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DYNAM. ON THE ATTRACTOR OF L-V EQS. 2environment, while "j < 0 means that it cannot survive when left alone in theenvironment. One can also have "j = 0 which means that the population staysconstant if the species does not interact.The dynamics of general systems of type (1) are far from understood, althoughspecial classes of Lotka-Volterra systems have been studied. We distinguish thefollowing classes of systems of type (1):De�nition 1.1. A Lotka-Volterra system with interaction matrixA = (aij) is called(i) cooperative (resp. competitive) if ajk � 0 (resp. ajk � 0) for all j 6= k;(ii) conservative if there exists a diagonal matrix D > 0 such that AD is skew-symmetric;(iii) dissipative if there exists a diagonal matrix D > 0 such that AD � 0;Competitive systems and dissipative systems are mutually exclusive classes, ex-cept for the trivial case where ajk = 0. General results concerning competitive orcooperative systems were obtained by Smale [24] and Hirsch [9, 10] (for recent re-sults see [26] and references therein). These systems typically have a global attractorconsisting of equilibria and connections between them (see e. g. [9] theorem 1.7).Dissipative systems have been less studied than competitive systems, althoughthis class of systems goes back to the pioneer work of Volterra, who introducedthem as a natural generalization of predator-prey systems (see [25], chp. III). Forsystems where predators and preys coexist there is empirical and numerical evidencethat periodic oscillations occur. In fact, as is well known, for any two dimensionalpredator-prey system, the orbits are periodic. But for higher dimensional systemsthe topology of orbits in phase space is much more complex, and understandingthis topology is a challenging problem. The following theorem, to be proved in thispaper, is perhaps the �rst result in this direction.Theorem 1.2. Consider a Lotka-Volterra system (1) restricted to the ow invariantset Rn+ � f(x1; : : : ; xn) 2 Rn : xj > 0; j = 1; : : : ; ng, and assume that (i) the systemhas a singular point, and (ii) is stably dissipative. Then there exists a global attractorand the dynamics on the attractor are hamiltonian.By \stably dissipative" we mean that the system is dissipative and every systemclose to it is also dissipative. As we mentioned before, the notion of dissipativesystem is due to Volterra. Stable dissipative systems where �rst studied by Red-he�er et al. ([18, 19, 20, 21, 22]) under the name \stable admissible". They gavea beautiful description of the attractor (see section 4 below) which we will use toprove theorem 1.2. The hypothesis on the existence of a singular point is equivalentto the assumption that some orbit has a �- or !-limit point in Rn+.One of Volterra's main goals in introducing these equations was the \mechaniza-tion" of biology, and he made quite an e�ort in trying to pursue this program. While



DYNAM. ON THE ATTRACTOR OF L-V EQS. 3seeking a variational principle for the system, he was successful in �nding a hamil-tonian formulation in the case where the interaction matrix is skew-symmetric, atthe expense of doubling the number of dimensions (see section 2 for details). Alongthe way, a polemic with Levi-Civita arose, an account of which can be found in [8].In this paper we shall give a di�erent solution to the problem of putting system (1)into a hamiltonian frame. In modern language, our approach is related to Volterra'sapproach by a reduction procedure. This hamiltonian frame is the basis for thehamiltonian structure refered to in theorem 1.2.Once the hamiltonian character of the dynamics is established, one would like tounderstand (i) what type of attractors one can get and (ii) what kind of hamiltoniandynamics one can have on the attractor. It will follow from our work that thisamounts to classify the dynamics of Lotka-Volterra systems with skew-symmetricmatrix whose associated graph is a forest. We do not know of such classi�cation butwe shall argue that these dynamics can be rather complex.In the simplest situation, the attractor will consist of the unique �xed point inRn+ and the dynamics will be trivial. It was already observed in [20] that there mayexist periodic orbits on (non-trivial) attractors. On the other hand, if the attractoris an integrable Hamiltonian system then one can expect the orbits to be almostperiodic. We will show through a detailed study of a 4-dimensional chain of predator-prey systems, that non-integrable hamiltonian system can indeed occur. Therefore,typically, the dynamics of dissipative Lotka-Volterra systems are extremely complex.This is related with a famous conjecture in the theory of Hamiltonian systems whichcan be stated as follows.Typically, dynamics on the common level sets of the hamiltonian and theCasimirs are ergodic.This paper is organized in two parts. In the �rst part we deal with generalsystems and prove theorem 1.2. In the second part, we give a detail analysis ofa 4-dimensional predator-prey chain. This is an extremely interesting system forwhich we show, among other properties, that� the system is non-integrable in the sense of Arnol'd-Liouville;� the dynamics of the system is equivalent to the dynamics of a homeomorphismof a sphere;� the system has families of periodic orbits whose stability is determined by anassociated Sturm-Liouville problem;� one can �nd regions in the space of parameters where periodic orbits arestrongly hyperbolic;We believe that both this system and higher dimension generalizations deserve fur-ther study, and can help understanding the conjecture above.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 4Part I. General Theory2 Basic NotionsHere, we will recall some basic notions and facts concerning general Lotka-Volterra systems which will be useful in the next sections. All of these notionscan be traced back to Volterra. For a more detailed account of general properties ofLotka-Volterra systems we refer to the book by Hofbauer and Sigmund [7].For �xed dj 6= 0, the transformationyj = 1dj xj ; (j = 1; : : : ; n) (2)takes the Volterra system (1) with interaction matrix A, into a new Volterra systemwith interaction matrix AD_yj = "jyj + nXk=1 dkajkyjyk (j = 1; : : : ; n): (3)We can therefore think of (2) as a gauge symmetry of the system. A choice ofrepresentative (ajk) in a class of equivalence under gauge transformations will becalled a choice of gauge. Since will often take as phase space Rn+, we consider onlygauge transformations with dj > 0 in order to preserve phase space. Note also thatthe classes of Lotka-Volterra systems introduced in de�nition 1.1 above are all gaugeinvariant.Many properties of a Lotka-Volterra system can be expressed geometrically interms of its associated graph G(A; "). These is the labeled graph, where with eachspecies j we associate a vertex f labeled with "j and we draw an edge connectingvertex j to vertex k whenever ajk 6= 0."5f "4f "8f
<<

<<
<<

<<f"1 f"2 f"3 f"6 f"7 f"9Figure 1: Graph G(A; ") associated with a system of type (1).For example, if two systems are gauge equivalent, they have the same unlabeledgraph (but not conversely). Also, conservative systems can be caracterized in termsof its graph as it follows from the following proposition also due to Volterra (cf. [25],chp. III x12):



DYNAM. ON THE ATTRACTOR OF L-V EQS. 5Proposition 2.1. A Lotka-Volterra system with interaction matrix A = (ajk) isconservative if, and only if, ajj = 0,ajk 6= 0 =) ajkakj < 0 (j 6= k); (4)and ai1i2ai2i3 � � �aisi1 = (�1)saisis�1 � � �ai2i1ai1is (5)for every �nite sequence of integers (i1; : : : ; is), with ir 2 f1; : : : ; ng for r = 1; : : : ; s.In other words a system is conservative if, and only if, (i) the conditions ajj = 0and ajk 6= 0) akj 6= 0 are satis�ed and (ii) for each closed path in the diagram witha even (respectively odd) number of vertices the product of the coe�cients whenwe go around in one direction is equal to the product (resp. minus the product) ofthe coe�cients when we go around in the opposite direction. Hence, for example, asystem with associated graph as in �g. 1 is conservative if, and only if,a67a78a86 = �a68a87a76;a23a34a45a52 = a25a54a43a32;and moreover the conditions ajj = 0 and ajk 6= 0) ajkakj < 0 are satis�ed.The most trivial solutions of system (1) are, of course, the �xed points. The �xedpoints q = (q1; : : : ; qn) in Rn+ of system (1) are the solutions of the linear system"j + nXk=1 ajkqk = 0 (j = 1; : : : ; n): (6)The existence of a �xed point in Rn+ is related with the behavior of the orbits in Rn+,as it is clear from the following result (see [7], section 9.2).Proposition 2.2. There exists a �xed point q = (q1; : : : ; qn) in Rn+ of system (1)if, and only if, Rn+ contains some �- or !-limit point.Proof. In one direction the result is clear. On the other hand, assume that thereexists no �xed point in Rn+ so that for the a�ne operator L : Rn! Rn de�ned byL(x)j = "j + nXk=1 ajkxkone has 0 62 K = L(Rn+). Then there exists a hyperplane H through the origindisjoint from the convex set K, and one can choose c = (c1; : : : ; cn) 2 H? such thatc � y > 0; 8y 2 K: (7)Consider now the function V : Rn+! R given byV (x) = nXj=1 cj log(xj): (8)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 6If x(t) is a solution of (1) in Rn+ then we computeddtV (x(t)) = nXj=1 cj _xjxj = c � L(x(t)) > 0;where we used (7). Hence, V is a Liapounov function and there can be no !-limitpoints since for these one must have _V = 0. Similarly, to exclude �-limit points oneuses the Liapounov function �V .We have just seen that the limit behavior of the orbits is related to the existenceof �xed points. On the other hand, the following result shows that the averagebehavior of the orbits is related to the values of the �xed points (see [4]).Proposition 2.3. Suppose that x(t) is an orbit in Rn+ of system (1) satisfying 0 <m � xj(t) � M . Then there is a sequence fTkg such that Tk ! +1 and a �xedpoint q 2 Rn+ such that limk!+1 1Tk Z Tk0 x(t)dt = q: (9)Moreover, if system (1) has a unique �xed point q 2 Rn+ thenlimT!+1 1T Z T0 x(t)dt = q: (10)Proof. Since we have xj(t) �M , the functionz(T ) = 1T Z T0 x(t)dtis bounded, and there exists a sequence fTkg such that Tk ! +1 and the limitlimk!+1 1Tk Z Tk0 x(t)dt = q (11)exists. Since 0 < m � xj(t) it is clear that q 2 Rn+. Now, if we integrate (1) alongthe orbit x(t) we obtain1Tk (log(xj(Tk))� log(xj(0))) = "j + 1Tk Z Tk0 nXk=1 ajkxk(t)dt: (12)The left-hand side of this equation converges to zero. For the right-hand side we use(11) to comput the limit so we conclude that0 = "j + nXk=1 ajkqk (j = 1; : : : ; n);



DYNAM. ON THE ATTRACTOR OF L-V EQS. 7i. e., q is a �xed point.Now if system (1) has a unique �xed point q 2 Rn+ then the linear system (6)has a isolated solution, so the matrix (ajk) must be non-degenerate. In this case, letus consider any T � 0 and integrate (1) along the orbit x(t) from 0 to T :1T (log(xj(T ))� log(xj(0))) = "j + 1T Z T0 nXk=1 ajkxk(t)dt: (13)Solving this equation for the averages we obtain1T Z T0 xj(t)dt = nXk=1 bjk � 1T (log(xk(T ))� log(xk(0)))� "k� ;where (bjk) is the inverse of (ajk). By letting T ! +1, and using the fact that thexj(t) are bounded, we obtainlimT!+1 1T Z T0 xj(t)dt = � nXk=1 bjk"k = qj :In the case where the interaction matrix (ajk) is not invertible it is not clear towhich �xed point q does the time average of the orbit converges.3 Conservative SystemsIn the case were system (1) is conservative Volterra was able to introduce ahamiltonian structure for the system by doubling the number of variables. Werecall now Volterra's construction, so we assume that system (1) is conservativeand a choice of gauge has been made so that the matrix (ajk) is skew-symmetric.Volterra introduces new variables Qj (which he calls quantity of life) through theformula(): Qj = Z t0 xj(�)d� (j = 1; : : : ; n) (14)and rewrites system (1) as a second order o.d.e.:�Qj = "j _Qj + nXk=1 ajk _Qj _Qk (j = 1; : : : ; n): (15)Then he observes that the function H =Pnj=1("jQj � _Qj) is a �rst integral of thesystem because, on account of skew-symmetry, one has_H = � nXj;k=1 ajk _Qj _Qk = 0:One might argue about the \de�nition" of the Qj 's. The full justi�cation of this procedure willbe given later in the section.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 8Now, if one introduces another set of variables Pj by the formulaPj = log _Qj � 12 nXk=1 ajkQk (j = 1; : : : ; n) (16)(which are well de�ned when we restrict the original system to Rn+), then, in thecoordinates (Qj ; Pj), the function H is expressed asH = nXj=1 "jQj � nXj=1 e(Pj+ 12Pnk=1 ajkQk): (17)A simple computation shows that system (15) can be rewritten in the followinghamiltonian form 8><>: _Pj = @H@Qj_Qj = � @H@Pj (j = 1; : : : ; n): (18)We shall now reverse the all procedure and reformulate it in the language ofPoisson manifolds(). Recall that the modern approach to hamiltonian systems isbased on the following generalization of the notion of a Poisson bracket (see forexample [15]).De�nition 3.1. A Poisson bracket on a smooth manifold M is a bilinear opera-tion f ; g : C1(M)�C1(M)! C1(M) on the space of smooth functions satisfyingthe following properties:i) ff1; f2g = �ff2; f1g (skew-symmetry);ii) ff1f2; fg = f1ff2; fg+ ff1; fgf2 (Leibnitz's identity);iii) ff1; ff2; f3gg+ ff2; ff3; f1gg+ ff3; ff1; f2gg = 0 (Jacobi's identity);A hamiltonian system on a Poisson manifold M is de�ned by a choice of afunction h 2 C1(M), namely, the de�ning equations for the ow are_x = Xh(x); (19)where the hamiltonian vector �eld Xh is the vector �eld on M de�ned byXh(f) = ff; hg; 8f 2 C1(M):One needs here the more general concept of Poisson manifold rather than symplectic manifoldsince, as we shall see shortly, the Poisson bracket associated with the original system is, in general,degenerate.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 9For system (18) M = R2n and the Poisson bracket in question is, of course, theclassical Poisson bracket associated with the standard symplectic structure !s =Pnj=1 dQj ^ dPj : ff1; f2gs = nXj=1 � @f1@Pj @f2@Qj � @f2@Pj @f1@Qj� : (20)When we take the function H given by (17) as the hamiltonian function, it is clearthat system (18) takes the canonical form_xi = fxi; Hgs; (i = 1; : : : ; 2n):The key remark to reverse Volterra's procedure is the following: system (18) hasn, time-dependent (if "j 6= 0), �rst integrals given by the formulasIj(Qj; Pj ; t) = Pj � 12 nXk=1 ajkQk � "jt (j = 1; : : : ; n): (21)In fact, one checks easily that @Ij@t + fIj ; Hgs = 0:Moreover, the �rst integrals Ij satisfy the following commutatio relationfIj ; Ikgs = ajk: (22)A standard result (see [15]) in the theory of hamiltonian systems says that a familyof r-independent, Poisson commuting integrals, allows one to reduce the dimensionof the system by 2r. Hence, if the n integrals Ij had vanishing Poisson bracket, wewould be able to reduce the dimension of the system by 2n, and the equations wouldbe integrable by quadratures. Condition (22) of course does not give such a completeintegrability, but it is enough to guarantee that the corresponding hamiltonian vector�elds commute �XIj ; XIk� = 0; (j; k = 1; : : : ; n): (23)This allow us to perform a standard (non-hamiltonian) symmetry reduction andreduce the dimension of the system by n.Theorem 3.2. The map 	 : (Qi; Pi) 7! xj de�ned byxj = e(Pj+ 12Pnk=1 ajkQk) 8(Q;P ) 2 R2nis a Poisson map from R2n with the canonical Poisson bracket (20) to Rn+ withbracket ff1; f2g =Xj<k ajkxjxk �@f1@xj @f2@xk � @f2@xj @f1@xk� : (24)If (q1; : : : ; qn) 2 Rn+ is a �xed point of (1), this map reduces the enlarged system (18)to the Volterra system (1).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 10Proof. One readily veri�es that (24) satis�es the conditions of the de�nition 3.1. Itis also a routine calculation to check that the map 	 : (Qi; Pi) 7! xj satis�esff �	; g �	gs = ff; gg �	; 8f; g 2 C1(Rn+):If there is an equilibrium and we leth = nXj=1 (xj � qj log xj) ; (25)we check that H = h �	, and that system (1) can be written in the form_xj = fxj ; hg (j = 1; : : : ; n):Hence 	 reduces the enlarged system (18) to the Volterra system (1).We leave it to the reader to check that if one considers the action on R2n of the(abelian) group of symmetries G generated by the hamiltonian vector �elds XIj ,then the map 	 : R2n ! Rn+ is exactly the quocient map R2n ! R2n=G. Thereforethe reduction given in theorem 3.2 is in fact a symmetry reduction.Remarks.(i) In general, one cannot get way without some assumption of the type of (6) andso it is not possible to give a hamiltonian formulation without introducing newvariables (if, for example, (ajk) = 0 and "j > 0 then the origin is a source andsystem (1) cannot be hamiltonian).(ii) In [16] the hamiltonian structure (24) is also introduced, along with otherhamiltonian formulations valid for particular classes of interaction matrices.However, there is no reference to its relation to the Volterra hamiltonian for-mulation.When we combine these ideas with Volterra's criteria for a system to be conser-vative we obtainCorollary 3.3. Assume system (1) has a �xed point in Rn+. If the matrix associatedwith the system satis�es ajj = 0,ajk 6= 0 =) ajkakj < 0 (26)and the graph is a forest, then the system has a direct hamiltonian formulation.Remark. If we do not allow the sign change in condition (5) then we obtain anecessary and su�cient condition for the matrix to be symmetrizable. In this case,the system is gradient with respect to the \metric" ds2 =Pjk(djajkxjxk)dxjdxk.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 114 Dissipative SystemsWe now turn to the study of dissipative systems. Since we want our results topersist under small perturbation we introduce the following de�nition.De�nition 4.1. A perturbation of a Lotka-Volterra system with interaction ma-trix A is any Lotka-Volterra system with interaction matrix ~A such that~ajk = 0, ajk = 0:A Lotka-Volterra system with interaction matrix A is called stably dissipative ifevery su�ciently small perturbation is dissipative:9� > 0 : maxjk jajk � ~ajk j < � =) ~A is dissipative.Note that we only allow perturbations that have the same graph as the originalsystem. The notion of stably dissipative system is due to Redhe�eret al. who in aseries of papers [18, 19, 20, 21, 22] have studied the asymptotic stability of this classof systems. Also they use instead the name stably admissible. Since what they calladmissible is called by Volterra dissipative ([25], chp. III), we prefer the term stablydissipative. For conditions for a matrix to be stably dissipative we refer to [19].Let us start then with a stably dissipative Lotka-Volterra system having a �xedpoint q = (q1; : : : ; qn) 2 Rn+:8<: _xj = "jxj +Pnk=1 ajkxjxk;"j +Pnk=1 ajkqk = 0 (j = 1; : : : ; n): (27)The system is dissipative so we can choose a diagonal matrix D > 0 such thatAD � 0. For stably dissipative systems this choice can be improved ([21]):Lemma 4.2. One can choose a positive matrix D = diag (d1; : : : ; dn) such thatAD � 0 and the following condition holdsnXj;k=1 dkajkwiwj = 0 =) ajjwj = 0; (j = 1; : : : ; n):Proof. Given A = (aij) such that the associated system is stably dissipative weconsider the perturbation ~A = (~ajk) given by~ajk = ajk (j 6= k); ~ajj = (1� �)ajj :Also, choose D > 0 such that ~AD � 0. Since ajj � 0 andnXj;k=1 dkajkwiwj = nXj;k=1 dk~ajkwjwk + � nXj=1 djajjw2j ;



DYNAM. ON THE ATTRACTOR OF L-V EQS. 12we see that AD � 0 andnXj;k=1 dkajkwiwj = 0 =) ajjwj = 0; (j = 1; : : : ; n):If D = diag (d1; : : : ; dn) is a matrix as in the previous lemma, we perform thechange of gauge xj 7! 1dj xj so we can assume that A � 0 andnXj;k=1 ajkwiwj = 0 =) ajjwj = 0; (j = 1; : : : ; n): (28)Then we have a Liapounov function given byV = nXj=1 (xj � qj log xj) : (29)In fact, we �nd that _V = nXj;k=1 ajk(xj � qj)(xk � qk) � 0:By La Salle's theorem[13], the solutions exist for all t � 0 and the set _V = 0 containsan attractor. Therefore one would like to understand the set _V = 0.We shall now recall Redhe�er's beautiful description of the attractor in terms ofthe reduced graph of the system. Notice that by (27), (28) and (29) solutions on theset _V = 0 satisfy 8<: _xj = xjPnk=1 ajk(xk � qk);ajj(xj � qj) = 0 (j = 1; : : : ; n): (30)Therefore, one has either ajj = 0 or ajj < 0, and in the later case we have xj = qjon the attractor.It will be convenient to modify slightly the notion of graph associated with thesystem we introduced above. One now draws a black dot v at vertex j if eitherajj < 0, or ajj = 0 and somehow we have shown that xj = qj on the attractor.Otherwise, one draws an open circle f at vertex j. It is also convenient to put a� at vertex j if one can show that xj is constant on the attractor (an intermediatestage between black dots and open circles).We have ([20]):



DYNAM. ON THE ATTRACTOR OF L-V EQS. 13Lemma 4.3. The following propagation rules are valid:(a) If there is a v or � at vertex j and v at all neighbors of j except one vertexl, then we can put a v at vertex l;(b) If there is a v or � at vertex j, and a v or � at all neighbors of j exceptone vertex l, then we can put a � at vertex l;(c) If there is f at vertex j, and v or � at all neighbors of j, then we can put� at vertex j;Proof. The proof is a straightforward application of (30).One calls the reduced graph R(A) of the system, the graph obtained by repeateduse of the rules of reduction (a), (b) and (c). Fig. 2 gives an example of a graphand its reduced graph obtained by successive application of these rules. For moreon the reduced graph we refer to [20]. Here we shall only need the following factwhich follows from the results in [21].f f
| |
| |
| |
| |

f
| |
| |
| |
| |

f f
| |
| |
| |
| |

f
| |
| |
| |
| |v f v v v vFigure 2: A graph G(A) and its reduced form R(A).Proposition 4.4. Let K denote the subgraph of the reduced graph of a stably dis-sipative Lotka-Volterra system formed by vertices with f or � and connectionsbetween them. Then K is a forest, i.e., K = K1S � � �SKr (disjoint) where each Kiis a tree.Proof. We have to rule out the existence of a closed path whose vertices are all oftype f or �. Assume we had such a closed path and label its vertices from 1 to m.Then one has ajj = 0 for each 1 � j � m, so given two adjacent vertices j and k inthis closed closed path we must haveajk + akj = 0;on account of the condition A � 0. In other words the reduced system whose graphis the closed path is conservative. By proposition 2.1, this can happen if, and onlyif a12 � � �am�1mam1 = (�1)ma1mamm�1 � � �a21:Clearly, this condition cannot hold for all small perturbations. Hence the originalsystem would not be stably dissipative.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 14We are now in condition to prove theorem 1.2 which we state as follows:Theorem 4.5. Consider a Lotka-Volterra system (1) restricted to the ow invariantset Rn+ � f(x1; : : : ; xn) 2 Rn : xj > 0; j = 1; : : : ; ng, and assume that (i) the systemhas a singular point q 2 Rn+, and (ii) is stably dissipative. Then the dynamics onthe set _V = 0 are hamiltonian. Moreover, they can be described by a Lotka-Volterrasystem of dimension m � n.Proof. Consider the system restricted to _V = 0. We split the variables xj into twogroups labeled by sets Jo and J�. In the �rst group fxjgj2Jo we have all the xj 'scorresponding to vertices with open circles f or � in R(A), while the second groupfxjgj2J� we have all the xj 's corresponding to vertices with black circles v in R(A).For j 2 J� we have xj = qj , hence the restricted system satis�es8<: _xj = ("j +Pk2J� ajkqk)xj +Pk2Jo ajkxjxk if j 2 Joxj = qj if j 2 J� (31)Therefore if we de�ne ~"j = "j +Pk2J� ajkqk, ~ajk = ajk (j; k 2 Jo), we obtain a newVolterra type system: _xj = ~"jxj + Xk2Jo ~ajkxjxk (j 2 Jo) (32)where the graph associated with the matrix ~A = (~ajk)j;k2Jo is precisely the subgraphK of the reduced graph R(A) formed by vertices with f or � and connectionsbetween them. Note that this matrix satis�es ~ajj = 0, and that there exists adiagonal matrix D > 0 such that ~AD � 0. But this impliesdj~ajk + dk~akj = 0;which shows that ajk 6= 0 =) ajkakj < 0:Note also that the (qj)j2Jo form a solution of the system~"j + Xk2Jo ~ajkqk = 0 (j 2 Jo):By proposition 4.4, we are in the conditions of corollary 3.3, so system (32) has ahamiltonian formulation.The proof shows that the dynamics on the attractor can be described by aLotka-Volterra system of dimension m � n whose associated graph is a tree, whichis conservative and has a �xed point in Rm+. Conversely, any such system describesan attractor, since any system whose associated graph is a tree is stably dissipative.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 15Part II. Behavior of Solutions on the Attractor5 A Toy ModelOne would like to describe the qualitative dynamics on the attractor of theLotka-Volterra equations. This amounts to classify the dynamics of n-dimensionalLotka-Volterra systems, with skew-symmetric matrix whose associated graph is aforest, and a �xed point q 2 Rn+. We do not know of such classi�cation, but we shallsee by looking at a 4 dimensional linear chain that these dynamics can be rathercomplex.First we make some general remarks. If n is odd the Poisson bracket has rank� n � 1 and there exist Casimirs(). In general (any dimension), the Casimirs takethe form C(x1; : : : ; xn) = nXj=1 bj log xj ;where (b1; : : : ; bn) is any vector in the kernel of (aij). It follows that the dynamicstake place on the level sets of these Casimirs, and in the presence of Casimirs we havee�ectively reduce the dimension. On the other hand, if n is even and the Poissonbracket is non-degenerate then there are no such Casimirs. In fact, apart from theseCasimirs, one should expect that generically there should be no other �rst integralsbesides the hamiltonian function h.Another general remark is that the level sets of h, given by (25), are n � 1dimensional spheres Sn�1. Locally, in a neighborhood of the �xed point q, thisfollows from the relations � @h@xj�q = �1� qjxj�q = 0;� @2h@xj2�q =  qjx2j!q = 1qj > 0;� @2h@xj@xk�q = 0 (j 6= k);and the Morse lemma. On the other hand, using the ow of grad hkgrad hk2 , we see thatwe can deform isotopically each level set onto any other (see [14]). Therefore thelevel sets are isomorphic to Sn�1. Alternatively, we could use the fact that h is aconvex function in Rn+.In order to illustrate the complexity of the dynamics that can occur on theA Casimir is a function that Poisson commutes with any other function (see [15]).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 16attractor we will consider the following 4-dimensional Lotka-Volterra system:8>><>>: _x1 = �x1 + x1x2;_x2 = +x2 � x2(x1 � �x3);_x3 = �x3 + x3(x4 � �x2);_x4 = +x4 � x4x3: (33)We have included a parameter � which must be restricted to ] � 1;+1[ since weneed the �xed point q = (1 + �; 1; 1; 1+ �) to belong to R4+. The interaction matrixis skew-symmetric (aij) = 0BB@ 0 1 0 0�1 0 � 00 �� 0 10 0 �1 0 1CCA : (34)and its graph is a linear chain:f�1 f1 � f�1 f1Figure 3: Graph G(A; ") associated with system (33).If � = 0 the system is separable and hence is completely integrable. Two inde-pendent analytic integrals in involution areI1(x) = x1 + x2 � log x1 � log x2;I2(x) = x3 + x4 � log x3 � log x4:The common level sets of these integrals are 2-dimensional tori S1 � S1, and thesolutions are almost periodic. We are interested in investigating what happens when� 6= 0.6 Periodic OrbitsFor any � system (33) has a time reversing symmetry. To see this let � : R4+! R4+be the involution �(x1; x2; x3; x4) = (x4; x3; x2; x1):The hamiltonian vector �eld Xh associated with the system satis�es ��Xh = �Xh.Therefore, if x(t) is a solution of (33) so is �(x(�t)), and we see that � de�nes atime reversing symmetry of the system. In particular, it follows that any solutioncrossing twice the set Fix(�) = fx1 = x4; x2 = x3g is a periodic solution. Using thismethod we can �nd the following family of periodic orbits.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 17Lemma 6.1. For any �, the 2-plane� = f(x1; x2; x3; x4) : x1 = (1 + �)x3; x4 = (1 + �)x2gis formed by periodic orbits of system (33).Proof. If we look for solutions of the form8>><>>: x1 = (1 + �)u;x2 = v;x3 = u;x4 = (1 + �)v; (35)we see that u and v satisfy the predator-prey system� _u = �u + uv;_v = +v � uv: (36)This system has a �xed point (1; 1) 2 R2+ and, moreover, all its solutions are periodic.These in turn give periodic solutions of the original system.If x(6= q) belongs to the 2-plane � of periodic solutions, thendh(x)(x� q) = (x2 � 1)2(2 + �)x2 + (x3 � 1)2(2 + �)x3 6= 0; (37)so the level sets of h and the 2-plane � intersect transversely along the periodic orbit�. Therefore, we have the following �gure.
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äΠFigure 4: Energy levels and periodic orbits of system (33)Let us consider now the 1-parameter family of 3-planesfx 2 R4+ : ��(x) � cos �(x1 � (1 + �)x3) + sin �(x4 � (1 + �)x2) = 0g; (38)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 18where the parameter � varies in [0; �[. Each plane in this family intersects a �xedenergy level set fh = Eg ' S3 along a 2-sphere since h is convex:S2� = fx 2 R4+ : h(x) = E; ��(x) = 0g: (39)We shall show that for each sphere S2�, with � 2 [0; �=2], the ow induces a returnmap f� : S2� ! S2� of the sphere. This map codi�es all the dynamics since every orbitof the system in the �xed energy level set intersects the sphere.First we need the followingLemma 6.2. As � varies in [0; �[ the family of spheres S� covers the energy levelset fh = Eg ' S3: S3 = [�2[0;�[S2�:Moreover, they intersect along the unique periodic orbit � of the family � which liesinside S3: � = \�2[0;�[S2�:Proof. If x 2 R4+ we can choose � 2 [0; �[ such that x lies in the 3-plane (38) bysetting � = � arctan x1 � (1 + �)x3x4 � (1 + �)x2(if x4 � (1 + �)x2 = 0 we take � = �=2). Therefore, the family of spheres S2� coversthe energy level set.If �1 6= �2 and x 2 S2�1 \S2�2 then x is a solution of the system� cos �1 sin �1cos �2 sin �2 �� x1 � (1 + �)x3x4 � (1 + �)x2 � = 0:Since the determinant of the matrix of this system is 2 sin(�2 � �1) 6= 0, we see thatx must satisfy the system � x1 � (1 + �)x3 = 0;x4 � (1 + �)x2 = 0;i. e., it belongs to �.Volterra's time average principle (proposition 2.3) states thatlimT!+1 1T Z T0 x(t)dt = q:



DYNAM. ON THE ATTRACTOR OF L-V EQS. 19This average behavior suggests that an orbit starting at a sphere S2� should eventuallyreturn to the sphere. This however does not follow from Volterra's principle. Whatwe can say is that every orbit of system (33) must visit every neighborhood of asphere S2�. In fact, we �ndlimT!+1 1T Z T0 ��(x(t))dt = limT!+1 1T Z T0 cos �(x1 � (1 + �)x3) + sin �(x4 � (1 + �)x2)dt= cos �(q1 � (1 + �)q3) + sin �(q4 � (1 + �)q2) = 0;for any orbit x(t). So we see that for every " > 0 there exists a time t" such thatj��(x(t"))j < ":This of course does not mean that the orbit actually returns to the sphere. It could,for example, approach the orbit � always from the same side of the sphere S�. Thefact that this does not happen is a consequence of the following proposition.Proposition 6.3. Let x0 2 S20�� and denote by x(t) the orbit of system (33) withinitial condition x0. Then there are times 0 < t0 < t1 such that:(i) x(t0) lies in a di�erent connected component of S20� � than x0;(ii) x(t1) lies in the same connected component of S20� � as x0.   
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2Figure 5: Flow of system (33) on an energy level set.Proof. The spheres S20 and S2�=2 are the boundaries of four connected regions in theenergy level set fh = Eg ' S3. These regions are determined by the signs of thefunctions �0(x) = x1 � (1 + �)x3 and ��=2(x) = x4 � (1 + �)x2 as described in thefollowing table:



DYNAM. ON THE ATTRACTOR OF L-V EQS. 20RegionI II III IV�0(x) � � + +��=2(x) + � � +Now we observe that V0(x) = log(x1x3 ) and V�=2(x) = log(x4x2 ) are local Liapounovfunctions in the regions I{IV. In fact, we compute along an orbit of system (33)_V0 = ddt log(x1x3 ) = �x4 + (1 + �)x2;_V�=2 = ddt log(x4x2 ) = x1 � (1 + �)x3:This gives the following behavior for the signsRegionI II III IV_V0 � + + �_V�=2 � � + +Also, we have S20 = fV0 = log(1 + �)g = f _V�=2 = 0g;S2�=2 = fV�=2 = log(1 + �)g = f _V0 = 0g:It follows that _V0 = dV0(Xh) 6= 0 on S20�S2�=2 = S20� �;_V�=2 = dV�=2(Xh) 6= 0 on S2�=2�S20 = S2�=2� �Therefore, Xh is transversal to S20� � and to S2�=2� �.We now claim that if x(t) is a solution of system (33) which at time ti is in theinterior of some region R (R = I; II; III; IV ) then the solution must leave regionR, so there exists some later time tl > ti for which x(tl) is in the interior of regionR+ I (mod 4).Assume for example x(ti) is in the interior of region I . Then we have�0(x(ti)) < 0 =) x1(ti)x3(ti) < 1 + �:If x(t) stayed for ever in region I then its !-limit set would be inf _V0 = 0g \ f _V�=2 = 0g = S20\S2�=2 = �:This means that the ratio x1x3 should approach 1+ �, which contradicts the fact thatin region I we have V0 = log(x1x3 ) strictly decreasing. Therefore, x(t) must leaveregion I. The transvesality condition on the boundaries guarantees that there existstl > ti for which x(tl) is inside region II.The reasoning for the other regions is similar, so the proposition follows.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 21We have seen that for the spheres S20 and S2�=2 the ow is transversal except atpoints of �. This also holds for any sphere S2� with � 2 [0; �=2], and we obtainTheorem 6.4. For any � 2 [0; �=2], the ow of system (33) induces a homeomor-phism of the sphere f� : S2� ! S2�. The periodic orbit � divides de sphere S2� into twoopen hemispheres, and f� �xes � and maps each open hemisphere di�eomorphicallyonto the other.Proof. For any sphere S2� with � 2 [0; �=2], we observe that Xh is transversal toS2� � �. In fact, we computed�� �Xh =(cos � + (1 + �) sin �)x1x2 + �(1 + �)(cos � � sin �)x2x3� ((1 + �) cos � + sin �)x3x4:If x 2 R4+ satis�es ��(x) = 0 we havex = a1(1 + �; 0; 1; 0)+ a2(0; 1; 0; 1+ �) + a3(sin �; 0; 0;� cos�);for some real numbers a1 > 0, a2 > 0 and a3. It follows thatd�� �XhjS2� =a1a3(cos � sin � + (1 + �) cos2 �) (40)+ a2a3(cos � sin � + (1 + �) sin2 �):Therefore, if � = 0; �=2 the hamiltonian vector �eld Xh is transversal to the thesphere S2� except at those points where a3 = 0, i. e., except for those x 2 �.   
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2Figure 6: Spheres S2� for � 2 [0; �=2].It is clear from the proof of the previous proposition that an orbit starting on aopen hemisphere of S2��� will hit �rst the other open hemisphere before returning.The theorem then follows from standard results on continuity and di�erentiabilityof solutions o.d.e.'s with respect to the initial conditions.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 22We remark that for �=2 < � < � there are points in S2� � � where the ow istangential, so for these spheres theorem 6.4 fails.Note also that the spheres S2� and S2�=2�� are conjugate under the involution �.Therefore, although all spheres S2�, with � 2 [0; �=2], give the full description ofthe dynamics, it is very natural to consider the \symmetric" sphere S2�=4. For thissphere the map f�=4 is conjugated to its inverse f�1�=4 through the involution �.In the integrable case � = 0 it is not hard to �gure out the phase portrait of themap f�. The orbits of this map are the intersection of the cilinders given by thelevel sets of the integral I1 (or I2) with the sphere S� (see section 5).
Figure 7: Intersections of I1 = const: with the sphere S�.These levels sets consist of� Two circles of degenerate �xed points corresponding to I1 = I2 = h=2 (onecircle is �);� Two elliptic �xed points corresponding to the periodic orbits with the �xedenergy and satisfying, respectively, x1 = x2 = 1 and x3 = x4 = 1;� periodic orbits around the two elliptic �xed points;In the following picture we show the phase portrait of f�=4 on the sphere S2�=4 for� = 0. Note that we only need the portrait of one of the hemispheres, the other onebeing homeomorphic.

Figure 8: Phase portrait of f�=4 for � = 0.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 23The phase portrait of the map f for � 6= 0 is much more complex. To have someinsight we now turn to the study of the stability of periodic orbits.7 Stability of Periodic OrbitsWe shall now consider the stability of the periodic orbits of the family �. Re-call from lemma 6.1 that these orbits are parametrized by the solutions of the twodimensional Volterra system � _u = �u + uv;_v = +v � uv: (41)This system is hamiltonian with h0 = u+ v � log(uv).For each value h0 = E > 2, the periodic solution (u(t; E); v(t; E)) of system (41)determines a periodic solution � = �(�; E) of the original system. Therefore, theenergy parametrizes the orbits in the family �, and we have()Lemma 7.1. The period T = T (E) of the orbits lying in � is a strictly increasingfunction of the energy. In fact, dTdE > 0.Proof. See [23] for a proof.Later, in theorem 9.4, we will derive an asymptotic formula for the period T (E)as E !1.Next we will show that the stability of the orbits in the family � can be reducedto a Sturm-Liouville problem. First we look at the linearization around a periodicorbit �(�; E) � �.Proposition 7.2. Let � = �(�; E) � � be the periodic orbit of system (33) associ-ated with a solution (u; v) = (u(t; E); v(t; E)) of system (41). Then � has one char-acteristic multiplier equal to 1, and the other two multipliers �1(�; E) and �2(�; E)coincide with the Floquet multipliers of the linear system with periodic coe�cients_w = (1 + �)� 0 u(t; E)�v(t; E) 0 �w: (42)They satisfy the hamiltonian symmetry�1(�; E)�2(�; E) = 1: (43)Proof. Let � = fx0(t) : t 2 [0; T ]g be a T -periodic solution of system (33) associatedwith a T -periodic solution (u; v) of system (41). We linearize the system around thisT -periodic orbit and obtain the linear system with periodic coe�cients:_z = L(t; �)z; (44)Note that the energy of an orbit of system (41) and the energy of the corresponding orbit in �of system (33) are related by a multiplicative factor of (2 + �).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 24where L = L(t; �) is given byL = �@Xi@xj �x0(t) = 0BB@ �1 + v (1 + �)u 0 0�v 1� u +�v 00 ��u �1 + v u0 0 �(1 + �)v 1� u 1CCA : (45)Now consider the linear change of coordinates given bybw = 0BB@ 0 �(1 + �) 0 11 0 �(1 + �) 00 1 0 11 0 1 0 1CCA z:Then equation (44) is transformed into_bw = 0BB@ 1� u (1 + �) v 0 0� (1 + �) u �1 + v 0 00 0 1� u �v0 0 u �1 + v 1CCA bw:If we make the time-dependent change of variables:bw1 = v(t)w1; bw2 = u(t)w2; bw3 = v(t)w3; bw4 = u(t)w4;we �nd, using (41), that w satis�es the linear system_w = 0BB@ 0 (1 + �)u 0 0� (1 + �) v 0 0 00 0 0 �u0 0 v 0 1CCAw:Therefore, we conclude that the linearization around the periodic orbit is equivalentto two, 2-dimensional, linear systems with periodic coe�cients. Let �1 = �1(�; E)and �2 = �2(�; E) be the Floquet multipliers of the �rst system_� w1w2 � = (1 + �)� 0 u(t)�v(t) 0 �� w1w2 � :and denote by B(t) the matrix of this system. We have�1�2 = exp�Z T0 trB(s)ds� = 1:On the other hand, the Floquet multipliers of the second system_� w3w4 � = � 0 �u(t)v(t) 0 �� w3w4 � :also have hamiltonian symmetry. Since w(t) = (1 � u(t); v(t)� 1) is a T-periodicsolution of this system, its Floquet multipliers are equal to 1.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 25Note that u(t; E) and v(t; E) are positive, smooth, T -periodic functions. System(42) is then equivalent to the eigenvalue equationL[x] = � 1v(t; E) � x0u(t; E)�0 = �x (46)where we set � = p1 + �, w1 = x and w2 = x0p�u(t) . This remark impliesProposition 7.3. Let �(t; �; E) (E > 2) denote the fundamental matrix solution of(42) with initial value �(0; �; E) = � 1 00 1 � and setf(�; E) = tr�(T (E); �;E) = �1(�; E) + �2(�; E):Then for each value of the energy E there exists a sequence of parameters �i = �i(E)and ~�i = ~�i(E) such that�0 < ~�1 � ~�2 < �1 � �2 < ~�3 � ~�4 < �3 � �4 < � � � (47)such that f(�i(E); E) = 2; and f(~�i(E); E) = �2: (48)Furthermore, we have �0 = �1, �1(E) = 0 and �1(E) < �2(E).Proof. The existence of the sequence (47) satisfying (48) follows from standard re-sults in Sturm-Liouville theory (see, e. g., [3] chapter 8 and [6] chapter 5). It is alsoobvious that �0 = �1 and, as in the the proof of proposition 7.2, we see that for� = 0 we have a T -periodic solution, so �1 = 0. It remains to show that �2 > �1.We also know from standard Sturm-Liouville theory that �1 = �2 = 1 i� thereare two linearly independent periodic solutions of the linear system_w = � 0 �u(t)v(t) 0 �w: (49)We claim that this is not the case. First we remark that system (49) is (equivalent to)the linearization of system (41) around the periodic orbit (u(t); v(t)). This followsfrom a computation as in the proof of proposition 7.2. We will show now that thefact the period of the orbits is a monotone function of the energy (lemma 7.1) impliesthat system (49) cannot have two linearly independent periodic solutions.In fact, we can introduce action-angle variables (s; �) in a neighborhood of theperiodic orbit such that system (41) is equivalent to� _s = 0;_� = �@h0@s ;



DYNAM. ON THE ATTRACTOR OF L-V EQS. 26where h0 = h0(s). The periodic orbit (u(t); v(t)) corresponds to some solutions(t) = c1, �(t) = �@h0@s (c)t + c2 for some constants c1 and c2. If we linearize thesystem in action-angle variables we obtain the linear system_w = � 0 0�@2h0@s2 (c) 0 �w; (50)so all that remains to show is that �@2h0@s2 6= 0. Now recall how the action variables is constructed (see [2], chapter 10): if the original system is written in canonicalcoordinates (p; q) then s(E) is the area enclosed by the orbit fh0(p; q) = Eg:s(E) = Zh0(p;q)�E dq ^ dp:Moreover, the period of the orbits is given byT (E) = @s@E:Since we know from lemma 7.1 that dTdE 6= 0, we have @2s@E2 6= 0 and implicit di�eren-tiation gives �@2h0@s2 6= 0 as desired.As a corollary we obtain the following bifurcationCorollary 7.4. For a �xed energy E, the periodic orbit �(�; E) changes its stabilityfrom elliptic to hyperbolic as � crosses zero.The family of periodic orbits � we have been discussing so far can also be ob-tained by linearizing the system around the �xed point q. Recall that a �xed point qof a 4-dimensional hamiltonian system (M4; !; h) on a symplectic manifold is a non-ressonant elliptic singular point if the eigenvalues �1; �2; ��1; ��2 of the linearizationof the hamiltonian vector �eld Xh at q satisfy:(i) f�1; �2g are simple (�1 6= �2);(ii) each �i has real part zero;(iii) �1 and �2 are Z-linearly independent;In this case we have the Liapounov sub-center theorem (see [1], chapter V):Theorem 7.5. (Liapounov) For each pair (�i; ��i) there exists a 2-dimensionalmanifold of periodic orbits �i through q such that the tangent space Tq�i is theeigenspace corresponding to the pair (�i; ��i).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 27The eigenvalues of the linearization of system (33) at q are �i and �i(1+ �). If� 6= 0, the eigenspace corresponding to the pair (i;�i) isTq�1 = L(f(1+ �; 0; 1; 0); (0; 1; 0; 1+ �)g;while the eigenspace corresponding to the pair (i(1 + �);�i(1 + �)) isTq�2 = L(f(�1; 0; 1; 0); (0; 1; 0;�1)g:Therefore, for � 62 Q, q is non-ressonant and the family �1 given by Liapounov'stheorem coincides with the family � we have studied before.There are two other families of periodic orbits �3 and �4 through the �xed pointq, at least for small values of �. In fact, for � = 0 we have the two families of periodicorbits �3 = fx3 = x4 = 1g and �4 = fx1 = x2 = 1g. Moreover, it is easy to checkthat these orbits are elliptic, and hence must persist for small �. Note also thatthese orbits are conjugated by the involution �.The stability of the family of periodic orbits �2 is harder to obtain, but weconjecture that as � crosses zero these orbits change from hyperbolic to elliptic.This would mean a change of stability between �1 and �2.� < 0 � = 0 � > 0�1 elliptic parabolic hyperbolic�2 hyperbolic parabolic elliptic (conjectured)�3 elliptic�4 ellipticFrom this table we obtain the following sketch for the phase portraits of the mapf�=4 : S2�=4 ! S2�=4 as � crosses zero (again we consider only one hemisphere, theother one being homeomorphic):
 

δ=0 δ>0δ<0Figure 9: Bifurcation of f�=4 as � crosses zero.In fact, there is much more to this phase portrait as we will show in the next sec-tion that for � 6= 0 the system is non-integrable. Also, simple numerical integrationschemes show the appearance of elliptic isles.



DYNAM. ON THE ATTRACTOR OF L-V EQS. 288 Non-integrabilityPoincar�e [17] observed that the existence of independent integrals in a neighbor-hood of a periodic orbit forces some of its characteristic multipliers to be 1. Thisremark can be explored to look for integrals in a neighborhood of a periodic solution.In this section we carry through with this idea to show that the dynamics describedby the 4-dimensional hamiltonian system (33) are non-integrable.The key result is the following theorem due to Poincar�e on the relationshipbetween integrals in involution and characteristic multipliers. For a proof and acomplete discussion we refer to [12].Theorem 8.1. (Poincar�e) Suppose a Hamiltonian system (M; f ; g; h) admitsk-integrals I1; : : : ; Ik in involutionfIj ; Ilg = 0; (j; l = 1; : : : ; k);independent at some point x0 of a periodic solution �x0 2 �; dI1 ^ � � � ^ dIk(x0) 6= 0:Then � has 2k � 1 characteristic multipliers equal to 1.Consider now a 4-dimensional hamiltonian system (M4; !; h) on a 4-dimensionalsymplectic manifold, and assume that the system has a non-ressonant elliptic sin-gular point q 2 M . We shall say that the system is completely integrable in aneighborhood U of q if there exists a second �rst integral I such thatdI ^ dh(x) 6= 0; 8x 2 O;where O is some open dense set in U . Using the results of Ito [11] and Eliasson [5]on Birkho� canonical forms, one can prove the following criteria.Theorem 8.2. If a hamiltonian system (M4; !; h) is completely integrable in aneighborhood of a non-ressonant elliptic singular point q 2 M then the only non-degenerate families of periodic orbits through q are the ones given by the Liapounovtheorem.Proof. Assume that the system is completely integrable. Then ([11, 5]) there existcanonical coordinates (�1; �2; �1; �2) de�ned in a neighborhood of q such thath = h(�21 + �212 ; �22 + �222 ) and I = I(�21 + �212 ; �22 + �222 ):If we let �i = p2si cos�i; �i = p2si sin �i; (i = 1; 2)we obtain action-angle variables in a neighborhood of q:h = h(s1; s2); ! =Xi d�i ^ d�i =Xi dsi ^ d�i:



DYNAM. ON THE ATTRACTOR OF L-V EQS. 29Now, by Poincar�e theorem, if � is any family of non-degenerate periodic orbitsthrough q we must have� dh ^ ds1j� = 0;dh ^ ds2j� = 0; =) ds1 ^ ds2j� = 0:Since � is a smooth 2-dimensional manifold, we check easily that this condition gives� = fs1 = 0g or � = fs2 = 0g, i. e., � is one of the families given by Liapounovtheorem.We have seen in the previous section that, for � 6= 0 small, system (33) has atleast 3 families of nondegenerate periodic orbits through q . Hence this criteria canbe applied to system (33) and we obtainCorollary 8.3. For su�ciently small � 6= 0 system (33) is non-integrable.9 Strong HyperbolicityThe results we have obtain so far for system (33) deal mostly with small valuesof the parameter � and small values of the energy E (i. e., a neighborhood of q). Inthis section we consider other regions of these parameters, and we show that we can�nd regions of strong hyperbolicity.Let us consider again the linearization of system (33) around a periodic orbit�(�; E) � � which, according to proposition 7.2, can be reduced to the linear system_w = (1 + �)� 0 u�v 0 �w: (51)In polar coordinates, w1 = r cos �, w2 = r sin �, this system is equivalent to� _r = (1 + �)(u� v)r sin � cos �_� = �(1 + �)(v cos2 � + u sin2 �) (52)The second equation de�nes a ow on R=2�Zwith rotation number�(�; E) = �T� limt!1 �(t; �; E)� �(0; �; E)t ;where �(t; �; E) denotes any solution of the equation. The number �(�; E) mea-sures (counterclockwisely) the average number of half turns per period of a vector�(t; �; E)v0 when t runs from 0 to +1. It is easily checked that �(�; E) is an eveninteger if and only if �(T; �; E) has positive eigenvalues which is equivalent to saythat f(�; E) � 2. Similarly �(�; E) is an odd integer if and only if �(T; �; E) hasnegative eigenvalues or equivalently that f(�; E) � �2 (see proposition 7.3). Thisimplies that �(�; E) is constant in each unstability interval. More precisely, we have�(�; E) = 8<: 2i+ 1 for � 2]~�2i+1; ~�2i+2[;2i+ 2 for � 2]�2i+1; �2i+2[; (i = 0; 1; 2; � � �):



DYNAM. ON THE ATTRACTOR OF L-V EQS. 30In the intervals where (51) is elliptic one hasf(�; E) = 2 cos(��(�; E));and since f(�; E) is a strictly monotone function of � the rotation number �(�; E) isalso strictly increasing in these intervals.It is shown in [3] that the values of � for which �(T; �; E) is a diagonal matrix,form a discrete sequence (�i(E)) satisfying�1 < �2 < � � � < �n < � � � ! +1:Moreover, each unstability interval contains exactly one �i so the sequence (47) canbe completed to�0 = �1 < ~�1(E) � �1(E) � ~�2(E) < �1(E) = 0 � �2(E) � �2(E) << ~�3(E) � �3(E) � ~�4(E) < �3(E) � �4(E) � �4(E) < � � �and for each k = 1; 2; : : : , we have�(T; �k(E); E) = � ak(E) 00 ak(E)�1 � with �(�k; E) = k:Based on numerical evidence we conjecture that for a �xed energy E 2]2;+1[,the amplitude of oscillations of the function � 7! f(�; E) converges to 4, with oscil-lations between �2 and 2, as � ! +1, while the length of the unstability intervalsdecreases to 0 as � goes to +1. This would imply that for a �xed (low) energy levelE there are no parameters with simultaneously high rotation number and stronghyperbolicity. On the other hand, for large energy levels we have:Theorem 9.1. For each k = 2; 3; : : :, one haslimE!1 jf(�k(E); E)j = +1In other words, given k � 2, for all large enough E and � su�ciently close to �k(E),�(�; E) is strongly hyperbolic with rotation number k.The proof of this theorem requires studying in detail the asymptotics of system(41). This study will be done in the next subsection. After that we return to theproof of the theorem.9.1 Asymptotics of system (41)We are interested in understanding what happens to the solutions of system 41when E !1. Let � = �(E) and � = �(E), with 0 < � < 1 < �, be the two uniquesolutions of x� log x = E2 . The points (�; �) and (�; �) lie in the intersection of theenergy level h0(u; v) = u+ v � log(uv) = E (53)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 31with the diagonal u = v. Let (u(t; E); v(t; E)) be the periodic orbit of system (41)with initial condition (u(0; E); v(0; E)) = (�; �), whose period we denote by T =T (E). From the reversing symmetry � : R2 ! R2, �(u; v) = (v; u), of this system,which �xes the initial condition (�; �), it follows easily that� u(T � t; E) = v(t; E);v(T � t; E) = u(t; E): (54)In particular we get (u(T=2; E); v(T=2;E)) = (�; �).It will be convenient to reparametrize the orbits of system (41). For each x 2[�; �] let �(x) 2 [0; T=2] be de�ned implicitly byu(�(x)) + v(�(x))2 = x: (55)From (53) we get u(�(x))v(�(x)) = e2x�E :Thus u(�(x)) and v(�(x)) are the solutions of a quadratic equation:8<: u(�(x)) = x�px2 � e2x�E ;v(�(x)) = x+px2 � e2x�E :The reparametrization �(x) satis�es:�(x) = Z �(x)0 1dt = Z �(x)0 u0(t) + v0(t)v(t)� u(t) dt == Z x� 2dyv(�(y))� u(�(y)) = Z x� 1py2 � e2y�E dy:Notice that by di�erentiating (55) we get(u0(t) + v0(t))dt = (u0(�(y)) + v0(�(y)))� 0(y)dy = 2dy:Notice also that the radicand y2�e2y�E has two simple zeros at y = � and y = � andis strictly positive in between. This guaranties the convergence, for any x 2 [�; �],of the improper integral �(x) = Z x� 1py2 � e2y�E dy: (56)Now de�ne for x 2 (�; �),8>>>><>>>>: ~u(x;E) := � 0(x)u(�(x)) = 1�q1� e2x�Ex2q1� e2x�Ex2 ;~v(x;E) := � 0(x)v(�(x)) = 2 + ~u(x): (57)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 32The function ~u(x;E) can be expressed as a composition of two simpler functions~u(x;E) = 1�p1� 'E(x)p1� 'E(x) = g('E(x));where:� 'E : [�; �]! R+, is the strictly convex function given by'E(x) = e2x�Ex2 :� g : [0; 1[!R+ is the strictly increasing function given byg(w) = 1�p1� wp1� w :Note also that 'E takes its minimum value e2�E at the point x = 1 and satis�es'E(�) = 'E(�) = 1.In the following lemma we enumerate some preliminary estimates.Lemma 9.2. Let E > 2. Then:(i) For 2� � x � � � 1,12'E(x) � ~u(x;E) � 'E(x) � p5� 12 ; (58)(ii) If E !1, Z 2� ~u(x;E)dx= O �Ee�E=2� ; (59)(iii) For 2 � z � � � 1, Z z� ~u(x;E)dx� 'E(z): (60)Proof. (i) Just check that 'E(� � 1) � p5�12 , 'E(2�) � p5�12 andw2 � g(w) � w; for all 0 < w � p5� 12 :(ii) For all � � x � 1 we have e2x�E � �x. Then, as E !1,Z p�� ~u(x)dx � Z p�� 1p1� �x � 1dx = O(� log�) = O�Ee�E=2� ;Z 2p� ~u(x)dx � Z 2p� 'E(x)dx = O('E(p�)) = O(e�E=2):



DYNAM. ON THE ATTRACTOR OF L-V EQS. 33Addition of these inequalities proves (ii).(iii) From (i) we haveZ z2 ~u(x;E)dx � Z z2 'E(x)dx� Z z2 2'E(x)�1� 1x� dx= ['E(x)]z2 = 'E(z)� 'E(2) � 'E(z):Using the lemma we can prove theProposition 9.3. limE!1 Z �(E)�(E) ~u(x;E)dx= log 2:Proof. Given � > 0, �x z = 3� . Making the substitution w = 'E(x) we have12wdw = �1� 1x�dx and thereforeZ �z ~u(x;E)�1� 1x� dx = Z 1'E(z) 1�p1� wp1� w dw2w= log�1 +p1� 'E(z)� = log 2� O ('E(z)) ;where the remainder O ('E(z)) is positive and converges to zero as E !1. ThusZ �z 1x ~u(x;E)dx � �3 Z �z ~u(x;E)dx� 2�3 Z �z ~u(x;E)�1� 1x� dx� 2�3 log 2 � �2 :Taking E large enough, we obtain����log 2� Z �� ~u(x;E)dx���� � ����log 2� Z �z ~u(x;E)�1� 1x� dx����+ Z �z 1x ~u(x;E)dx+ Z z� ~u(x;E)dx� O ('E(z)) + �2 + 'E(z)= �2 + �2 = �:We can state and prove our �nal estimates for the asymptotic behavior of solu-tions of system (41).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 34Theorem 9.4. Let u(t; E) and v(t; E) be solutions of (41) with energy E and periodT = T (E). Then:(i) limE!1 Z T=20 u(t; E)dt� log 2 = 0;(ii) limE!1 Z T=20 v(t; E)dt� 2�(E) = 0;(iii) limE!1T (E)� 2(�(E) + log 2) = 0.Proof. From (57) we get,Z T=20 u(t; E)dt = Z �� ~u(x;E)dx; andZ T=20 v(t; E)dt = Z �� ~v(x;E)dx= Z �� 2 + ~u(x;E)dx= 2(� � �) + Z �� ~u(x;E)dx;so (i) and (ii) follow. To prove (iii) we remark that for all t, 1 = u(t) + ddt (log v(t)).Thus T2 = Z T=20 u(t)dt+ log � � log � = Z �� ~u(x)dx+ � � �:9.2 Proof of theorem 9.1The following notation is used throughout this subsection. An integer k � 2 is�xed and we denote byw(t) = � w1(t)w2(t) � = � r(t) cos �(t)r(t) sin �(t) �the �rst column of the fundamental matrix solution �(t; �k(E); E) of system (42)with � = �k(E).It is clear from (52) that � : R! R is a di�eomorphism with �(0) = 0. Thusgiven p 2 R there is a unique tp 2 R such that �(tp) = �p�. Geometrically, tp isthe time it takes for the vector w(t) to execute p half-turns (it helps to think aboutthis vector as being attached to the periodic orbit). Of course t0 = 0 and, because�(�k; E) = k, tk = T (E).



DYNAM. ON THE ATTRACTOR OF L-V EQS. 35Since f(�k(E); E) = ak(E) + ak(E)�1, we only have to show that jak(E)j ! 1as E !1. We writejak(E)j = jw1(tk)j = jw1(tk)jjw1(tk�1)j jw1(tk�1)jjw1(tk�2)j � � � jw1(t2)jjw1(t1)j jw1(t1)jjw1(t0)j :In propositions 9.8 and 9.11 below we show that, for large E, (i) jw1(tj)j � jw1(tj�1)jfor all 2 � j � k � 1, and (ii) the quotient jw1(t1)jjw1(t0)j is very large while jw1(tk)jjw1(tk�1)j has alower bound close to 1. Therefore, we see thatjak(E)j � jw1(tk)jjw1(tk�1)j jw1(t1)jjw1(t0)j is very large when E is large;so the theorem follows.We start with a upper bound on the numbers �k.Lemma 9.5. If E > 2 is large enough and k � 2 then 0 � �k(E) � 3k � 1.Proof. Using theorem 9.4 and the symmetry relation (54) of the previous subsection,k� = j�(T )� �(T=2)j+ j�(T=2)� �(0)j= (1 + �k) Z TT=2 v cos2 � + u sin2 �dt + (1 + �k) Z T=20 v cos2 � + u sin2 �dt� 2(1 + �k) Z T=20 u(t)dt � 2(1 + �k) log 2 � (1 + �k) log 3;which implies 1 + �k � k�log 3 � 3k.Next we show that, for large E, the vector w(t) executes all half-turns in theregion u+ v � 1.Lemma 9.6. If E > 2 is large enough,(i) u(t 12 ) + v(t 12 )2 � � � 23 logE, and(ii) u(tk� 12 ) + v(tk� 12 )2 � � � 23 logE.Proof. De�ning ~� : (�; �)! R as ~�(x) = �(�(x)), we see that it satis�es~�0(x) = �(1 + �k)�~v(x) cos2 ~�(x) + ~u(x) sin2 ~�(x)�= �(1 + �k)�2 cos2 ~�(x) + ~u(x)� : (61)Similarly, if we de�ne �̂ : (�; �)! R setting �̂(x) = �(T � �(x)), this function solvesthe equation, �̂0(x) = (1 + �k)�~u(x) cos2 �̂(x) + ~v(x) sin2 �̂(x)�= (1 + �k)�2 sin2 �̂(x) + ~u(x)� : (62)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 36The proofs of (i) and (ii) run by contradiction. Assumex 12 = u(t 12 ) + v(t 12 )2 � � � 23 logE:and take x� < x 12 such that ~�(x�) = ��2 + E�7=6. The variation of ~� in the inter-val [x�; x 12 ] is ���~�(x�)� ~�(x 12 )��� = E�7=6, which is a small. But from equation (61)we will derive the conclusion that this variation must actually be much smaller, acontradiction. Since [x�; x 12 ] � [�; � � 23 logE], by inequality (60), we haveZ x 12x� ~u(x)dx � 'E �� � 23 logE� � 2E�4=3;provided E is large enough. On the other hand, we also �ndZ x 12x� cos2 ~�(x)dx � Z x 12x� �~�(x) + �2�2 dx� �E�7=6�2 �x 12 � x��� E�7=3E = E�4=3:Thus ���~�(x 12 )� ~�(x�)��� = Z x 12x� (1 + �k)�~u(x) + 2 cos2 ~�(x)�dx� 12kE�4=3 � E�7=6:This contradiction shows that (i) must hold.To prove (ii), de�ne x� 2 (�; �) such that �̂(x�) = �k� + E�7=6. Since E�7=6 ismuch smaller than �=2 we must have�̂(x�)� �(k � 12)�;and therefore x� < xk� 12 = u(tk� 12 ) + v(tk� 12 )2 :We only have to show now that x� > � � 23 logE. Assume, in order to derive acontradiction, that x� � � � 23 logE:The variation of �̂ in the interval [�; x�] is ����̂(x�)� �̂(�)��� = E�7=6, but from equa-tion (62) it will follow that this variation should be much smaller. As before since[�; x�] � [�; � � 23 logE], we haveZ x�� ~u(x)dx � 'E �� � 23 logE� � 2E�4=3;



DYNAM. ON THE ATTRACTOR OF L-V EQS. 37and Z x�� sin2 �̂(x)dx � Z x�� ��̂(x) + k��2 dx � E�4=3:Thus we have the same contradiction as before,E�7=6 = ����̂(x�)� �̂(�)��� � 12kE�4=3� E�7=6:We also observe that on the region u+v � 1 the quocient v(t)u(t) decreases. In factwe have:Lemma 9.7. The quotient v(t)u(t) is strictly decreasing if u + v � 2, i. e., inside theinterval [�(1); T � �(1)]. This is the same as saying that ~v(x)~u(x) decreases in [1; �].Proof. Just check that �vu�0 = 2vu �1� u+ v2 � ;and use the de�nition of �(x).We can now prove theProposition 9.8. If E > 2 is large enough,jw1(tk�1)j � jw1(tk�2)j � � � � � jw1(t2)j � jw1(t1)j :Proof. From lemma (9.6) we have,u(t) + v(t)2 � � � 23 logE � 1;for all t 2 [t 12 ; tk� 12 ]. Thus, from lemma (9.7), the quotient v(t)u(t) decreases in theinterval [t1; tk�1] and we only have to prove now that jw1(tj+1)j � jw1(tj)j wheneverv(t)u(t) decreases in [tj ; tj+1]. De�ning the quadratic form in the (w1; w2) planeQj+ 12 (w) = Qj+ 12 (w1; w2) = w21u(tj+ 12 ) + w22v(tj+ 12 ) ;let us show that we haveddtQj+ 12 (w(t)) � 0; 8t 2 [tj ; tj+1]: (63)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 38We compute:12 ddtQj+ 12 (w(t)) = w1(t)w01(t)u(tj+ 12 ) + w2(t)w02(t)v(tj+ 12 )= (1 + �k) u(t)u(tj+ 12 ) � v(t)v(tj+ 12 )!w1(t)w2(t)= (1 + �k) u(t)v(tj+ 12 )  v(tj+ 12 )u(tj+ 12 ) � v(t)u(t)!w1(t)w2(t):Now, for t 2 [tj ; tj+ 12 ], we have w1(t)w2(t) � 0 and for t 2 [tj+ 12 ; tj+1], we havew1(t)w2(t) � 0. Since v(t)u(t) decreases in [tj ; tj+1] we conclude in both cases that (63)holds.Finally, we obtainw1(tj+1)2u(tj+ 12 ) = Qj+ 12 (w(tj+1)) � Qj+ 12 (w(tj)) = w1(tj)2u(tj+ 12 )which gives jw1(tj+1)j � jw1(tj)j.We now look at what happens for t close to tk = T and t0 = 0. We need twolemmas.Lemma 9.9. If E > 2 is large enough,(i) u(t 12 )v(t 12 ) � 16E�4=3; and(ii) u(tk� 12 )v(tk� 12 ) � 6E4=3:Proof. De�ne, as in lemma 9.6,x 12 = u(t 12 ) + v(t 12 )2 , �(x 12 ) = t 12 ;and xk� 12 = u(tk� 12 ) + v(tk� 12 )2 , T � �(xk� 12 ) = tk� 12 :Then u(t 12 )v(t 12 ) = ~u(x 12 )~v(x 12 ) = ~u(x 12 )2 + ~u(x 12 ) ; (64)



DYNAM. ON THE ATTRACTOR OF L-V EQS. 39and analogously, from (57) and (54), it follows thatv(tk� 12 )u(tk� 12 ) = ~u(xk� 12 )~v(xk� 12 ) = ~u(xk� 12 )2 + ~u(xk� 12 ) : (65)By lemma 9.6, we have x 12 ; xk� 12 > �� 23 logE. Then, using lemma 9.7, we see thatboth quotients (64) and (65) are greater or equal to ~u(x)2 + ~u(x) with x = � � 23 logE.But from (58) we have~u(x)2 + ~u(x) � ~u(x)3 � 'E(x)6 = 16'E �� � 23 logE� � 16E�4=3;and this proves both inequalities.Lemma 9.10. If E > 2 is large enough,(i) ���w2(t 12 )��� � jw1(t0)jE5=6; and(ii) jw2(T � �(1))j � jw1(T )j e�E=3:Proof. We �rst prove (i). Since the function jw2(�(x))j is strictly increasing in theinterval [�; x 12 ], where it ranges from 0 to w2(t 12 ), and also because0 < � � 23 logE < x 12 ;(see lemma 9.6), we must have����w2 � � �� � 23 logE����� < ���w2(t 12 )��� :Therefore it is enough to prove now thatjw2(t)j � E5=6 with t = � �� � 23 logE� :Assume not, i. e., jw2(t)j < E5=6. Thenjw1(t)� 1j = jw1(t)� w1(0)j � (1 + �k) Z t0 u(s) jw2(s)jds� (1 + �k) jw2(t)jZ �� 23 logE� ~u(x)dx� (1 + �k) jw2(t)j'E �� � 23 logE�� 6kE5=6E4=3 = 6kE�1=2;



DYNAM. ON THE ATTRACTOR OF L-V EQS. 40which implies that jw1(s)j � 12 , for any 0 � s � t. But thenjw2(t)j = jw2(t)� w2(0)j = (1 + �k) Z t0 v(s) jw1(s)jds� 12 Z �� 23 logE� ~v(x)|{z}�2 dx� � � 23 logE � � = O(E);contradicting the assumption jw2(t)j < E5=6. This shows that (i) holds.To prove (ii), we use the estimate (59):jw2(T � �(1))j = jw2(T )� w2(T � �(1))j= (1 + �k) Z TT��(1) v(t) jw1(t)jdt� (1 + �k) Z �(1)0 u(t) jw1(T )jdt� (1 + �k) jw1(T )jZ 1� ~u(x)dx� 3kO�Ee�E=2� jw1(T )j � e�E=3 jw1(T )j :We can now show theProposition 9.11. If E > 2 is large enough,(i) jw1(t1)j � 1p6E1=6 jw1(t0)j; and(ii) jw1(tk)j � �1� e�E=3� jw1(tk�1)j:Proof. Consider the quadratic formQ 12 (w) = w21u(t 12 ) + w22v(t 12 ) :Because vu decreases in [t 12 ; t1] (see lemmas 9.6 and 9.7) we have, just as in the proofof lemma 9.8, ddtQ 12 (w(t)) � 0 for all t 2 [t 12 ; t1]. From this fact and lemmas 9.9and 9.10 we obtain w1(t1)2 = u(t 12 )Q 12 (w(t1))� u(t 12 )Q 12 (w(t 12 ))= u(t 12 )v(t 12 )w2(t 12 )2 � 16E1=3w1(t0)2;



DYNAM. ON THE ATTRACTOR OF L-V EQS. 41which proves (i).Similarly, we consider the quadratic formQk� 12 (w) = w21u(tk� 12 ) + w22v(tk� 12 ) :As before, because vu decreases in [tk�1; T � �(1)], we have ddtQk� 12 (w(t)) � 0 fort 2 [tk�1; T � �(1)]. Therefore, using again lemmas 9.9 and 9.10, we obtainw1(tk�1)2u(tk� 12 ) = Qk� 12 (w(tk�1))� Qk� 12 (w(T � �(1)))= w1(T � �(1))2u(tk� 12 ) + w2(T � �(1))2v(tk� 12 )� w1(T )2u(tk� 12 ) + e�2E=3w1(T )2v(tk� 12 )� w1(T )2u(tk� 12 )  1 + e�2E=3u(tk� 12 )v(tk� 12 )! � w1(T )2u(tk� 12 ) �1 + e�E=2� ;which impliesjw1(tk�1)j � jw1(T )j�1 + e�E=2� � jw1(T )j�1� e�E=3��1 :AcknowledgementsWe would like to thank J. Hale who called our attention for the works of Redhe�eret al. during the Equadi� 95 conference held in Lisbon.REFERENCES[1] R. Abraham, J. Marsden, \Foundations of Mechanics", 2nd edition, Addison-Wesley,Reading, Massachusetts, 1985.[2] V. Arnol'd, \MathematicalMethods of Classical Mechanics", 2nd edition, GTM vol. 60,Springer-Verlag, New-York, 1989.[3] E. A. Coddington, N. Levinson, Theory of Ordinary Di�erential Equations, McGraw-Hill, New-York, 1955.[4] J. Coste, J. Peyraud, P. Coulet, Asymptotic behavior in the dynamics of competingspecies, SIAM J. Appl. Math. 36 (1979), 516{542.[5] L. H. Eliasson, Normal forms for hamiltonian systems with Poisson commuting integrals{ elliptic case, Comment. Math. Helv. 65 (1990), 4{35.[6] J. Hale, \Ordinary Di�erential Equations", Wiley-Interscience, New York, 1969.[7] J. Hofbauer, K. Sigmund, \The Theory of Evolution and Dynamical Systems", Cam-bridge University Press, Cambridge, 1988.
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