))−Hδ,µ(γsδ,µ(t))

)
µ=0

.
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Then

∆δ(t) =
∂H

∂µ

(
δ, 0, γuδ,0(t)

)
− ∂H

∂µ

(
δ, 0, γsδ,0(t)

)
+ ∇Hδ,0

(
γuδ,0(t)

)
· ∂
∂µ

(
γuδ,µ(t)

)
µ=0

− ∇Hδ,0

(
γsδ,0(t)

)
· ∂
∂µ

(
γsδ,µ(t)

)
µ=0

=
∂H

∂µ
(δ, 0, qδ(t))−

∂H

∂µ
(δ, 0, qδ(t))

+ ∇Hδ,0 (qδ(t)) ·
∂

∂µ

(
γuδ,µ(t)− γsδ,µ(t)

)
µ=0

= ∇Hδ,0 (qδ(t)) ·
∂

∂µ

(
γuδ,µ(t)− γsδ,µ(t)

)
µ=0

Since γuδ,µ(t) and quδ,µ(t) , resp. γsδ,µ(t) and qsδ,µ(t) , parametrize the same invariant

manifolds we can find smooth families of reparametrizations σuδ,µ(t) and σsδ,µ(t) such

that γuδ,µ(t) = quδ,µ

(
σuδ,µ(t)

)
and γsδ,µ(t) = qsδ,µ

(
σsδ,µ(t)

)
. Of course σuδ,0(t) = σsδ,0(t) = t

since γuδ,0(t) = γsδ,0(t) = quδ,0(t) = qsδ,0(t) = qδ(t) . Therefor

∂

∂µ

(
γuδ,µ(t)− γsδ,µ(t)

)
µ=0

=
∂

∂µ

(
quδ,µ

(
σuδ,µ(t)

)
− qsδ,µ

(
σsδ,µ(t)

))
µ=0

=
∂qu

∂µ

(
δ, 0, σuδ,0(t)

)
− ∂qs

∂µ

(
δ, 0, σsδ,0(t)

)
+
∂qu

∂t

(
δ, 0, σuδ,0(t)

) ∂σu

∂µ
(δ, 0, t)

− ∂qs

∂t

(
δ, 0, σsδ,0(t)

) ∂σs

∂µ
(δ, 0, t)

=
∂

∂µ

(
quδ,µ(t)− qsδ,µ(t)

)
µ=0

+ q ′δ(t)

(
∂σu

∂µ
− ∂σs

∂µ

)
(δ, 0, t)

and so

∆δ(t) = ∇Hδ,0 (qδ(t)) ·
∂

∂µ

(
quδ,µ(t)− qsδ,µ(t)

)
µ=0

+

(
∂σu

∂µ
− ∂σs

∂µ

)
∇Hδ (qδ(t)) · q ′δ(t)︸ ︷︷ ︸

=0

= Mδ(t) .

�

Proposition 5.1. The Melnikov function of fδ,µ , Mδ(t) , is periodic in t with period
one Mδ(t+ 1) = Mδ(t) , vanishing with all its δ-derivatives at δ = 0 ,i.e. given N ∈ N,
if δ > 0 is small enough then for all t ∈ R |Mδ(t)| ≤ δN .

Proof. Choose Hδ,µ according to items 1. and 2. of proposition 5.2 and take γsδ,µ, γ
u
δ,µ :

R→R2 linearizing the invariant manifolds of Pδ,µ, in the sense that

fδ,µ(γsδ,µ(t)) = γsδ,µ(t+ 1) , fδ,µ(γuδ,µ(t)) = γuδ,µ(t+ 1) ,
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and such that γsδ,0(t) = γuδ,0(t) = qδ(t) . Then Hδ,µ(γuδ,µ(t))−Hδ,µ(γsδ,µ(t)) is periodic in
t with period one, which according to lemma 5.2 ensures the same periodicity for the
Melnikov function.

The second statement follows from the results in [FS1-90]. �

The Melnikov function is a symplectic invariant.

Proposition 5.2. Let ψδ,µ :R2→R2 be a smooth family of symplectic change of vari-

ables and consider the family fδ,µ expressed in the new coordinates, f̃δ,µ = ψδ,µ ◦ fδ,µ ◦
ψ−1δ,µ . Given the family of homoclinic solutions qδ(t) and the correspondent family in

the new coordinates q̃δ(t) = ψδ,0 ◦ qδ(t) . Then the Melnikov functions of f̃δ,µ w.r.t.
q̃δ(t) is equal to the Melnikov function of fδ,µ w.r.t. qδ(t) .

Proof. Choose families Hδ,µ(x, y) , γuδ,µ(t) and γsδ,µ(t) under the hypothesis of proposi-

tion 5.2 and take Ũ such that Ũ ⊆ ψ−1δ,µ (U) for all (δ, µ) .

Then, since fδ,µ is the time one map of J ∇Hδ,µ on U and ψδ,µ is symplectic, f̃δ,µ =

ψδ,µ ◦ fδ,µ ◦ ψ−1δ,µ is the time one map of J ∇ H̃δ,µ on Ũ , where H̃δ,µ = Hδ,µ ◦ ψ−1δ,µ . On

the other hand, since γuδ,µ(t) and γsδ,µ(t) parametrize the invariant manifolds W u(Pδ,µ)

and W s(Pδ,µ) , respectively, the families of curves γ̃uδ,µ = ψδ,µ ◦ γuδ,µ and γ̃sδ,µ = ψδ,µ ◦
γsδ,µ are parametrizations of the correspondent invariant manifolds of the fixed point

P̃δ,µ = ψδ,µ(Pδ,µ) of f̃δ,µ . Of course γ̃uδ,0(t) = ψδ,0(γ
u
δ,0(t)) = ψδ,0(qδ(t)) = q̃δ(t) and

similarly γ̃sδ,0(t) = q̃δ(t) . Thus H̃δ,µ , γ̃uδ,µ and γ̃sδ,µ fulfill conditions 1.,2.,3., and 4. of
proposition 5.2. The invariance then follows from this proposition, since

H̃δ,µ

(
γ̃uδ,µ(t)

)
− H̃δ,µ

(
γ̃sδ,µ(t)

)
= Hδ,µ

(
γuδ,µ(t)

)
−Hδ,µ

(
γsδ,µ(t)

)
.

�

6. The Return Map

We are going to construct a return map, of fδ,µ ’s iterates along the homoclinic con-
nection, to a small neighborhood of the fixed point Pδ,µ .

Let us introduce now some convenient terminology. Define N to be the class of all
subsets of the (δ, µ)-plane which have the form U∩]0,+∞[2 where U is a neighborhood
of a segment line {(δ, µ) : µ = 0 , 0 < δ < δ0 } for some small δ0 > 0 . Any finite
intersection of elements in N is again in N and any union of elements in N belongs to
N . In other words N is a filter of subsets of ]0,+∞[2.

The construction of the return map will work for all parameters (δ, µ) in some small
enough N ∈ N . First choose any zero of Mδ(t) with negative derivative. By the implicit
function theorem we can choose these zeros depending smoothly on δ . There is a smooth
function δ 7→ t(δ) , δ > 0, such that

Mδ(t(δ)) = 0 and
d

dt
Mδ(t(δ)) < 0 .

Redefining the Melnikov function, for instance doing a time shift in the family of solu-
tions qδ(t) , we may just assume that t(δ) = 0 for all δ . Define Hδ,0 = qδ(0) ∈ γδ .
Then, as we have pointed out in remark 2.3, we can extend this family, continuously,
to a family of transversal homoclinic points Hδ,µ ∈W s(Pδ,µ)∩W u(Pδ,µ) defined for all
(δ, µ) in some open set N ∈ N .
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Next we take smooth (δ, µ)-dependent coordinates reducing the families Xδ and fδ,µ
to their Birkhoff normal form around P .

Proposition 6.1. In some small enough N ∈ N there is a smooth family of symplectic
coordinates {ψδ,µ : (δ, µ) ∈ N } , defined in a neighborhood of P0 and conjugating both
families fδ,µ and Xδ to their Birkhoff normal forms,

Lδ,µ(x, y) = ψδ,µ ◦ fδ,µ ◦ ψ−1δ,µ (x, y) =
(
λ(x y)x , λ(x y)−1 y

)
,

where λ(t) = λδ,µ(t) = λ(δ, µ, t) > 1 is a smooth function of (δ, µ, t) , and

Dψδ,0

(
ψ−1δ,0 (x, y)

)
Xδ

(
ψ−1δ,0 (x, y)

)
= ( x log λδ,0(xy) , −y log λδ,0(xy) ) .

Proof. The problem of reducing a C∞ volume preserving local map f : (Rn, 0)→(Rn, 0)
to a normal form is addressed in [St-58]. The two dimensional case, of area preserving
local maps at hyperbolic fixed points, is a special case to which theorem 1. in [St-58]
applies. One has to check, going through the proof of this theorem, that all choices
necessary to bring together Xδ ( when µ = 0 ) and fδ,µ to their normal forms, first
on the formal level and then on the C∞ level, can be made smoothly in (δ, µ) . �

One could avoid this proposition working with the Birkhoff normal form of second
degree, i.e where λδ,µ(t) is a polynomial of second degree in t , and dealing with a
remainder of order

(
xO(x3y3) , y O(x3y3)

)
. Since the construction of the basic set

will be done remarkably close to the axis, the stable and unstable manifolds of P , the
remainder errors can be controlled and proved to be negligible.

These coordinates extend smoothly to a multiple valued map defined in a neighbor-
hood of W s(Pδ,µ)∪W u(Pδ,µ) . Scaling, if necessary, we may assume that the homoclinic
point Hδ,µ has coordinates (1, 0) and (0, 1) .

For each (δ, µ) ∈ N let Gδ,µ :
(
R2, (0, 0)

)
→
(
R2, (0, 0)

)
,

Gδ,µ(x, y) = ( g1(δ, µ, x, y) , g2(δ, µ, x, y) )

be the transition map from a neighborhood of (1, 0) onto a neighborhood of (0, 1) , map-
ping (1, 0) to (0, 1) . For each (x, y) close to (1, 0) , the vectors (x, y) and Gδ,µ(x, y)
represent coordinates of the same point. This transition map must, of course, satisfy
the following compatibility relation,

(3) Lδ,µ ◦Gδ,µ = Gδ,µ ◦ Lδ,µ .
Denote the components of the inverse map by,

G−1δ,µ(x, y) = ( h1(δ, µ, x, y) , h2(δ, µ, x, y) ) .

Lemma 6.1. For all (δ, µ) , x and y , where the functions below are defined,
1 a) g1(δ, 0, x, 0) = 0 , 1 b) g2(δ, 0, x, 0) = x−1 ,

1 c)
∂g2
∂x

(δ, 0, x, 0) = −x−2 = −1 +O(x− 1) ,

1 d)
∂g1
∂y

(δ, 0, x, 0) = x−2 = 1 +O(x− 1) ,

2 a) h1(δ, 0, 0, y) = y−1 , 2 b) h2(δ, 0, 0, y) = 0 ,

2 c)
∂h2
∂x

(δ, 0, 0, y) = y−2 = 1 +O(y − 1) ,
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2 d)
∂h1
∂y

(δ, 0, 0, y) = −y−2 = −1 +O(y − 1) ,

Proof. Items a) and b) follow from the compatibility relation (3) plus the fact that the
stable and unstable manifolds of Pδ,0 form a saddle-connection. These two items in
turn imply c) and d) using the symplectic character of Gδ,µ . �

The following quantity will be related to the angle at the homoclinic point Hδ,µ . Define

(4) θ = θδ = − ∂2g1
∂µ ∂x

(δ, 0, 1, 0) = − ∂2h2
∂µ ∂y

(δ, 0, 0, 1) .

The equality between these two partial derivatives comes from the symplectic character
of G .

Lemma 6.2. The function δ 7→ θδ is strictly positive and vanishes with all its deriva-
tives at δ = 0 . Moreover there is a constant C > 0 and some open set N ∈ N such that
for all (δ, µ) ∈ N and all x or y in [λ−1, λ] , with λ = λδ,µ(0) ,

1 a) | g1(δ, µ, x, 0) | ≤ C θδ µ log λ , 1 b) |h2(δ, µ, 0, y) | ≤ C θδ µ log λ ,

2 a)

∣∣∣∣ ∂g1∂x (δ, µ, x, 0)

∣∣∣∣ ≤ C θδ µ , 2 b)

∣∣∣∣ ∂h2∂y
(δ, µ, 0, y)

∣∣∣∣ ≤ C θδ µ ,
3 a)

∣∣∣∣ ∂2g1∂x2
(δ, µ, x, 0)

∣∣∣∣ ≤ C θδ µ

log λ
, 3 b)

∣∣∣∣ ∂2h2∂y2
(δ, µ, 0, y)

∣∣∣∣ ≤ C θδ µ

log λ
.

Proof. Define σδ,µ(t) =

∫ t

0
log λδ,µ(s) ds and Hδ,µ(x, y) = σδ,µ(x y) . The flow of the

Hamiltonian vector field J ∇Hδ,µ = (x log λδ,µ(xy),−y log λδ,µ(xy)) is easily seen to

be φ tδ,µ(x, y) =
(
λδ,µ(xy)t x, λδ,µ(xy)−ty

)
. Thus items 1. and 2. of proposition 5.2 are

automatically fulfilled. We will compute the Melnikov function in two different ways
using this proposition.

First consider the homoclinic solution qδ(t) =
(
0, λδ,0(0)−t

)
, which satisfies qδ,0(0) =

(0, 1) , and define γuδ,µ(t) = Gδ,µ
(
λδ,µ(0)t, 0

)
and γsδ,µ(t) =

(
0, λδ,µ(0)−t

)
. Clearly these

parametrizations satisfy the conditions 3. and 4. of proposition 5.2. Define also

ζδ,µ(t) = g1
(
δ, µ, λδ,µ(0)t, 0

)
g2
(
δ, µ, λδ,µ(0)t, 0

)
.

Then Hδ,µ(γsδ,µ(t)) = 0 and

(Ma) Mδ(t) =
∂

∂µ

(
Hδ,µ(γuδ,µ(t))

)
µ=0

=
∂

∂µ
(σδ,µ ◦ ζδ,µ (t))µ=0 .

Alternatively consider the homoclinic solution qδ(t) =
(
λδ,0(0)t, 0

)
, which satisfies

qδ,0(0) = (1, 0) , and define γuδ,µ(t) =
(
λδ,µ(0)t, 0

)
and γsδ,µ(t) = G−1δ,µ

(
0, λδ,µ(0)−t

)
.

Again these parametrizations satisfy the conditions 3. and 4. of proposition 5.2. Thus
defining

ηδ,µ(t) = h1
(
δ, µ, 0, λδ,µ(0)−t

)
h2
(
δ, µ, 0, λδ,µ(0)−t

)
,

in this case Hδ,µ(γuδ,µ(t)) = 0 and

(Mb) Mδ(t) =
∂

∂µ

(
−Hδ,µ(γsδ,µ(t))

)
µ=0

= − ∂

∂µ
(σδ,µ ◦ ηδ,µ (t))µ=0 .
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Next we are going to exploit these relations to translate the assumptions on the
Melnikov function into conditions on the components g1, g2 of Gδ,µ and h1, h2 of G−1δ,µ.

Actually we will only estimate 1a, 2a and 3a out of the relation (Ma). An entirely
analogous calculation proves 1b,2b and 3b from the relation (Mb). Writing λ = λδ,µ(0)
we have

Mδ(t) = σ ′δ,0 (ζδ,0(t))
∂ζ

∂µ
(δ, 0, t) +

∂σ

∂µ
(δ, 0, ζδ,0(t))

= log λ

(
∂g1
∂µ

(δ, 0, λt, 0) g2(δ, 0, λ
t, 0) + g1(δ, 0, λ

t, 0)
∂g2
∂µ

(δ, 0, λt, 0)

)
(5)

= λ−t log λ
∂g1
∂µ

(δ, 0, λt, 0)(6)

Notice that by lemma 6.1 g1(δ, 0, λ
t, 0) = 0 , which implies ζδ,0(t) = 0 . By definition of

σδ,µ , σ ′δ,0(ζδ,0(t)) = σ ′δ,0(0) = log λ . Notice also that

∂σ

∂µ
(δ, 0, ζδ,0(t)) =

∂σ

∂µ
(δ, 0, 0) = 0

because σ(δ, µ, 0) = 0 for all µ .

M ′
δ (t) = −λ−t log2 λ

∂g1
∂µ

(δ, 0, λt, 0) + log2 λ
∂2g1
∂µ∂x

(δ, 0, λt, 0)

= log2 λ

(
∂2g1
∂µ∂x

(δ, 0, λt, 0)− λ−t∂g1
∂µ

(δ, 0, λt, 0)

)
(7)

For t = 0 one has
∂g1
∂µ

(δ, 0, 1, 0) = 0 since g1(δ, µ, 1, 0) = 0 for all µ . Thus by (4)

0 > M ′
δ (0) = log2 λ

∂2g1
∂µ∂x

(δ, 0, 1, 0) = −θδ log2 λ ,

which proves that θδ > 0 . From remark 2.4 it follows that δ 7→ θδ has all its derivatives
vanishing at δ = 0 . Using the notation introduced in (1) we have for some constant
C > 0 , Mi(δ) ≤ C |M ′

δ (0)| = C θδ log2 λ for i = 0, 1, 2 . Define now,

Λi(δ) = max
λ−1≤x≤λ

∣∣∣∣∂i+1g1
∂µ∂x

(δ, 0, x, 0)

∣∣∣∣ i = 0, 1, 2 .

Equality (5) implies that

Λ0(δ) ≤
M0(δ)

log λ
≤ C θδ log λ ,

which implies 1a, taking µ small enough. From (7) we get

Λ1(δ) ≤
M1(δ)

log2 λ
+ Λ0(δ) ≤ C ′ θδ ,

implying that 2a holds for all (δ, µ) ∈ N in some small N ∈ N . Finally, differentiat-
ing (7) we have

M ′′
δ (t) = log3 λ

(
λt

∂3g1
∂µ∂x2

− ∂2g1
∂µ∂x

+ λ−t
∂g1
∂µ

)
(δ, 0, λt, 0) ,
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and therefore

Λ2(δ) ≤
M2(δ)

log3 λ
+ Λ1(δ) + Λ0(δ) ≤ C ′′

θδ
log λ

,

which implies 3a. �

Lemma 6.3. For some constant C > 0 and some small enough open set N ∈ N the
following inequalities hold for all (δ, µ) ∈ N and all t ∈ [0, 1] ,

(1) log λδ,µ(t) ≥ C−1δ ,

(2)
∣∣λ′δ,µ(t)

∣∣ ≤ C δ ,
(3)

∣∣λ′′δ,µ(t)
∣∣ ≤ C δ ,

where λ = λδ,µ(0) .

Proof. Let φ tδ(x, y) =
(
Λδ(xy)t x,Λδ(xy)−ty

)
be the Birkhoff normal form, around Pδ ,

of Xδ’s Hamiltonian flow. We have fδ,0 = φ δδ , the time δ map of Xδ. Therefor
λδ,0(t) = exp (δΛδ(t)) and for some constant C > 0 we must have, log λδ,0(t) ≥ 2C−1δ ,∣∣∣λ′δ,0(t)∣∣∣ ≤ C δ/2 and

∣∣∣λ′′δ,0(t)∣∣∣ ≤ C δ/2 . Thus taking N ∈ N small enough the inequal-

ities above hold for all (δ, µ) ∈ N with C instead of C/2. �

We define the half return time by

(8) n(δ, µ) = the integer part of
− log

(
µ θδ log3/2 λ

)
2 log λ

,

where λ = λδ,µ(0) . Because θδ has infinite zero jet at δ = 0 , µ θδ log3/2 λ → 0 as
(δ, µ)→ (0, 0) and therefore lim

(δ,µ)→(0,0)
n(δ, µ) = +∞ .

Lemma 6.4. There is N ∈ N such that, if we write λ = λδ,µ(0) and n = n(δ, µ) ,
then we have

(1) λ−2n = (1 +O(δ)) µ θδ log3/2 λ ,

(2) nµ θδ = o
(√

µ θδ

)
,

(3)

(
λδ,µ(t)

λδ,µ(0)

)2n

= 1 +O
(√

µ θδ

)
, for 0 ≤ t ≤ λδ,µ(t)−2n .

Proof. By definition of n(δ, µ) there is some s ∈ [0, 1] such that

n+ s =
− log

(
µ θδ log3/2 λ

)
2 log λ

which implies

λ−2 (n+s) = λ−2nλ−2 s = µ θδ log3/2 λ .

Since λ2 s = 1 +O(δ) , this proves item 1.
For the second item it is enough proving that

lim
(δ,µ)→(0,0)

n(δ, µ)
√
µ θδ = 0 .



PERSISTENT HOMOCLINIC TANGENCIES 27

Because θδ has infinite zero jet at δ = 0 , we see that
√
µ θδ

2 log λ
�
(
µ θδ log3/2 λ

)1/4
.

Thus

n
√
µ θδ � −

(
µ θδ log3/2 λ

)1/4
log
(
µ θδ log3/2 λ

)
,

which converges to zero as (δ, µ)→ (0, 0) . Note that lim
x→0

x1/4 log x = 0 .

If δ > 0 is small enough, because by lemma 6.3 the variation of λδ,µ is small, there

is some small constant d > 0 such that λδ,µ(t)−1 ≤ λδ,µ(0)−d . Therefor∣∣∣∣∣log

(
λδ,µ(t)

λδ,µ(0)

)2n
∣∣∣∣∣ ≤ 2n |log λδ,µ(t)− log λδ,µ(0)|

≤ 2n

∣∣∣λ′δ,µ∣∣∣
λδ,µ

t ≤ 2nC δ λδ,µ(t)−2n

≤ 2nC2 log λδ,µ(0)
(
λδ,µ(0)−2n

)d
≤ −C2

(
µ θδ log3/2 λ

)d
log
(
µ θδ log3/2 λ

)
≤ C2 (µ θδ)

2 d/3 → 0

Thus for small N ∈ N , 0 ≤ t ≤ λδ,µ(t)−2n ≤ 2λδ,µ(0)−2n � δ which means that we

may take d > 0 above to be much closer to 1 and still have λδ,µ(t)−1 ≤ λδ,µ(0)−d . For

instance if we take d = 3
4 we will end up with∣∣∣∣∣log

(
λδ,µ(t)

λδ,µ(0)

)2n
∣∣∣∣∣ ≤ (µ θδ)

2
3

3
4 =

√
µ θδ .

�

Latter, in section 8, we will find disjoint rectangles Sδ,µ(0) ⊆ [0, λ−n+1]2 and

Sδ,µ(1) ⊆

{
(x, y) : 0 ≤ y < λ−n+1 and |x− 1| ≤ 2

log3/2 λ

λ2n

}
,

with n = n(δ, µ) , λ = λδ,µ(0) , and define the Return Map as

Tδ,µ(x, y) =

{
Lδ,µ(x, y) if (x, y) ∈ Sδ,µ(0)

Ln
δ,µ ◦Gδ,µ ◦ Ln

δ,µ(x, y) if (x, y) ∈ Sδ,µ(1)
.

7. Rescaling Coordinates

In this section we introduce coordinates that will be used to scale the domain of the
return map up to the unit square. For all (δ, µ) ∈ N in some small enough N ∈ N we
define the scaling map Φδ,µ :R2→R2

Φδ,µ(x, y) =
(
λδ,µ(xy)n(δ,µ)x , λδ,µ(xy)n(δ,µ)y

)
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The product of Φδ,µ’s components, λδ,µ(xy)2nx y , is a function of the product x y .

Therefor the inverse map is Φ−1δ,µ :R2→R2 , given by

Φ−1δ,µ(x, y) =
(
λδ,µ(tδ,µ(xy))−n(δ,µ)x , λδ,µ(tδ,µ(xy))−n(δ,µ)y

)
where tδ,µ(s) is defined implicitly by tδ,µ(0) = 0 and

(9) λδ,µ(tδ,µ(s)) tδ,µ(s) = s for all s ∈ [0, 2] .

Lemma 7.1. For some constant C > 0 , some open set N ∈ N and all s ∈ [0, 2] ,

|tδ,µ(s)| ,
∣∣t ′δ,µ(s)

∣∣ and
∣∣t ′′δ,µ(s)

∣∣ ≤ C µθδ log3/2 λδ,µ(0) .

Proof. By lemma 6.4, items 1. and 3. , we have

0 ≤ tδ,µ(s) ≤ s λδ,µ(tδ,µ(s))−2n ≤ 2
(

1 +O(
√
µ θδ)

)
λδ,µ(0)−2n

≤ C µθδ log3/2 λ .

Differentiating relation 9 , we obtain

2nλ (t(s))2n−1 λ′ (t(s)) t′(s) t(s) + λ (t(s))2n t′(s) = 1 ,

and therefore,

(∗) t′(s)

(
2n

λ′ (t(s))

λ (t(s))
s+ λ (t(s))2n

)
= 1 ,

which implies 0 ≤ λ (t(s))2n

2
t′(s) ≤ 1 , and so

0 < t′(s) ≤ 2λ (t(s))−2n ≤ C µθδ log3/2 λ .

Differentiating now (∗) we obtain

t′′(s)
(
O(n) + λ (t(s))2n

)
+ t′(s)O(n) = 0 ,

which implies ∣∣t′′(s)∣∣ ≤ O(n) t′(s)

λ (t(s))2n +O(n)
≤ C nµ θδ

λ (t(s))2n

≤ C µθδ log3/2 λ .

�

We now scale the return map to the unit square, setting T̃δ,µ = Φδ,µ ◦ Tδ,µ ◦ Φ−1δ,µ .

The first branch is L̃δ,µ = Φδ,µ ◦ Lδ,µ ◦ Φ−1δ,µ . We will analyze it in the larger square

S̃0 = [0, 2]2 . Define

λ̃(s) = λ̃δ,µ(s) = λ̃(δ, µ, s) := λδ,µ ◦ tδ,µ (s) .

Then it is easily verified that

(10) L̃δ,µ(x, y) =
(
λ̃δ,µ(x y)x , λ̃δ,µ(x y)−1 y

)
.

The second branch of T̃δ,µ is just,

G̃δ,µ = Φδ,µ ◦ Ln
δ,µ ◦Gδ,µ ◦ Ln

δ,µ ◦ Φ−1δ,µ .
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To compute G̃δ,µ and its inverse G̃−1δ,µ we need the auxiliary functions

p(x, y) = pδ,µ(x, y) := g1

(
x, λ̃(xy)−2ny

)
g2

(
x, λ̃(xy)−2ny

)
r(x, y) = rδ,µ(x, y) := h1

(
λ̃(xy)−2nx, y

)
h1

(
λ̃(xy)−2nx, y

)
where λ̃ = λ̃δ,µ , g1(·, ·) = g1(δ, µ, ·, ·) , g2(·, ·) = g2(δ, µ, ·, ·) , h1(·, ·) = h1(δ, µ, ·, ·) ,
h2(·, ·) = h2(δ, µ, ·, ·) and n = n(δ, µ) . Then, with these notation, we do the substitu-
tions and compute the following expressions,

(11) G̃δ,µ(x, y) =
(

(λ ◦ p (x, y))2n g1

(
x, λ̃(xy)−2ny

)
, g2

(
x, λ̃(xy)−2ny

))
(12) G̃−1δ,µ(x, y) =

(
h1

(
λ̃(xy)−2nx, y

)
, (λ ◦ r (x, y))2n h2

(
λ̃(xy)−2nx, y

))
.

Notice that for all (δ, µ) ,

(13) G̃δ,µ(1, 0) = (0, 1) .

We will analyze Gδ,µ and G−1δ,µ respectively on the following rectangles

S̃1 =
{

(x, y) : |x− 1| ≤ 2 log3/2 λ and 0 ≤ y ≤ 2
}
,

S̃′1 =
{

(x, y) : 0 ≤ x ≤ 2 and |y − 1| ≤ 2 log3/2 λ
}
,

to which all subsequent estimates on the derivatives of Gδ,µ and G−1δ,µ will refer.

Lemma 7.2. For some small enough N ∈ N and some constant C > 0 we have for all
(x, y) ∈ S̃1

1 |p(x, y)| ≤ C µθδ log3/2 λ

2

∣∣∣∣∂p∂x(x, y)

∣∣∣∣ ≤ C µθδ
3

∣∣∣∣∂p∂y (x, y)

∣∣∣∣ ≤ C µθδ log3/2 λ

4

∣∣∣∣∂2p∂x2
(x, y)

∣∣∣∣ ≤ C µθδ
log λ

where, as usual, λ = λδ,µ(0) . Similar inequalities hold for all (x, y) ∈ S̃′1 if we change

p to r and each derivative with respect to ∂
∂x by the correspondent derivative with

respect to ∂
∂y .

Proof. Once again because the two cases are entirely similar we will only prove the
inequalities corresponding to the function p(x, u) . Consider the differential operators

Id, ∂
∂x ,

∂
∂y , and ∂2

∂x2
. If D stands for any of these operators and i = 1, 2 then of course∣∣∣Dgi(δ, µ, x, λ̃(xy)−2ny)
∣∣∣ is bounded by some constant independent of (δ, µ) . On the
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other hand for g1 and the ∂x derivatives we can get much better estimates using the
mean value theorem,

Dg1(δ, µ, x, λ̃
−2ny) = Dg1(δ, µ, x, 0) +

∂

∂y
(Dg1) (· · · )λ̃−2ny

= Dg1(δ, µ, x, 0) +O
(
λ̃−2n

)
= Dg1(δ, µ, x, 0) +O

(
µ θδ log3/2 λ

)
,(14)

and the correspondent estimates of lemma 6.2. In particular we see at once that item
1a must hold. To estimate higher derivatives note that, using lemmas 6.3 and 7.1, we
have

(15)
∣∣∣λ̃ ′δ,µ(s)

∣∣∣ =
∣∣λ ′δ,µ(s) t′(s)

∣∣ = O(µ θδ log3/2 λ) and

(16)
∣∣∣λ̃ ′′δ,µ(s)

∣∣∣ ≤ ∣∣λ ′′δ,µ(s)
∣∣ t′(s)2 +

∣∣λ ′(t(s)) t′′(s)∣∣ = O(µ θδ log3/2 λ) .

Therefor

∂p

∂x
(x, y) =

∂g1
∂x

(x, λ̃−2ny) g2(x, λ̃
−2ny) + · · ·

∼ ∂g1
∂x

(x, 0) + · · · = O(µ δ) ,

where above, and below during this proof, the dots mean terms of lesser order.

∂p

∂y
(x, y) =

∂g1
∂y

(x, λ̃−2ny) g2(x, λ̃
−2ny)

∂

∂y

(
λ̃−2ny

)
+ · · ·

∼ ∂

∂y

(
λ̃−2ny

)
+ · · · = λ̃−2n

(
1− 2n y

λ̃′

λ̃

)
+ · · ·

= O(λ̃−2n) = O(µ θδ log3/2 λ)

∂2p

∂x2
(x, y) =

∂2g1
∂x2

(x, λ̃−2ny) g2(x, λ̃
−2ny) + · · ·

∼ ∂2g1
∂x2

(x, 0) + · · · = O

(
µ θδ
log λ

)
We have been using above the fact that O(λ̃−2n) = O

(
µ θδ log3/2 λ

)
which follows

from item 1 of lemma 6.4. We have also used also the relations g2 ∼ 1 and ∂g1
∂y ∼ 1

which follow from items 1b and 1d of lemma 6.1.
�

8. The Basic Set

The goal of this section is to prove that the return map T̃δ,µ belongs to some class
F ( ε(δ, µ), γ(δ, µ) ) , see definition 4.1, where ε(δ, µ) and γ(δ, µ) tend to zero as (δ, µ)→
(0, 0) . Notice that since both branches of the return map T̃δ,µ are defined as rescaled
iterates of fδ,µ , the corresponding basic set Λδ,µ , viewed in the coordinates Φδ,µ , is
also part of a basic set of the diffeomorphism fδ,µ , namely ∪2ni=0f

i
δ,µ (Λδ,µ) , where n =

n(δ, µ) . Using the distortion bounds of theorem 2, we prove that lim
(δ,µ)→(0,0)

τLR(Λδ,µ) = +∞ .
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Let us import the notation used in definition 4.1 and write the Jacobian matrices of
L̃δ,µ and its inverse L̃−1δ,µ as

DL̃δ,µ =

(
a0 b0
c0 d0

)
and DL̃−1δ,µ =

(
d̃0 −b̃0
−c̃0 ã0

)
,

over the square S̃0 = [0, 2]2 .

Lemma 8.1. There is N ∈ N such that for all (δ, µ) ∈ N and (x, y) ∈ [0, 2]2 , all
components of the difference matrices

DL̃δ,µ(x, y)−
(
λ 0
0 λ−1

)
and DL̃−1δ,µ(x, y)−

(
λ−1 0

0 λ

)
,

with λ = λδ,µ(0) , are of order O
(
µ θδ log3/2 λ

)
.

Proof. Differentiating (10) we obtain the expressions,

a0(x, y) = ã0(x, y) = λ̃(xy) + λ̃′(xy)x y = λ̃(xy) + · · ·

b0(x, y) = λ̃′(xy)x2 = · · ·

b̃0(x, y) =
λ̃′(xy)

λ̃(xy)
x2 = · · ·

c0(x, y) = − λ̃
′(xy)

λ̃(xy)
y2 = · · ·

c̃0(x, y) = −λ̃′(xy)x2 = · · ·

d0(x, y) = d̃0(x, y) = λ̃(xy)−1 − λ̃′(xy)

λ̃(xy)2
x y = λ̃(xy)−1 + · · · .

Using the estimates (15) and (16) in the proof of lemma 7.2 we see that all terms involving

λ̃′(xy) are of order O
(
µ θδ log

3/2λ
)

. Since, by the mean value theorem, the difference

λ̃δ,µ(xy)−λδ,µ(0) = λ̃ ′δ,µ(c)x y is of the same order O
(
µ θδ log

3/2λ
)

the lemma follows.
�

Lemma 8.2. There is N ∈ N such that, for (δ, µ) ∈ N and (x, y) ∈ [0, 2]2 , all

second order partial derivatives of a0 , b0 , c0 , d0 , ã0 , b̃0 , c̃0 and d̃0 , are of order

O
(
µ θδ log3/2 λ

)
.

Proof. All second derivatives of a0 , b0 , c0 , d0 , ã0 , b̃0 , c̃0 and d̃0 are sums of terms
which involve one of the derivatives λ̃′(xy) or λ̃′′(xy) . Therefor we just have to apply
the estimates (15) and (16) in the proof of lemma 7.2. �

Write the Jacobian matrices of G̃δ,µ and G̃−1δ,µ as

DG̃δ,µ =

(
a1 b1
c1 d1

)
and DG̃−1δ,µ =

(
d̃1 −b̃1
−c̃1 ã1

)
.
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Lemma 8.3. There is some small enough N ∈ N such that for all (δ, µ) ∈ N and all

(x, y) ∈ S̃1 ,

DG̃δ,µ(x, y) =

(
− log−3/2 λ −1

1 0

)
+

(
O(log−1 λ) o(1)

o(1) o(1)

)
,

and for all (x, y) ∈ S̃′1 ,

DG̃−1δ,µ(x, y) =

(
0 1

−1 − log−3/2 λ

)
+

(
o(1) o(1)
o(1) O(log−1 λ)

)
.

where λ = λδ,µ(0) , and all the o(1) components tend to zero as (δ, µ)→ (0, 0) .

Proof. In this proof the dots ”· · · ” will stand for any term, or sum of terms, converging
to zero as (δ, µ)→ (0, 0) . The first component of G̃δ,µ , see (11), is

g̃1(δ, µ, x, y) = λ(p(x, y))2n g1

(
x, λ̃(xy)−2ny

)
.

Combining lemma 7.2 with the estimate for g1(x, λ̃(xy)−2ny) , obtained in (14) during
the proof of the same lemma, we see that both

∂

∂x

(
λ(p(x, y))2n

)
g1

(
x, λ̃−2ny

)
and

∂

∂y

(
λ(p(x, y))2n

)
g1

(
x, λ̃−2ny

)
converge to zero as (δ, µ) → (0, 0) . From the estimates (15) and (16), obtained in the

proof of lemma 7.2, we get that all partial derivatives of λ̃(xy)−2ny converge to zero as
(δ, µ)→ (0, 0) . Thus,

∂g̃1
∂x

(x, y) = λ(p(x, y))2n
∂g1
∂x

(x, λ̃−2ny) + · · ·

= λ(p(x, y))2n
(
∂g1
∂x

(x, 0) +O(λ̃−2n)

)
+ · · ·

= λ(p(x, y))2n
(
∂g1
∂x

(1, 0) +
∂2g1
∂x2

(x∗, 0) (x− 1)

)
+O(1) + · · ·

= λδ,µ(0)2n
(
∂g1
∂x

(1, 0) +O
(
µ θδ log1/2 λ

))
+O(1) + · · ·

= λδ,µ(0)2n
∂g1
∂x

(1, 0) +O

(
1

log λ

)
+ · · · .

We have used above the estimate (14) in the proof of lemma 7.2. We did also use the

definition of S̃1 and item 3a of lemma 6.2 which give us that (x− 1) = O(log3/2 λ) and
∂2g1
∂x2

(x∗, 0) = O
(
µ θδ
log λ

)
.

On the other hand

∂g1
∂x

(δ, µ, 1, 0) =
∂g1
∂x

(δ, 0, 1, 0) +
∂2g1
∂µ∂x

(δ, 0, 1, 0)µ+O(µ2)

= −µ θδ +O(µ2)

and if we assume that N ∈ N is such that 0 < µ ≤ θδ log1/2 λ for all (δ, µ) ∈ N , then

∂g̃1
∂x

(x, y) = − 1

log3/2 λ
+O

(
1

log λ

)
.
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For the other first order derivatives we combine lemma 6.1 with (14). The second
derivative of g̃1(x, y) is

∂g̃1
∂y

(x, y) = λ(p(x, y))2n
∂g1
∂y

(x, λ̃−2ny) λ̃−2n + · · ·

=
∂g1
∂y

(x, λ̃−2ny) + · · ·

=
∂g1
∂y

(x, 0) +O(λ̃−2n) + · · ·

= 1 + · · · .
Now the second component of G̃δ,µ is, see (11),

g̃2(δ, µ, x, y) = g2

(
x, λ̃(xy)−2ny

)
.

Thus
∂g̃2
∂x

(x, y) =
∂g2
∂x

(x, λ̃−2ny) + · · ·

=
∂g2
∂x

(x, 0) + · · ·

= −1 + · · · .
and

∂g̃2
∂y

(x, y) =
∂g2
∂x

(x, λ̃−2ny) λ̃−2n + · · ·

= O(λ̃−2n) + · · · = · · · .

The derivatives of G̃−1δ,µ are worked in the same way. �

Lemma 8.4. There is some open set N ∈ N and some constant C > 0 such that,
for (δ, µ) ∈ N , all second order partial derivatives of a1 , b1 , c1 , d1 , except the one

below, are bounded over S̃1 , in absolute value, by C . Similarly all second order partial
derivatives of ã1 , b̃1 , c̃1 and d̃1 except the one below, are bounded over S̃′1 , in absolute
value, by C . The exceptional derivatives satisfy:∣∣∣∣∂a1∂x

∣∣∣∣ ≤ C

log5/2 λδ,µ(0)
over S̃1 , and

∣∣∣∣∂ã1∂x

∣∣∣∣ ≤ C

log5/2 λδ,µ(0)
over S̃′1 .

Proof. In this proof the dots ”· · · ” will stand for any term, or sum of terms, bounded
as (δ, µ) → (0, 0) . It is clear that all second derivatives of the second component

g̃2(x, y) = g2(x, λ̃
−2ny) are bounded, or converge to zero. Thus we only have to deal

with the first component g̃1(x, y) = λ(p(x, y))2n g1(x, λ̃(xy)−2ny) .
All derivatives of the form

D
(
λ(p(x, y))2n

)
g1(x, λ̃(xy)−2ny)

where D = ∂2

∂x2
, ∂2

∂y2
or ∂2

∂x∂y are bounded. Up to some multiplicative constant they

can be dominated by λ(p(x, y))2n g1(x, λ̃(xy)−2ny) and this is easily seen to be bounded
from item 1a of lemma 6.2, lemma 6.4, and (14) in the proof of lemma 7.2.

Also all derivatives of the form

D1

(
λ(p(x, y))2n

)
D2

∂

∂y

(
g1(x, λ̃(xy)−2ny)

)
,
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where D1 and D2 is any of Id , ∂∂x or ∂
∂y , are bounded because the function ∂

∂y

(
λ̃(xy)−2n

)
λ(p(x, y))2n

is bounded. Therefor all partial derivatives of g̃1 with second order involving ∂y are
bounded. It remains to analyze the following one

∂2g̃1
∂x2

(x, y) = λ(p(x, y))2n
∂2g1
∂x2

(x, λ̃−2ny) + · · ·

= λδ,µ(0)2n
(
∂2g1
∂x2

(x, 0) +O(λ̃−2n)

)
+ · · ·

=
1

µ θδ log3/2 λ
O

(
µ θδ
log λ

)
+O(1) + · · ·

= O

(
1

log5/2 λ

)
.

The proof for the second derivatives of G̃−1δ,µ is similar. �

Lemma 8.5. There is some N ∈ N and some constant C > 2 such that defining

ε(δ, µ) =
3

2
log3/2 λ and γ(δ, µ) = C log1/2 λ , where λ = λδ,µ(0) , then for all (δ, µ) ∈

N the maps L̃δ,µ and L̃−1δ,µ defined in S̃0 , the map G̃δ,µ defined in S̃1 , and the map

G̃−1δ,µ defined in S̃′1 they all satisfy the conditions 2, 3 and 4 in the definition 4.1 of

class F ( ε(δ, µ), γ(δ, µ) ) .

Proof. Choose a constant C0 > 2 according to lemma 8.4 and set γ = 3C0 log1/2 λ.

2. (b) On the first branch of T̃ combine lemma 8.1 with the inequality

ε |a0| ≤ 2 ε = 3 log3/2 λ� 2 .

On the second branch combine lemma 8.3 with the inequality

ε |a1| =
3

2
+O

(
log1/2 λ

)
< 2 .

2. (c) On the first branch of T̃ combine lemma 8.1 with the inequality

ε (|a0| − 1) ≥ C−1 log5/2 λ� µ θδ log3/2 λ .

On the second branch combine lemma 8.3 with the inequality

ε (|a1| − 1) =
3

2
+O

(
log1/2 λ

)
> 1 .

3. On the first branch of T̃ combine lemma 8.2 with the inequality

γ (|a0| − 1) ≥ C−1 log3/2 λ� µ θδ log3/2 λ .

On the second branch combine lemma 8.4 with the inequality

γ (|a1| − 1) = 3C0 (log1/2 λ) O

(
1

log3/2 λ

)
= O

(
1

log λ

)
� C0 ,
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for the subitems (a) and (b), or with the inequality

γ |a1| (|a1| − 1) =
3C0

log5/2 λ
+O

(
1

log2 λ

)
>

C0

log5/2 λ
,

for the subitems (c) and (d) .

4. On the first branch of T̃ , if α0 = max
{
|a0(x, y)| : (x, y) ∈ [0, 2]2

}
, we have

α0 = λ+O(µ θδ log3/2 λ) . Then for some constant C > 0 ,

1− α−10 ≥ C −1(λ− 1) ≥ C −1 log λ and γ
(
1− α−10

)
≥ C −1 log3/2 λ .

Given (x1, y1) and (x2, y2) in [0, 2]2 , we get from lemma 8.2

∣∣∣∣log
a0(x2, y2)

a0(x1, y1)

∣∣∣∣ ≤ max

{∣∣∣∣∂a0∂x

∣∣∣∣+

∣∣∣∣∂a0∂y
∣∣∣∣} ‖(x2 − x1, y2 − y1)‖︸ ︷︷ ︸

≤2

≤ C µθδ log3/2 λ� C −1 log3/2 λ ≤ γ
(
1− α−10

)
.

On the second branch, setting α1 = max
{
|a1(x, y)| : (x, y) ∈ [0, 2]2

}
, we have

α1 = O
(

log−3/2 λ
)

and therefore γ (1−α−11 ) = γ
(

1−O(log3/2 λ)
)

= 3C0 log1/2 λ+

O(log2 λ) . Take now two points (x1, y1), (x2, y2) ∈ S̃1 . By definition of S̃1
we have |x1 − x2| ≤ 2 log3/2 λ and |y1 − y2| ≤ 2 , and applying the mean value
theorem,∣∣∣∣log

a1(x2, y2)

a1(x1, y1)

∣∣∣∣ ≤ 1

|a1|

∣∣∣∣∂a1∂x

∣∣∣∣ |x1 − x2|+ 1

|a1|

∣∣∣∣∂a1∂y
∣∣∣∣ |y1 − y2|

≤ 1

1
log3/2 λ

−O
(

1
log λ

) C0

log5/2 λ
2 log3/2 λ+O(log3/2 λ)

≤ 2C0 log1/2 λ

1−O(log1/2 λ)
+O(log3/2 λ)

< 3C0 log1/2 λ+O(log2 λ) = γ (1− α−11 ) .

�

Lemma 8.6. For all (δ, µ) in some small N ∈ N the map G̃δ,µ has a fixed point

Qδ,µ = (x1, y1) with both coordinates satisfying x1 = 1 + O(µ log3/2 λ) , y1 = 1 +

O(µ log3/2 λ) . This fixed point is hyperbolic and there are C1 functions Γs , Γu : [0, 2]→
R such that:

(1) the graph {(x,Γu(x)) : x ∈ [0, 2] } is a local unstable manifold of Q and for all

x ∈ [0, 2] , −3
2 log3/2 λ ≤ d

dxΓu(x) ≤ −2
3 log3/2 λ .

(2) the graph {(Γs(y), y) : y ∈ [0, 2] } is a local stable manifold of Q and for all

y ∈ [0, 2] , −3
2 log3/2 λ ≤ d

dyΓs(y) ≤ −2
3 log3/2 λ .
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Proof. Let us begin by proving that

(1a) G̃δ,µ(1, 1) =
(

1 +O(µ) , 1 +O(µ θδ log3/2 λ)
)
,

and
(1b) G̃−1δ,µ (1, 1) =

(
1 +O(µ θδ log3/2 λ) , 1 +O(µ)

)
.

Since these facts are proved in the same way we will restrict to (1a). The first component

of G̃δ,µ(1, 1) is

g̃1(1, 1) = λ(p(1, 1))2n g1(1, λ̃(1)−2n)

= λ(p(1, 1))2n

g1(1, 0)︸ ︷︷ ︸
=0

+
∂g1
∂y

(1, 0) λ̃−2n +O
(
λ̃−4n

)
=

(
λ(p(1, 1))

λ̃(1)

)2n ∂g1
∂y

(1, 0) +O(µ θδ log3/2 λ)

=
∂g1
∂y

(1, 0) +O(
√
µ θδ) .

In the last step we have used item 3. of lemma 6.3. But by item 1d. of lemma 6.1,

∂g1
∂y

(δ, µ, 1, 0) =
∂g1
∂y

(δ, 0, 1, 0) +O(µ) = 1 +O(µ) .

Therefor the first component of G̃δ,µ(1, 1) is of order 1 +O(µ) . The second component

of G̃δ,µ(1, 1) is

g̃2(1, 1) = g2(1, λ̃(1)−2n) = g2(1, 0) +O
(
λ̃−2n

)
= 1 +O

(
λ̃−2n

)
,

where, again, we have used item 1b. of lemma 6.1, and item 1. of lemma 6.3. Notice
that Gδ,µ(1, 0) = (0, 1) for all (δ, µ) .

The strong hyperbolicity of the map G̃δ,µ , proved in lemma 8.3, together with (1a)
and (1b), above, shows that we can apply a standard Graph Transform argument to
prove the existence of a fixed point Q with stable and unstable manifolds written as
graphs of C1 functions. Let us assume the existence of such objects: the fixed point Q
and the C1 functions Γu(x) and Γs(y) whose graphs lay in the invariant manifolds of
Q , and proceed with the estimations.

Now denote by `uδ,µ , respectively `sδ,µ , the intersection of the line through (1, 1) with

slope − log3/2 λ , respectively − log−3/2 λ , with the rectangle S̃1 , respectively S̃′1 . Let
us prove that

(2a) dist
(
G̃δ,µ(`uδ,µ), `uδ,µ

)
= O

(
µ log3/2 λ

)
and

(2b) dist
(
G̃−1δ,µ (`sδ,µ), `sδ,µ

)
= O

(
µ log3/2 λ

)
.

Writte (x̃1, ỹ1) = G̃δ,µ(1, 1) and take the unique point (1, ŷ1) ∈ G̃δ,µ(`uδ,µ) in this line
with abcissa equal to 1. Then

dist
(
G̃δ,µ(`uδ,µ), `uδ,µ

)
≤ |ŷ1 − 1| ≤ |ŷ1 − ỹ1|+ |ỹ1 − 1|

≤ O
(

log3/2 λ
)
|1− x̃1|+O

(
µ log3/2 λ

)
= O

(
µ log3/2 λ

)
.



PERSISTENT HOMOCLINIC TANGENCIES 37

Remark that |1− x̃1| = |1− g̃1(1, 1)| = O(µ) , and |ỹ1 − 1| = |g̃2(1, 1)− 1| = O(µ log3/2 λ) ,

and finally observe lemma 8.3 implies that G̃δ,µ(`uδ,µ) is a curve with tangent slope of

order O(log3/2 λ) . (2b) is proved in the same way.
Because the hyperbolicity granted by lemma 8.3 is strong enough we get from (2a)

and (2b),

dist
(
W u

loc(Q), `uδ,µ

)
≤ 2 dist

(
G̃δ,µ(`uδ,µ), `uδ,µ

)
= O

(
µ log3/2 λ

)
,

and analogously

dist
(
W s

loc(Q), `sδ,µ

)
≤ 2 dist

(
G̃δ,µ(`sδ,µ), `sδ,µ

)
= O

(
µ log3/2 λ

)
.

But this implies that dist (Q, (1, 1)) = O
(
µ log3/2 λ

)
.

Consider now the map

ρ(x, y, s) =
c̃1(x, y) + d̃1(x, y) s

ã1(x, y) + b̃1(x, y) s
,

defined as in the proof of lemma 4.1. A simple computation using lemma 8.3 shows that
for all (δ, µ) in some small N ∈ N , all (x, y) ∈ [0, 2]2 and all |s| ≤ 1

ρ(x, y, s) = − log3/2 λ+O
(
log3 λ

)
.

By the definition of ρ , if G̃ (x,Γu(x)) = (x̃,Γu(x̃)) then

d

dx
Γu(x̃) = ρ

(
x,Γu(x),

d

dx
Γu(x)

)
,

Therefor d
dxΓu(x̃) = − log3/2 λ + O

(
log3 λ

)
for all x ∈ [0, 2] . The stable manifold is

worked analogously.
�

In particular W s
loc(Q) intersects transversally W u(P ) = {(x, 0) : x ∈ R} at the

heteroclinic point (xs, 0) = (Γs(0), 0) . Similarly, W u
loc(Q) intersects transversally

W s(P ) = {(0, y) : y ∈ R} at another heteroclinic point (0, yu) = (0,Γu(0)) . Denote
the arcs of stable and unstable manifolds that connect the fixed points P and Q with
these heteroclinic points by,

γu0 (P ) = {(x, 0) : x ∈ [0, xs] } ,

γs0(P ) = {(0, y) : y ∈ [0, yu] } ,

γu0 (Q) = {(x,Γu(x)) : x ∈ [0, x1] } and

γs0(Q) = {(Γs(y), y) : y ∈ [0, y1] } .

Lemma 8.7. For all (δ, µ) in some small N ∈ N ,

(1) |Γu(x)− 1| ≤ 7
4 log3/2 λ for all 0 ≤ x ≤ x1 , and

(2) |Γs(y)− 1| ≤ 7
4 log3/2 λ for all 0 ≤ y ≤ y1 .

In particular γs0(Q) ⊆ S̃1 and γu0 (Q) ⊆ S̃′1 .
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Proof.

|Γu(x)− 1| ≤ |Γu(x)− y1|+ |y1 − 1|

= |Γu(x)− Γu(x1)|+O
(
µ log3/2 λ

)
≤ 3

2
(log3/2 λ) |x1|+O

(
µ log3/2 λ

)
<

7

4
log3/2 λ .

The second inequality is analogous. �

Figure 5. The Markov Partition

Let S be the square with the following

• edges: γs0(P ) , γu0 (Q) , γs0(Q) and γu0 (P ) , and
• vertices: P = (0, 0) , (0, yu) , Q = (x1, y1) and (xs, 0) .

The sets S0 = S ∩ L̃−1(S) and T̃ S0 = L̃(S)∩S are rectangles bounded between the
following edges and vertices.

• Vertical edges of S0 : γs0(P ) and γs−(Q) = S ∩ L̃−1γs0(Q) .
• Horizontal edges of S0 : pieces of γu0 (P ) and γu0 (Q) .

• Vertical edges of T̃ S0 : pieces of γs0(P ) and γs0(Q) .

• Horizontal edges of T̃ S0 : γu0 (P ) and γu+(Q) = S ∩ L̃γu0 (Q) .
• Vertices of S0 : (0, 0) , (0, yu) , (x̃u,Γ

u(x̃u)) and (λ−1xs, 0) . The arc γs−(Q)

is bounded between the heteroclinic point L̃−1(xs, 0) = (λ−1xs, 0) and some
homoclinic point in γu0 (Q) that we denote as (x̃u,Γ

u(x̃u)) .

• Vertices of T̃ S0 : (0, 0) , (xs, 0) , (Γs(ỹs), ỹs) and (0, λ−1yu) . γs+(Q) is bounded

between the heteroclinic point L̃(0, yu) = (0, λ−1yu) and some homoclinic point
in γs0(Q) that we denote by (Γs(ỹs), ỹs) .

The sets S1 = S ∩ G̃−1(S) and T̃ S1 = G̃(S)∩S are rectangles bounded between the
following edges and vertices. Remember the relation (13) satisfied by the homoclinic
points (1, 0) and (0, 1) .

• Vertical edges of S1 : γs−(P ) =
{
G̃−1(0, y) : 1 ≤ y ≤ yu

}
and γs0(Q) .



PERSISTENT HOMOCLINIC TANGENCIES 39

• Horizontal edges of S1 : pieces of γu0 (P ) and γu0 (Q) .

• Vertical edges of T̃ S1 : pieces of γs0(P ) and γs0(Q) .

• Horizontal edges of T̃ S1 : γu0 (Q) and γu+(P ) =
{
G̃(x, 0) : 1 ≤ x ≤ xs

}
.

• Vertices of S1 : (1, 0) , (xu,Γ
u(xu)) = G̃−1(0, yu) , (x1, y1) , and (0, xs) .

• Vertices of T̃ S1 : (0, 1) , (Γs(ys), ys) = G̃(xs, 0) , (x1, y1) , and (yu, 0) .

Lemma 8.8. For all (δ, µ) in some small N ∈ N ,

S1 ⊆ S̃1 and T̃ S1 ⊆ S̃′1

Proof. To prove that T̃ S1 ⊆ S̃′1 it is enough to see that γu+(P ) =
{
G̃(x, 0) : 1 ≤ x ≤ xs

}
is contained in S̃′1 . For that matter take 1 ≤ x ≤ xs . Using lemma 8.7,

|g2(x, 0)− 1| ≤
∣∣∣∣∂g2∂x (x∗, 0)

∣∣∣∣ |x− 1| ≤
∣∣∣∣∂g2∂x (x∗, 0)

∣∣∣∣ |xs − 1|

≤
∣∣∣∣∂g2∂x (x∗, 0)

∣∣∣∣ 7

4
log3/2 λ < 2 log3/2 λ .

Notice that, by lemma 6.1, if (δ, µ) is small enough ∂g2
∂x ∼ 1 . �

The maximal invariant set of T̃ in S , Λδ,µ =
⋂
n∈Z

T̃−n(S) , is a ”horse-shoe” type

basic set with Markov partition P = {S0, S1} . The map T̃ : S0 ∪ S1→ S belongs to
class F of definition 3.2, and all conditions of definition 4.1, except the fifth one, have
already been verified. Let us now check this last condition.

Lemma 8.9. There is some small N ∈ N and some constant C > 0 such that for all
(δ, µ) ∈ N ,

(1) dist (S0, S1) ≥
ε

γ

(2) dist
(
T̃ (S0), T̃ (S1)

)
≥ ε

γ

where ε = ε(δ, µ) and γ = γ(δ, µ) were defined in lemma 8.5.

Proof. Because the right vertical boundary of S0 , which goes down from (x̃s,Γ
u(x̃s))

to (λ−1xs, 0) , and the left vertical boundary of S1 , going down from (xu,Γ
u(xu) to

(1, 0) , are both graphs of C1 functions with negative derivatives, the distance between
S0 and S1 is greater or equal to xu − λ−1xs . A simple application of the mean value
theorem shows that

0 ≤ xs − 1 ≤ O
(

log3/2 λ
)

and 0 ≤ 1− xu ≤ O
(

log3/2 λ
)
.

Therefor

xu − λ−1xs ≥ (xs − λ−1xs)− (xs − 1)− (1− xu)

≥ xs (1− λ−1)−O
(

log3/2 λ
)

≥ 4

5
log λ−O

(
log3/2 λ

)
≥ 3

4
log λ

≥ 3

2C
log λ =

ε

γ
.
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In a similar way one proves that

dist
(
T̃ (S0), T̃ (S1)

)
≥ ys − λ−1yu ≥

ε

γ
.

�

Define Is∗ = W s(P ) ∩ S = {0} × [0, yu] and Iu∗ = W u(P ) ∩ S = [0, xs] × {0} . The
dynamically defined Cantor sets (Ks = Iu∗ ∩ Λ, ψs) and (Ku = Is∗ ∩ Λ, ψu) , induced

respectively by the action of T̃−1 on the stable leaves and by the action of T̃ on the
unstable leaves, have the following Markov partitions

Ps = {Iu∗ ∩ S0, Iu∗ ∩ S1} =
{

[0, λ−1xs], [1, xs]
}
,

and

Pu =
{
Is∗ ∩ L̃(S0), I

s
∗ ∩ G̃(S1)

}
=
{

[0, λ−1yu], [1, yu]
}
.

Lemma 8.10. There is some small enough N ∈ N such that for all (δ, µ) ∈ N ,

(1) τL (Ps) , τL (Pu) ≥ 1

λ− 1

(2) τR (Ps) , τR (Pu) ≥ 1

4

√
λ− 1

where λ = λδ,µ(0) . In particular τLR (P) ≥ 1

4
√
λ− 1

.

Proof.

τL(Ps) =
λ−1xs

1− λ−1xs
≥ λ−1xs
xs − λ−1xs

=
1

λ− 1
,

and similarly

τL(Pu) =
λ−1yu

1− λ−1yu
≥ λ−1yu
yu − λ−1yu

=
1

λ− 1
.

Applying the mean value theorem to Γs , at the points y = 0 and y = y1 , we get from
lemma 8.6,

1

4
(λ− 1)3/2 ≤ 1

2
log3/2 λ ≤ xs − 1 ≤ O

(
log3/2 λ

)
� λ− 1 .

Therefor,

τR(Ps) =
xs − 1

1− λ−1xs
≥ xs − 1

xs(1− λ−1)
≥ λ

xs

xs − 1

λ− 1

≥ 1

4

(λ− 1)3/2

λ− 1
=

1

4

√
λ− 1 .

Using Γu instead of Γs we obtain the same estimates for yu − 1 as we did for xs − 1 .
Thus,

τR(Pu) =
yu − 1

1− λ−1yu
≥ 1

4

√
λ− 1 .

�

Corollary 8.1. There is some small N ∈ N such that for all (δ, µ) ∈ N ,

T̃δ,µ ∈ F ( ε(δ, µ), γ(δ, µ) ) and τLR (Λδ,µ) > 1 .
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Proof. From lemmas 8.5 and 8.9 we obtain T̃ ∈ F (ε, γ) . Combining theorem 2 with
lemma 8.10 we see that for (δ, µ) ∈ N lim

(δ,µ)→(0,0)
τLR(Λδ,µ) = +∞ , which proves this

corollary. �

9. Positive Homoclinic Tangencies

In this final section we find orbits of positive homoclinic tangencies, of the fixed
point Pδ,µ, for sequences of parameters (δ, µn(δ)) accumulating in (δ, 0) as n→ +∞ .
Actually, because it is much easier, we find orbits of negative homoclinic tangencies
and then use an elementary abstract lemma relating negative with positive homoclinic
tangencies.

First we need some definitions. Let P be a fixed point of a diffeomorphism ϕ :M2→
M2 , in some oriented surface M2, having both eigenvalues positive. We orient the stable
and unstable branches of W s(P )−{P} and W u(P )−{P} so that orbits increase along
them. Homoclinic tangencies of P are called positive, c.f. definition 3.3, if both the
orientations, on the stable and unstable branches, agree near the tangency. Given an
orbit of transversal homoclinic points {ϕn(x) : n ∈ Z} between two components, γs(P )
of W s(P )−{P}, and γu(P ) of W u(P )−{P}, consider the family of linear ”return maps”
to a neighborhood of P ,

Rn,m = Dϕn+m
ϕ−n(x) :Tϕ−n(x)(M

2)→Tϕm(x)(M
2) .

For all large enough n, m ∈ N , identify both domain and target space with TP (M2)
via some local coordinates. Then Rn,m is strongly hyperbolic. Two cases may occur:

Case I The linear map Rn,m has two positive eigenvalues, for all large n, m ∈ N . In
this case the pieces of γu(P ) through ϕm(x) , resp. of γs(P ) through ϕ−n(x) ,
that by the λ-lemma accumulate in W u

loc(P ) as m→ +∞ , resp. in W s
loc(P ) as

n→ +∞ , are oriented in the same way as γuloc(P ) = γu(P )∩W u
loc(P ) . In this

case we will say that the points of the orbit are positive transversal homoclinic
points.

Case II The linear map Rn,m has two negative eigenvalues, for all large n, m ∈ N . In
this case the pieces of γu(P ) through ϕm(x) , resp. of γs(P ) through ϕ−n(x) ,
that by the λ-lemma accumulate in W u

loc(P ) as m → +∞ , resp. in W s
loc(P )

as n→ +∞ , are oriented in the opposite way of γuloc(P ) = γu(P ) ∩W u
loc(P ) .

In this second case we will say that the points ϕn(x) are negative transversal
homoclinic points.

In our working context let t(δ) , δ > 0 , be a smooth family of (simple) zeros of the
Melnikov function Mδ(t) and consider the corresponding family Hδ,µ of transversal
homoclinic points in W s(Pδ,µ) ∩W u(Pδ,µ) . It is easily seen that

I If for all small δ > 0 , d
dtMδ(t(δ)) < 0 then Hδ,µ is a positive transversal

homoclinic point for all (δ, µ) in some small enough N ∈ N ,
II If for all small δ > 0 , d

dtMδ(t(δ)) > 0 then Hδ,µ is a negative transversal
homoclinic point for all (δ, µ) in some small enough N ∈ N .

In particular, since the Melnikov function must have zeros with positive derivative
then there is a family of negative transversal homoclinic points in W s(Pδ,µ)∩W u(Pδ,µ)
for all (δ, µ) in some small enough N ∈ N .
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Lemma 9.1. Let ϕµ :M2→M2 be a family of C2 orientation preserving diffeomor-
phisms with a hyperbolic fixed point Pµ having both eigenvalues positive. Assume there
is an orbit of negative transversal homoclinic points between the components γu(Pµ)
of W u(Pµ) − {Pµ} and γs(Pµ) of W s(Pµ) − {Pµ} . If an orbit of negative quadratic
homoclinic tangencies, between these components, unfolds generically at µ = µ0 then
there is a sequence µn converging to µ0 , as n → +∞ , of parameters where orbits of
positive quadratic homoclinic tangencies, between γu(Pµ) and γs(Pµ) , are generically
unfold.

Proof. Take two homoclinic points in γs(Pµ) ∩ γu(Pµ) :

• x ∈ γsloc(Pµ) , close to Pµ , a negative transversal homoclinic point and

• y ∈ γuloc(Pµ0) , close to Pµ0 , a negative quadratic homoclinic tangency which

unfolds generically at µ = µ0 .

By the λ-lemma there is a sequence of arcs σun(µ) ⊆ γu(Pµ) containing x whose for-
ward iterates γun(µ) = ϕ n

µ (σun(µ)) converge in the C1 topology to γuloc(Pµ) . Because

x is a negative transversal homoclinic point the arcs γun(µ) are oriented in the opposite
direction of their limit γuloc(Pµ) . The stable branch γs(Pµ0) makes a negative tangency

with γuloc(Pµ0) at point y and locally γs(Pµ) moves transversally with ”positive veloc-

ity” with respect to γuloc(Pµ) . Therefor γs(Pµ) will also move with ”positive velocity”

with respect to γun(µ) and will have a tangencial contact with it for some parameter
µn close to µ0 . Because of the opposite orientation of γun(µ) , relative to γuloc(Pµ) , the

new tangency between γun(µ) ⊆ γu(Pµ) and γs(Pµ) will be positive. Since the tangency
at x is quadratic so is the new one. �

Denote by γu(Pδ,µ) , resp. γs(Pδ,µ) , the component of W u(Pδ,µ) − {Pδ,µ} , resp.
W s(Pδ,µ)−{Pδ,µ} , depending continuously in (δ, µ) that coincides with the homoclinic
connection γδ when µ = 0 .

Lemma 9.2. For each δ > 0 there is a sequence (δ, µn(δ)) converging to (δ, 0) as
n → ∞ , at which parameters some orbit of negative quadratic homoclinic tangencies,
between γu(Pδ,µ) and γs(Pδ,µ), unfolds generically with parameter µ .

Proof. Denote by Γs the arc of stable manifold in R2
+ connecting the negative transversal

homoclinic point (1, 0) with the previous (positive) transversal homoclinic point (x0, 0)
with x0 < 1 . Similarly denote by Γu the arc of stable manifold in R2

+ connecting
the negative transversal homoclinic point (0, 1) with the previous (positive) transversal
homoclinic point (0, y0) with y0 > 1 . These arcs can be written as graphs of smooth
positive functions,

Γs = Γs(δ, µ) = {(x, gs(δ, µ, x)) : x0 ≤ x ≤ 1 } ,

Γu = Γu(δ, µ) = {(gu(δ, µ, y), y) : 1 ≤ y ≤ y0 } .
For each n ∈ N let us write,

Γsn(δ, µ) = L−nδ,µ (Γs(δ, µ)) and Γun(δ, µ) = L n
δ,µ (Γu(δ, µ)) .

These arcs are also graphs of smooth functions, respectively gsn and gun . From the
asymptotic relation,

L n
δ,µ(x, y) ∼

(
λn x, λ−ny

)
λ = λδ,0(0) , as µ→ 0 ,

we obtain,

(∗) gsn(δ, µ, x) ∼ λn gs(δ, µ, λnx) and gun(δ, µ, y) ∼ λn gu(δ, µ, λny) .
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Define now
µn(δ) = sup {µ ≥ 0 : Γsn(δ, µ) ∩ Γun(δ, µ) = ∅ } .

Then for µ < µn(δ) , Γsn(δ, µ)∩Γun(δ, µ) = ∅ . By compactness of the arcs Γs(δ, µn) and
Γu(δ, µn) we have Γsn(δ, µn)∩Γun(δ, µn) 6= ∅ . Therefor this is a first intersection between
these arcs, and so it must be a tangency. The sequence µn(δ) converges geometrically
to zero. One can easily prove that 0 < µn(δ) ≤ C(δ)µλ−2n for all large n ∈ N and
some constant C(δ) > 0 .

We still have to prove that these tangencies are quadratic and unfold generically. For
µ = µn(δ) denote by (xn, yn) = (xn(δ), yn(δ)) ∈ Γsn ∩Γun the point of tangency between
the graphs (x, gsn(δ, µ, x)) and (gun(δ, µ, y), y) . Then of course

∂gsn
∂x

(δ, µn(δ), xn)
∂gun
∂y

(δ, µn(δ), yn) = 1 ,

and both these derivatives are positive. The slope of the first tangency must be positive.
To prove that the tangency is quadratic we just outline a qualitative argument that

may easily be quantified into a rigorous, but tedious, analytic proof. The argument
relies on the following facts, which may seen from (∗):

a) If ∂gsn
∂x (δ, µn, xn) , resp. ∂gun

∂y (δ, µn, yn) , is very small then the curvature vector

of Γsn(δ, µn) , resp. Γun(δ, µn) , at (xn, yn) is very large and points inward the
domain bounded by Γsn and the x-axis, resp. Γun and the y-axis.

b) If the curvature vector of Γsn(δ, µn) , resp. Γun(δ, µn) , at (xn, yn) points outward

then it must be small and the tangent slope ∂gsn
∂x (δ, µn, xn) , resp. ∂gun

∂y (δ, µn, yn) ,

will be large.

We just remark that in the case xn , or yn , were close to local minima of gsn , or gun ,
these facts would fail to be true. But this situation is ruled out by the assumption that
(xn, yn) is a first tangency.

Now, if both curvature vectors of Γsn(δ, µn) and Γun(δ, µn) at (xn, yn) point inward
they will have opposite directions and the tangency will, therefore, be quadratic. As-
sume that one of them, the curvature of Γun(δ, µn) for instance, points outward. Then

by item b) this curvature is small while ∂gun
∂y (δ, µn, y) is very large. But this implies

that ∂gsn
∂s (δ, µn, y) is very small and from item a) above it follows that the curvature

of Γsn(δ, µn) , pointing inward, is very large, much larger then the curvature vector of
Γsn(δ, µn) which points in the same direction. And the tangency is again quadratic.

Before establishing the genericity of the unfolding remark that the Melnikov function
of the family fδ,µ may be expressed as either:

Mδ(t) =
∂

∂µ

(
gs(δ, µ, λδ,µ(0)t

)
µ=0

=
∂gs

∂µ
(δ, 0, λδ,0(0)t) ,

or

Mδ(t) =
∂

∂µ

(
gu(δ, µ, λδ,µ(0)−t

)
µ=0

=
∂gu

∂µ
(δ, 0, λδ,0(0)−t) .

Then because the Melnikov function is a Morse function we will have on some small
enough N ∈ N and for all (δ, µ) ∈ N ,

∂gsn
∂µ

(δ, µ, x) ∼ λn ∂g
s

∂µ
(δ, µ, λn x) ∼ λnMδ

(
log(λnx)

log λ

)
> 0

for all x0 ≤ λnx ≤ 1 , and similarly

∂gun
∂µ

(δ, µ, y) ∼ λn ∂g
u

∂µ
(δ, µ, λn y) ∼ λnMδ

(
− log(λny)

log λ

)
> 0
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for all 1 ≤ λny ≤ y0 .
Now, consider the vertical line x = xn , which crosses transversally both arcs Γsn and

Γun at the point (xn, yn) . Let us fix δ and vary µ close to µn(δ) . The intersection of

Γsn(δ, µ) with this line, (xn, g
s
n(δ, µ, xn)) , moves upward since ∂gsn

∂µ (δ, µ, xn) > 0 . The

intersection of Γun(δ, µ) with the line x = xn is (xn, φ(µ)) , where φ(µ) is defined
implicitly by gun (δ, µ, φ(µ)) = gun (δ, µn, yn) . Thus

∂φ

∂µ
(µn) = −

∂gun
∂µ (δ, µn, yn)

∂gun
∂y (δ, µn, yn)

= −∂g
u
n

∂µ
(δ, µn, yn)

∂gsn
∂x

(δ, µn, xn) < 0 ,

which shows that this intersection point moves downward. Therefor the tangency unfolds
generically. �

Corollary 9.1. For each δ > 0 there is a sequence (δ, µn(δ)) converging to (δ, 0) as
n → ∞ , at which parameters some orbit of positive quadratic homoclinic tangencies,
between γu(Pδ,µ) and γs(Pδ,µ), unfolds generically with parameter µ .

Proof. Combine lemmas 9.1 and 9.2. �
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