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Abstract. We study billiards on polytopes in Rd with contracting reflection
laws, i.e. non-standard reflection laws that contract the reflection angle to-

wards the normal. We prove that billiards on generic polytopes are uniformly

hyperbolic provided there exists a positive integer k such that for any k consec-
utive collisions, the corresponding normals of the faces of the polytope where

the collisions took place generate Rd. As an application of our main result we

prove that billiards on generic polytopes are uniformly hyperbolic if either the
contracting reflection law is sufficiently close to the specular or the polytope

is obtuse. Finally, we study in detail the billiard on a family of 3-dimensional

simplexes.

1. Introduction. Given a d-dimensional polytope P , a billiard trajectory inside
P is a polygonal path described by a point particle moving with uniform motion in
the interior of P . When the particle hits the interior of the faces of P , it bounces
back according to a reflection law. Therefore, a billiard trajectory is determined
by a sequence of reflections on the faces of P . Any reflection can be represented
by a pair x = (p, v) where p is a point belonging to a face of P and v is a unit
velocity vector pointing inside P . We denote by M the set of reflections. The map
Φ : M → M, x 7→ x′ that takes a reflection x to the next reflection x′ is called
the billiard map. The dynamics of billiards on polytopes has been mostly studied
considering the specular reflection law. More recently, in the case of polygonal bil-
liards, a new class of reflection laws has been introduced that contract the reflection
angle towards the normal of the faces of the polygon [1, 8, 2, 4]. These are called
contracting reflection laws. A billiard map with a contracting reflection law is called
a contracting billiard map. It is known that strongly contracting billiard maps on
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generic convex polygons are uniformly hyperbolic and have finite number of ergodic
SRB measures [5]. Recently, it has been proved that the same conclusion hods for
contracting billiard maps on polygons with no parallel sides facing each other (even
for contracting reflection laws close to the specular and for non-convex polygons)
[7].

In this paper we extend some of the previous results to contracting billiard maps
on polytopes. It is known that the contracting billiard map of any polygon has
dominated splitting [5, Proposition 3.1]. In this direction we show in Proposition 4
that the contracting billiard map of any polytope is always (uniformly) partially
hyperbolic, i.e. there is a continuous and invariant splitting Es ⊕ Ecu of the tan-
gent bundle of M into subbundles of the same dimension such that DΦ uniformly
contracts vectors in the stable subbundle Es and has neutral or expanding action
on vectors belonging to the centre-unstable subbundle Ecu.

There are essentially two obstructions for the uniform expansion in the centre-
unstable subbundle Ecu. The first obstruction is caused by the billiard orbits that
get trapped in a subset of faces of P whose normals do not span the ambient space
Rd. When P is a polygon (d = 2), those orbits are exactly the periodic orbits
of period two, i.e. orbits bouncing between parallel sides of P . In fact, when
P has no parallel sides the contracting billiard map is uniformly hyperbolic [5,
Proposition 3.3]. As another example let P be a 3-dimensional prism and consider
a billiard orbit unfolding in some plane parallel to the prism’s base. The normals to
the faces along this orbit will span a plane and the billiard map behaviour transversal
to this plane is neutral. This leads to an expansion failure in Ecu.

In order to circumvent this obstruction we had to consider a class of polytopes
which have the property that for any subset of d faces of P the corresponding nor-
mals span Rd. A polytope with this property is called spanning (see Definition 2.9).
In addition to being spanning, we suppose that the normals to the (d−1)-faces inci-
dent with any given vertex are linearly independent (see Definition 3.1). Spanning
polytopes with these properties are generic. In fact they form an open and dense
subset having full Lebesgue measure in the set of all polytopes.

The second obstruction to uniform expansion corresponds to the billiard orbits
that spend a significant amount of time bouncing near the skeleton of P . To control
the time spent near the skeleton we introduced the notion of escaping time. Roughly
speaking, the escaping time of x ∈ M is the least positive integer T = T (x) ∈
N∪{∞} such that the number of iterates it takes for the billiard orbit of x to leave
a neighbourhood of the skeleton of P is less than T (see Definition 2.11).

With these notions we prove that the contracting billiard map has non-zero Lya-
punov exponents for almost every point with respect to any given ergodic invariant
measure. More precisely we prove:

Theorem 1.1. If the contracting billiard map Φ of a generic polytope has an ergodic
invariant probability measure µ such that T is integrable with respect to µ, then µ
is hyperbolic.

When the contracting billiard map Φ has bounded escaping time, then Φ is
uniformly hyperbolic.

Theorem 1.2. If the contracting billiard map Φ of a generic polytope has an in-
variant set Λ such that T is bounded on Λ, then Φ|Λ is uniformly hyperbolic.
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Theorems 1.1 and 1.2 follow from Theorem 2.10 which gives a uniform estimate
on the expansion along the orbit of every point which is k-generating (see Defini-
tion 2.8). Being k-generating simply means that the face normals along any orbit
segment of length k span Rd.

The strategy to prove Theorem 2.10 is the following. Consider the billiard orbit
xn = (pn, vn), n ≥ 0 of a k-generating point x0 = (p0, v0) ∈ M . Denote by ηn the
inward unit normal of the face of P where the reflection xn takes place. In some
appropriate coordinates, known as Jacobi coordinates, the unstable space Eu(x0) is
represented by the orthogonal hyperplane v⊥0 . If the velocity v1 is collinear with the
normal η1, then the action of the derivative DΦ on Eu(x0) is neutral. Otherwise,
the map DΦ expands the direction v⊥0 ∩ V1 where V1 denotes the plane spanned
by the velocities v0 and v1. Similarly, DΦ2 expands the directions contained in
v⊥0 ∩ V2 where now V2 is generated by the velocities v0, v1 and v2. However, it may
happen that the plane spanned by the velocities v1 and v2 is the same obtained
from the span by the normals η1 and η2, thus implying that dim(v⊥0 ∩V2) = 1. This
coincidence of the velocity front with the normal front is called a collinearity (see
Definition 5.6).

If a collinearity never occurs and x0 is k-generating then the map DΦk expands
d− 1 distinct directions in v⊥0 . Although collinearities prevent full expansion of the
iterates DΦn(x0) they have the good trait of synchronizing the velocity front with
the normal front. After a collinearity every time a new face is visited the angle
between the new velocity and the previous velocity front is always bounded away
from zero. This happens because this velocity angle is related to the angle between
the new normal and the previous normal front, and also because we assume the
polytope to be spanning. Consider now the velocity front V at some collinearity
moment. The previous property implies expansion of DΦn(x0) transversal to v⊥0 ∩V
after the collinearity moment. Choosing a minimal collinearity (see Definition 5.7)
in the orbit of x0 we can also ensure the expansion of DΦn(x0) along the velocity
front up the collinearity moment. Putting these facts together, if at some instant
t < k a minimal collinearity occurs on the orbit of x0 then for n ≥ t + k we have
full expansion of DΦn(x0) on Eu.

Because we seek uniform expansion, one has to deal with δ-collinearities instead
(see Definition 5.9). Moreover, since the set of orbits in M is not compact (one
has to remove from M the orbits which hit the skeleton of P ), δ-collinearities are
more easily handled in a bigger set called the trajectory space. The trajectory space
is compact and defined in a symbolic space which only retains the velocities and
the normals of the faces of P where the reflections take place (see Definition 5.1).
Finally, using compactness and continuity arguments we derive Theorem 5.3 which
gives a uniform estimate on the expansion along an orbit segment of length 2k of any
k-generating point. Then Theorem 2.10 follows immediately from Theorem 5.3. The
crucial tool to prove Theorem 5.3 is Lemma 5.14 which gives a uniform expansion
estimate on compositions of linear maps. Since this lemma is formulated in more
conceptual terms, we believe that the ideas therein might be of independent interest.

In section 4 we show that contracting billiards on polytopes have finite escaping
time if either the contracting law is close to the specular or the polytope is obtuse.
This together with Theorem 1.2 prove the following corollaries.

Corollary 1. The contractive billiard map of a generic polytope with a contracting
reflection law sufficiently close to the specular one is uniformly hyperbolic.
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Corollary 2. The contracting billiard map of a generic obtuse polytope is uniformly
hyperbolic.

The rest of the paper is organized as follows. In section 2 we introduce some
notation and define the contracting billiard on a polytope. We also derive several
properties of contracting billiards maps and rigorously state our main result. In
section 3 we show that polytopes on general position are generic and in section 4
we study the escaping time on polyhedral cones. Technical results concerning the
expansion of composition of linear maps are proved in section 5. In section 6 we
prove our main results. Finally, in section 7 we study in detail the contracting
billiard of a family of 3-dimensional simplexes.

2. Definitions and Statements. A half-space in Rd (d ≥ 2) is any set of the
form {x ∈ Rd : 〈x, v〉 ≤ c }, for some non-zero vector v ∈ Rd and some real number
c ∈ R. A polyhedron is any finite intersection of half-spaces in Rd. A polytope is
a compact polyhedron. We call dimension of a polyhedron to the dimension of the
affine subspace that it spans. Let P ⊂ Rd be a d-dimensional polytope.

The billiard on P is a dynamical system describing the linear motion of a point
particle inside P . When the particle hits the boundary of P , it gets reflected
according to a reflection law, usually the specular reflection law. In the following
we rigorously define the billiard map ΦP with the specular reflection law. But first,
let us introduce some notation.

2.1. Basic Euclidean Geometry. Let V and V ′ be Euclidean spaces with dimV =
dimV ′ = d. Given a linear map L : V → V ′, the maximum expansion of L is the
operator norm

‖L‖ := max{‖L(v)‖ : v ∈ V, ‖v‖ = 1}
while the minimum expansion of L, defined by

m(L) := min{‖L(v)‖ : v ∈ V, ‖v‖ = 1}

is either 0, when L is non invertible, or else m(L) =
∥∥L−1

∥∥−1
.

We denote by L∗ : V ′ → V the adjoint operator of L : V → V ′. Recall that
the singular values of L are the eigenvalues of the conjugate positive semi-definite
symmetric operator

√
L∗ L. Being real, and non negative, the singular values of L

can be ordered as follows

s1(L) ≥ s2(L) ≥ . . . ≥ sd(L) ≥ 0 .

The top singular value is s1(L) = ‖L‖, while the last singular value is the minimum
expansion sd(L) = m(L). The product of all singular values of L will be referred as
the determinant of L

det(L) :=

d∏
j=1

sj(L).

This determinant is the factor by which L expands d-volumes.
Given λ > 0 we denote by v≥λ (L) the direct sum of all singular directions of

L (eigen-directions of L∗ L) associated with singular values µ ≥ λ. Likewise, we
denote by v<λ (L) the direct sum of all singular directions of L associated with
singular values µ < λ. It follows from these definitons that

V = v≥λ (L)⊕ v<λ (L), L(v≥λ (L)) = v≥λ (L∗) and L(v<λ (L)) = v<λ (L∗)
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and similar relations hold for L∗. To shorten notations we will simply write v(L)

instead of v≥‖L‖(L). This subspace will be referred to as the most expanding direction

of L.

Given vectors v1, . . . , vn ∈ Rd, the linear subspace spanned by the vectors v1, . . . , vn
is denoted by 〈〈v1, . . . , vn〉〉. Let S denote the unit sphere in Rd, i.e. S = { v ∈ Rd :
‖v‖ = 1 }. Let v, η ∈ S be unit vectors and u ∈ Rd. We denote by S+

η the hemisphere
associated with η,

S+
η := { v ∈ S : 〈v, η〉 > 0 } .

Let η⊥ denote the orthogonal hyperplane to η. The orthogonal projection of u onto
the hyperplane η⊥ is,

Pη⊥(u) := u− 〈u, η〉 η = u− Pη(u) ,

where Pη(u) = 〈u, η〉 η, is the orthogonal projection of u onto the line spanned by η.
The reflection of u about the hyperplane η⊥ is defined by,

Rη(u) := u− 2 〈u, η〉 η.

Finally, the parallel projection of u along v onto the hyperplane η⊥ is

Pv,η⊥(u) := u− 〈u, η〉
〈v, η〉

v .

Denote by ∠(v, w) the angle between two non-zero vectors in Rd, defined as

∠(v, w) := arccos

(
〈v, w〉
‖v‖ ‖w‖

)
.

The angle between a non-zero vector v ∈ Rd and a linear subspace E ⊆ Rd is defined
to be

∠(v,E) := min
u∈E\{0}

∠(v, u) .

The angle between two linear subspaces E and F of Rd of the same dimension is
defined as

∠(E,F ) := max{ max
u∈E\{0}

∠(u, F ), max
v∈F\{0}

∠(v,E) } .

This angle defines a metric on the Grassmann manifold Grk(Rd) of all k-dimensional
linear subspaces E ⊆ Rd.

Given two linear subspaces E,F ⊆ Rd, with dimE ≤ dim(F⊥), we define the
minimum angle

∠min(E,F ) := min {∠(e, f) : e ∈ E \ {0}, f ∈ F \ {0} } .
Unlike the previous angle, this minimum angle is not even a pseudo-metric on
Gr(Rd) = ∪0≤k≤dGrk(Rd). Notice that ∠min(E,F ) > 0 if and only if E ∩ F = {0}.
The minimum angle ∠min(E,F ) quantifies the ‘transversality’ on the intersection
E ∩ F .

We denote by πE,F⊥ : E → F⊥ the restriction to E of the orthogonal projection

to F⊥.

Lemma 2.1. Given linear subspaces E,F ⊆ Rd with dimE = dimF ,

sin∠(E,F ) =
∥∥πE,F⊥∥∥ =

∥∥πF,E⊥∥∥ .
Proof. Given u ∈ E \ {0} and v ∈ F \ {0}, we have
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1.
∥∥πE,F⊥(u)

∥∥/‖u‖ = d(u, F )/‖u‖ = sin (∠(u, F )),

2.
∥∥πF,E⊥(v)

∥∥ /‖v‖ = d(v,E)/‖v‖ = sin (∠(v,E)).

Since dimE = dimF , there is an orthogonal linear map Φ: Rd → Rd such that
Φ(F ) = E. By orthogonality one has Φ(F⊥) = E⊥. Hence πF,E⊥ = Φ−1◦πE,F⊥ ◦Φ,

which implies that
∥∥πE,F⊥∥∥ =

∥∥πF,E⊥∥∥. Thus the sine of the maxima in the
definition of ∠(E,F ) coincides with this common norm.

Lemma 2.2. Let E,E′ and H be linear subspaces of Rd such that

1. dim(E) = dim(E′),
2. ∠(h,E) ≥ ε, for all h ∈ H \ {0}.

Then

sin (∠(E +H,E′ +H)) ≤ sin (∠(E,E′))

sin ε

Proof. First notice that

∠(E +H,E′ +H) = ∠((E +H) ∩H⊥, (E′ +H) ∩H⊥) .

Given u ∈ (E + H) ∩H⊥ we can write u = v − h with v ∈ E and h ∈ H. Hence,
since u ∈ H⊥,

d(u, (E′ +H) ∩H⊥)

‖u‖
=
d(u,E′ +H)

‖u‖
=
d(v,E′ +H)

‖u‖

≤ d(v,E′)

‖u‖
=
‖v‖
‖u‖

d(v,E′)

‖v‖
≤ ‖v‖
‖u‖

sin (∠(E,E′))

=
sin (∠(E,E′))

sin (∠(v, h))
≤ sin (∠(E,E′))

sin ε
.

On the last equality we use that v = h + u is an orthogonal decomposition with
h ∈ H and u ∈ H⊥. Thus taking the sup in u ∈ (E +H) ∩H⊥ \ {0} we get

sin
(
∠((E +H) ∩H⊥, (E′ +H) ∩H⊥)

)
≤ sin (∠(E,E′))

sin ε
.

Lemma 2.3. Given linear subspaces E,F ⊆ Rd with dimE ≤ dim(F⊥),

det(πE,F⊥) ≤ m(πE,F⊥).

Equality holds when dimE = 1.

Proof. Just notice that all singular values of πE,F⊥ are in the range [0, 1] because
πE,F⊥ is the restriction of an orthogonal projection.

Given an integer k ∈ N and a linear subspace E ⊆ Rd, the Grassmann space of
k-vectors in E will be denoted by ∧k(E). This space inherits a natural Euclidean
structure from E (see [10]).

Lemma 2.4. Let E,F ⊆ Rd be linear subspaces with orthonormal basis {e1, . . . , ek}
and {f1, . . . , fr} respectively such that k ≤ d− r. Let e = e1 ∧ . . .∧ ek ∈ ∧k(E) and
f = f1 ∧ . . . ∧ fr ∈ ∧r(F ). Then

sin∠min(E,F ) = m(πE,F⊥) ≥ det(πE,F⊥) = ‖e ∧ f‖ .
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Proof. Given a unit vector v ∈ E, by the proof of Lemma 2.1 we have sin∠(v, F ) =∥∥πE,F⊥(v)
∥∥ which implies that

sin∠min(E,F ) = m(πE,F⊥).

On the other hand

‖e ∧ f‖ = ‖(e1 ∧ . . . ∧ ek) ∧ (f1 ∧ . . . ∧ fr)‖
=
∥∥(πE,F⊥(e1) ∧ . . . ∧ πE,F⊥(ek)) ∧ (f1 ∧ . . . ∧ fr)

∥∥
=
∥∥πE,F⊥(e1) ∧ . . . ∧ πE,F⊥(ek)

∥∥ ‖f1 ∧ . . . ∧ fr‖
=
∥∥∧kπE,F⊥(e)

∥∥ ‖f‖ = det(πE,F⊥)

because ‖e‖ = ‖f‖ = 1. The middle inequality follows from Lemma 2.3.

Lemma 2.5. Let E ⊆ Rd be a linear space and {v1, . . . , vk} be a family of unit
vectors such that for all 1 ≤ i ≤ k,

∠min(〈〈vi〉〉, E ⊕ 〈〈v1, . . . , vi−1〉〉) ≥ ε > 0.

Then

sin∠min(E, 〈〈v1, . . . , vk〉〉) ≥ (sin ε)k.

Proof. Let {e1, . . . , er} be an orthonormal basis of E. We apply Lemma 2.4 to the
subspaces 〈〈vi〉〉 and E⊕〈〈v1, . . . , vi−1〉〉. Since the first subspace has dimension 1 the
inequality in this lemma becomes an equality. Hence, because ‖vi‖ = 1 we have

‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vi‖
‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vi−1‖

≥ sin ε

for all 1 ≤ i ≤ k. Multiplying these inequalities and using Lemma 2.4 again we
obtain

sin∠min(E, 〈〈v1, . . . , vk〉〉) ≥
‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vk‖
‖e1 ∧ . . . ∧ er‖ ‖v1 ∧ . . . ∧ vk‖

≥ ‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vk‖
‖e1 ∧ . . . ∧ er‖

=

k∏
i=1

‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vi‖
‖e1 ∧ . . . ∧ er ∧ v1 ∧ . . . ∧ vi−1‖

≥ (sin ε)k.

We have used above that ‖v1 ∧ . . . ∧ vk‖ ≤ ‖v1‖ · · · ‖vk‖ = 1.

2.2. Billiard map. Suppose that P has N faces (of dimension d − 1) which we
denote by F1, . . . , FN . For each i = 1, . . . , N , denote by ηi the interior unit normal
vector to the face Fi. Also denote by Πi the hyperplane that supports the face Fi.
We write the interior of Fi as F ◦i , and its (d − 2)-dimensional boundary as ∂Fi.

Define ∂P =
⋃N
i=1 Fi, and the (d− 2)-skeleton ΣP =

⋃N
i=1 ∂Fi. Finally define

M :=

N⋃
i=1

F ◦i × S+
ηi .

The domain of the billiard map ΦP is the set of points (p, v) ∈ M such that the
half-line { p + t v : t ≥ 0} does not intersect the skeleton ΣP . We denote this set
by M ′. Clearly, M ′ is the complement of a co-dimension two subset of M .

Now the billiard map ΦP : M ′ →M is defined as follows. Given x = (p, v) ∈M ′,
let τ = τ(p, v) > 0 be minimum t > 0 such that p+ t v ∈ F ′j for some j = 1, . . . , N .
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The real number τ is called the flight time of (p, v). Then the billiard map is defined
by

ΦP (x) = (p+ τ v,Rηj (v)).

Note that the billiard map ΦP is a piecewise smooth map and it has finitely
many domains of continuity. The number of domains of continuity is at most
N(N − 1), which is the number of 2-permutations of N faces. If P is convex, then
all permutations define a branch map.

Let (p′, v′) = ΦP (p, v) for (p, v) ∈ M ′. It is easy to obtain a formula for the
branch maps and its derivatives.

Proposition 1. Suppose that (p′i, v
′
i) = ΦP (pi, vi) for some pi ∈ F ◦i such that

p′i ∈ F ′j with i 6= j. For every x = (p, v) ∈ F ◦i × S+
ηi such that p′ ∈ F ′j we have

ΦP (x) =
(
pj + Pv,η⊥j (p− pj), Rηj (v)

)
.

Moreover

DΦP (x)(u,w) =
(
Pv,η⊥j (u+ γ(x)w), Rηj (w)

)
,

where

γ(x) =
〈p− pj , ηj〉
〈v, ηj〉

.

Proof. Recall that p′ = p+ τ(p, v)v where τ(p, v) is the length of the vector p′ − p.
Taking the inner product with ηj in both sides of the equation and noting that
〈p′ − pj , ηj〉 = 0, we get

τ(p, v) =
〈p′ − p, ηj〉
〈v, ηj〉

=
〈pj − p, ηj〉
〈v, ηj〉

.

So

p′ = pj +

(
(p− pj)−

〈p− pj , ηj〉
〈v, ηj〉

v

)
= pj + Pv,η⊥j (p− pj) .

To prove the formula for the derivative, define the map Ψη : (p, v) 7→ Pv,η⊥(p) for
any given η ∈ S. The claim follows from the formula

DΨη(x)(u,w) = Pv,η⊥(u) +
〈p, η〉
〈v, η〉

Pv,η⊥(w).

2.3. Contracting reflection laws. A contracting law is any family {Cη : S+
η →

S+
η }η∈S of class C2 mappings that satisfies for every η ∈ S,

(a) Cη(η) = η,
(b) there are non-negative C2 functions aη, bη : S+

η → [0,+∞) such that,

Cη(v) = aη(v)Pη(v) + bη(v)Pη⊥(v), ∀ v ∈ S+
η .

(c) 0 < sup{ ‖DCη(x)‖ : x ∈ S+
η } < 1,

(d) O ◦ Cη = CO(η) ◦O, for every rotation O ∈ O(n,R).

A contracting law can be uniquely characterized by a single C2 map of the interval[
0, π2

)
as the following proposition shows.

Proposition 2. Given a contracting law {Cη : S+
η → S+

η }η∈S, there is a class C2

mapping f :
[
0, π2

)
→
[
0, π2

)
such that

(a) f(0) = 0,
(b) 0 < sup{ |f ′(θ)| : 0 ≤ θ < π

2 } < 1,
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(c) for every η ∈ S, and v ∈ S+
η ,

Cη(v) =
cos f(θ)

cos θ
Pη(v) +

sin f(θ)

sin θ
Pη⊥(v) ,

where θ = arccos〈v, η〉 is the angle between η and v,
(d) for every η ∈ S,

sup
x∈S+η

‖DCη(x)‖ = sup
0≤θ<π/2

|f ′(θ)| .

Proof. Let η ∈ S and v ∈ S+
η . By item (b) of the definition of a contracting law we

can write

Cη(v) = aη(v)Pη(v) + bη(v)Pη⊥(v)

where aη and bη are non-negative C2 functions. Taking the inner product with η
on both sides of the previous equation we get,

aη(v) =
〈Cηv, η〉

cos θ
,

where θ = arccos〈v, η〉 ∈ [0, π2 ) is the angle formed by the vectors v and η. By
item (d) we conclude that 〈Cη(v), η〉 = 〈CO(η)(O(v)), O(η)〉, thus its value depends

only on the angle θ. So, there is a C2 function f : [0, π2 ) → [0, π2 ) such that
〈Cη(v), η〉 = cos f(θ). Similarly, we conclude that

bη(v) =
sin f(θ)

sin θ
.

This shows (c). The remaining properties follow immediately.

A C2 mapping f :
[
0, π2

)
→
[
0, π2

)
satisfying (a)-(d) above is called a contracting

reflection law. We also define

λ(f) := sup
0≤θ<π/2

|f ′(θ)|.

2.4. Contracting billiard map. Given a contracting law {Cη} with contracting
reflection law f , define the map χf : M → M by χf (p, v) = (p, Cη(p)(v)) where
η(p) denotes the interior unit normal of the face of the polytope where p lies. The
contracting billiard map Φf,P : M ′ →M is

Φf,P = χf ◦ ΦP .

There is a system of coordinates which is convenient to represent the derivative of
the contracting billiard map. For each x = (p, v) ∈M define Ψx : TxM → v⊥ × v⊥
by

Ψx(u,w) = (Pv⊥(u), w) .

The previous linear isomorphism will be referred as Jacobi coordinates on the tan-
gent space TxM . We shall use the notation (J, J ′) to denote an element in v⊥×v⊥.
The following proposition gives a formula for the derivative of the contracting bil-
liard map in terms of Jacobi co-ordinates.

Proposition 3. Let x = (p, v) ∈ M ′ and suppose that x′ = (p′, v′) = Φf,P (x) with
p′ ∈ F ′j. Then Ψx′ ◦DΦf,P (x) ◦Ψ−1

x is given by

(J, J ′) 7→
(
Pv′⊥ ◦ Pv,η⊥j (J + τ(p, v) J ′), (DCηj )Rηj (v)Rηj (J

′)
)
.
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Moreover, if θ = arccos |〈v, ηj〉|, then∣∣∣∣ 〈v′, ηj〉〈v, ηj〉

∣∣∣∣ =
cos f(θ)

cos θ
> 1 .

Proof. Immediate from Propositions 1 and 2.

2.5. Orbits, invariant sets and hyperbolicity. Denote by M+ the subset of
points in M that can be iterated forward, i.e.

M+ = {x ∈M : Φnf,P (x) ∈M ′ ∀n ≥ 0}.

A billiard orbit is a sequence {xn}n≥0 in M ′ such that xn+1 = Φf,P (xn) for every
n ≥ 0. A billiard path or trajectory is the polygonal path formed by segments of
consecutive points of a billiard orbit.

Define

D :=
⋂
n≥0

Φnf,P (M+).

It is easy to see that D is an invariant set and Φf,P and its inverse are defined on
D. Following Pesin we call the closure of D the attractor of Φf,P . We say that

Λ ⊂M is an invariant set if Λ ⊂ D and Φ−1
f,P (Λ) = Λ.

To simplify the notation let us write Φ = Φf,P .

Definition 2.6. Given an invariant set Λ of Φ, we say that Φ is uniformly partially
hyperbolic on Λ if for every x ∈ Λ there exists a continuous splitting

TxM = Es(x)⊕ Ecu(x),

which is DΦ-invariant,

DΦ(Es(x)) = Es(Φ(x)), DΦ(Ecu(x)) = Ecu(Φ(x)), ∀x ∈ Λ

and there are constants λ < 1, σ ≥ 1 and C > 0 such that for every n ≥ 1 we have

‖DΦn|Es‖ ≤ Cλn and ‖DΦ−n|Ecu‖ ≤ Cσ−n.

If σ > 1, then we say that Φ is uniformly hyperbolic on Λ and write Eu for the
subbundle Ecu. When Λ = D, then we simply say that Φ is uniformly partially
hyperbolic.

We denote by

χ(x, v) = lim sup
n→∞

1

n
log ‖DΦn(x)v‖

the Lyapunov exponent of a non-zero tangent vector v ∈ TxM at x ∈ D.

Definition 2.7. A Φ-invariant Borel probability measure µ supported on D is
called hyperbolic if µ-almost every x ∈ D satisfies χ(x, v) 6= 0 for every non-zero
v ∈ TxM .

The proof of the following result is an adaptation of [5, Proposition 3.1].

Proposition 4. For any polytope P and any contracting reflexion law f , Φf,P is
uniformly partially hyperbolic.

Proof. Given x = (p, v), x′ = (p′, v′) ∈M such that x′ = Φ(x) we denote by L(x, x′)
the map from v⊥×v⊥ to v′⊥×v′⊥ that represents the derivative DΦx in the Jacobi
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coordinates (see Proposition 3). This linear map is represented by a block upper
triangular matrix of the form

L(x, x′) =

(
A(x, x′) B(x, x′)

0 C(x, x′)

)
where

∥∥A(x, x′)−1
∥∥ ≤ 1 and ‖C(x, x′)‖ ≤ λ < 1, whose inverse is

L(x, x′)−1 =

(
A−1 −A−1BC−1

0 C−1

)
where A = A(x, x′), etc. Given a linear map H ′ : v′⊥ → v′⊥ the pre-image of its
graph by L(x, x′) is the graph of another linear function H : v⊥ → v⊥ called the
backward graph transform of H ′ and denoted by H =: Γ(x, x′)H ′. The operator
Γ(x, x′) is hence defined by the relation

L(x, x′)−1Graph(H ′) = Graph (Γ(x, x′)H ′) .

A simple computation shows that

Γ(x, x′)H ′ = A(x, x′)−1B(x, x′)−A(x, x′)−1H ′C(x, x′).

We claim that writing xn = (pn, vn) = Φnx and denoting by Zn the zero endomor-
phism on v⊥n , the following limit exists

Hs(x) := lim
n→+∞

Γ(x,Φx) . . .Γ(Φn−1x,Φnx)Zn.

A recursive computation allows to explicit the right hand side composition in the
previous limit, which is a partial sum of the following series

Hs(x) =

∞∑
j=0

(−1)jA−1
0 · · ·A

−1
j BjCj−1 · · ·C0

where Aj = A(Φjx,Φj+1x), etc. This series converges because
∥∥A−1

j

∥∥ ≤ 1 and

‖Cj‖ ≤ λ(f) < 1 for all j ≥ 0.
By construction, the subspaces Es(x) := Ψ−1

x Graph(Hs(x)) determine a DΦ-
invariant subbundle of TM satisfying

∥∥DΦ|Es(x)

∥∥ ≤ λ(f) for all x ∈ D. Given

x = (p, v) ∈ D, define Ecu(x) := Ψ−1
x {(J, 0) : J ∈ v⊥}. Clearly, Ecu is invariant.

Moreover,
∥∥DΦ−1|Ecu(x)

∥∥ ≤ 1 for all x ∈ D.
Finally, since TxM = Es(x)⊕Ecu(x) the previous facts show that Φ is uniformly

partially hyperbolic.

2.6. Main results.

Definition 2.8. Given k ∈ N, we say that x ∈ M+ is k-generating if the face
normals along any orbit segment of length k of the orbit of x generate the Euclidean
space Rd.

Definition 2.9. Given ε > 0, the polytope P is called ε-spanning if for any d
distinct faces Fi1 , . . . , Fid of P with interior normals ηi1 , . . . , ηid , the angle between
ηi1 and E := 〈〈ηi2 , . . . , ηid〉〉 is at least ε, i.e.

∠(ηi1 , E) ≥ ε.

We also say that P is a spanning polytope if it is ε-spanning for some ε > 0.
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The following theorem is the main result of this paper. It shows that the con-
tracting billiard map uniformly expands the unstable direction along the orbit of
any k-generating point. Moreover, the expanding rate only depends on the polytope
and contracting reflection law.

Theorem 2.10. Suppose P is a spanning polytope and f a contracting reflexion
law. There exists σ = σ(f, P ) > 1, depending only on f and P , such that for every
k ≥ d and every k-generating x ∈ D,

‖DΦ−2k
f,P |Eu(x)‖ ≤ 1/σ.

We prove this theorem and the following results in section 6.

Definition 2.11. Given x ∈ M+, the escaping time of x, denoted by T (x), is the
least positive integer k ∈ N such that x is k-generating. If x is not k-generating for
any k ∈ N, then we set T (x) = ∞. We also call the function T : M+ → N ∪ {∞}
the escaping time of P with respect to f .

Theorem 2.12. Suppose P is a spanning polytope and µ is an ergodic Φf,P -
invariant Borel probability measure. If T is µ-integrable, then µ is hyperbolic.

Theorem 2.13. Suppose P is a spanning polytope and Λ an invariant set of Φf,P .
If T is bounded on Λ, then Φf,P is uniformly hyperbolic on Λ.

The concept of polytope in general position, mentioned in the following corollar-
ies, is defined below (see definition 3.1).

Corollary 3. Suppose P is a polytope in general position. There exists λ0 =
λ0(P ) > 0 such that for every contracting reflection law f satisfying λ(f) > λ0 the
billiard map Φf,P is uniformly hyperbolic.

A polytope P in general position is called obtuse if the barycentric angle at every
vertex of P is greater than π/4 (see section 4 for a precise definition).

Corollary 4. Suppose P is a polytope in general position and f any contracting
reflection law. If P is obtuse, the Φf,P is uniformly hyperbolic.

3. Generic Polytopes.

Definition 3.1. A d-dimensional polytope P is said to be in general position if

1. for any set of d faces of P , (d−1)-dimensional faces, their normals are linearly
independent,

2. the normals to the (d−1)-faces of P incident with any given vertex are linearly
independent.

Proposition 5. Given some d-dimensional polytope P ⊂ Rd in general position,
each vertex has exactly d faces and d edges incident with it.

Proof. Follows from condition (2) of the Definition 3.1.

Consider the class PN of d-dimensional polyhedra P ⊂ Rd that contain the origin,
i.e., 0 ∈ int(P ), with exactly N faces. Given N points (p1, . . . , pN ) ∈ (Rd \ {0})N ,
define the polytope Q(p1, . . . , pN ) ⊂ Rd,

Q(p1, . . . , pN ) := ∩Nj=1{x ∈ Rb : 〈x, pj〉 ≤ 〈pj , pj〉 } .
The set

U := { (p1, . . . , pN ) ∈ (Rd \ {0})N : Q(p1, . . . , pN ) has exactly N -faces }
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is open in (Rd \ {0})N , and the range of Q : U → · coincides with PN . Locally the
map Q : U → PN is one-to-one, and determines an atlas for a smooth structure
on PN . We will consider on this manifold the Lebesgue measure obtained as push-
forward of the Lebesgue measure on (Rd \ {0})N by the map Q.

Let PN denote the subset of polytopes in PN .
In Algebraic Geometry, the following result is a standard consequence of the

notion of ‘general position’. We include its proof here for the reader’s convenience,
also because we could not find any reference for this precise statement.

Proposition 6. The subset of polytopes in general position is open and dense, and
has full Lebesgue measure in PN .

Proof. Consider the subsetsN1 ⊂ PN , resp. N2 ⊂ PN , of polytopes where condition
(1), resp. (2), of definition 3.1 is violated. It is enough to observe that the sets N1

and N2 are finite unions of algebraic varieties of co-dimension one.
For any vector v = (v1, . . . , vd) ∈ Rd, let v̂ := (v1, . . . , vd, 〈v, v〉) ∈ Rd+1. Then

N2 is covered by the union over all 1 ≤ i1 < i2 < . . . < id+1 ≤ N of the hypersur-
faces defined by the algebraic equation

det[ p̂i1 , p̂i2 , . . . , p̂id+1
] = 0 . (1)

In fact, if there is a point x0 ∈ Rd in the intersection of d+ 1 distinct hyperplanes

〈pik , x〉 = 〈pik , pik〉 k = 1, . . . , d+ 1

then the matrix with rows p̂i1 , p̂i2 , . . . , p̂id+1
contains the vector (x0,−1) ∈ Rd+1 in

its kernel, which implies (1).
Analogously, N1 is contained in the union over all 1 ≤ i1 < i2 < . . . < id ≤ N of

the hypersurfaces defined by the algebraic equation

det[ pi1 , pi2 , . . . , pid ] = 0 .

4. Escaping Times. In this section we study the escaping times of billiards on
polyhedral cones with contracting reflection laws.

Let Π1, . . . ,Πs be s hyperplanes in Rd passing through the origin. For each
hyperplane Πi we take a unit normal vector ηi and we suppose that the set of
hyperplanes are in general position, i.e. the normal vectors η1, . . . , ηs are linearly
independent. A set of s hyperplanes in general position define a convex polyhedral
cone

Q = {x ∈ Rd : 〈x, ηi〉 ≥ 0 , i = 1, . . . , s} .
For polyhedral billiard with the specular reflection law, Sinai proved that there

exists a constant K > 0, depending only on Q, such that every billiard trajectory
in Q has at most K reflections [9]. In this case we say that Q has finite escaping
time.

By projecting the billiard dynamics to the orthogonal complement of
⋂s
i=1 Πi,

we may assume that the normal vectors η1, . . . , ηs defining the polyhedral cone Q
span Rd. Thus, from now on we set s = d. Associated with a convex polyhedral
cone Q there is a constant measuring the aperture of Q. It is defined as follows.

Definition 4.1. The normal vectors η1, . . . , ηd regarded as points determine a affine
hyperplane H and a unit normal vector e such that

〈ηi, e〉 = ` , i = 1, . . . , d ,
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where ` is the distance of H to the origin. The barycentric angle φ of Q is defined by
sinφ = ` (see Figure 1). Note that 0 < φ < π/2. We say that a convex polyhedral
cone Q is obtuse if φ > π/4.

Figure 1. Barycentric angle φ.

4.1. Zigzag reflections. According to Proposition 2, given any billiard orbit {(pk, vk)}k≥0,
the sequence of reflection velocities satisfies

vk+1 =
cos f(θk)

cos θk
Pηik (uk) +

sin f(θk)

sin θk
Pη⊥ik

(uk) , k ≥ 0, (2)

where uk = Rηik (vk), θk = arccos 〈uk, ηik〉 and ηik is the inward normal of P where
the k + 1-th collision took place.

Lemma 4.2. ‖vk+1 − vk‖ = 2 cos
(
f(θk)+θk

2

)
for every k ≥ 0.

Proof. Simple computation using (2).

Given a sequence of consecutive reflection velocities v0, . . . , vn we denote by L
the length of the zigzag path formed by the reflections, i.e.

L(v0, . . . , vn) =

n−1∑
k=0

‖vk+1 − vk‖ .

We say that Q has bounded zigzag reflections if there exists a constant C > 0
such that L(v0, . . . , vn) ≤ C for every sequence of consecutive reflection velocities
v0, . . . , vn and any n ≥ 0.

Lemma 4.3. A convex polyhedral cone has finite escaping time if and only if it has
bounded zigzag reflections.

Proof. If Q has finite escaping time, then there exists an integer K > 0 such that
every billiard trajectory has at most K reflections. Since the zigzag length L :∏K
i=1 Sm → R is a continuous function with compact domain, it has a maximum.

Thus, Q has bounded zigzag reflections.
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Now suppose that Q has not finite escaping time. This means that for every K >
0 there exists a billiard trajectory in Q that has at least K reflections with the faces

of Q. By Lemma 4.2 we have ‖vk+1−vk‖ ≥ δ > 0 where δ := 2 cos
(
f(π/2)+π/2

2

)
> 0.

This means that for every K > 0 there exists a sequence of consecutive reflection
velocities v0, . . . , vn such that L(v0, . . . , vn) ≥ δK. So Q cannot have bounded
zigzag reflections.

Next we provide a sufficient condition on the contracting reflection law that
guarantees boundedness of zigzag reflections. Thus finite escaping time.

Lemma 4.4. For every sequence of consecutive reflection velocities v0, . . . , vn we
have

〈vk+1 − vk, e〉 = ‖vk+1 − vk‖γk , k = 0, . . . , n

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk

and hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

.

Proof. Follows from (2) that

vk+1 − vk =
cos f(θk) + cos θk

cos θk
Pηik (uk) +

sin f(θk)− sin θk
sin θk

Pη⊥ik
(uk) .

Taking into account that Pηik (uk)/ cos θk = ηik and 〈ηik , e〉 = sinφ we get

〈vk+1 − vk, e〉 = (cos f(θk) + cos θk) sinφ+ (sin f(θk)− sin θk)hk ,

where hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

. Using classical trigonometric identities we can

write

〈vk+1 − vk, e〉 = 2 cos

(
f(θk) + θk

2

)
γk,

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk.

To conclude the proof apply Lemma 4.2.

Theorem 4.5. If 2φ > π/2− f(π/2) then Q has finite escaping time.

Proof. Let v0, . . . , vn be any sequence of consecutive reflection velocities. By Lemma 4.4,

2 ≥ 〈vn − v0, e〉 =

n−1∑
k=0

‖vk+1 − vk‖γk , (3)

where

γk = cos

(
f(θk)− θk

2

)
sinφ+ sin

(
f(θk)− θk

2

)
hk

and hk =
〈
Pη⊥ik

(uk)/ sin θk, e
〉

. To estimate γk from below note that hk ≤ cosφ.

Thus

γk ≥ sin

(
φ+

f(θk)− θk
2

)
≥ sin

(
φ+

f(π/2)− π/2
2

)
.

By assumption µ := φ+ f(π/2)−π/2
2 > 0. Then, it follows from (3) that

L(v0, . . . , vn) <
2

sinµ
,
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for every sequence of consecutive reflection velocities v0, . . . , vn. This proves that Q
has bounded zigzag reflections. Thus, by Lemma 4.3, Q has finite escaping time.

This theorem yields the following corollaries.

Corollary 5. Any polyhedral cone Q with contracting reflection law f sufficiently
close to the specular one has finite escaping time.

Proof. It is clear that 2φ > π/2 − f(π/2) for every contraction f sufficiently close
to the identity. Thus, Q has finite escaping time, by Theorem 4.5.

Recall that a convex polyhedral cone Q is obtuse if φ > π/4.

Corollary 6. Any obtuse polyhedral cone Q has finite escaping time for every
contracting reflection law f .

Proof. If the polyhedral cone is obtuse then φ > π/4. Thus, 2φ > π/2 > π/2 −
f(π/2) for every contraction f . Thus, Q has finite escaping time, by Theorem 4.5.

5. Uniform Expansion. By Proposition 3, the first component of the derivative
DΦf,P (p, v) of the billiard map is represented in Jacobi coordinates by the map

Lv,η,v′ := Pv′⊥ ◦ Pv,η⊥ : Rd → Rd (4)

where v′, v, η ∈ Rd are three coplanar unit vectors with v′ = Cη(Rη(v)).
The main result of this section is Theorem 5.3, which gives conditions that ensure

the uniform expansion of compositions of such maps. Since the second component
of the billiard map is contracting (see Proposition 4), these conditions will imply
the uniform hyperbolicity of the billiard map.

5.1. Trajectories. Let P be a d-dimensional polytope in Rd, and NP be the set
of its unit inward normals. Denote by N0 the set of natural numbers N including 0.

In the sequel we introduce a space of trajectories containing true orbits of the
billiard map of P . The reason is to exploit the compactness of this space which
does not hold for the billiard map’s phase space, since one has to exclude from the
phase space all orbits which eventually hit the skeleton of P .

Define the map h : D → (S×NP )N0 , h(p, v) := {(vj , ηij}j∈N0 where for all j ≥ 0,

Φjf,P (p, v) = (pj , vj) with pj ∈ Fij . Recall that D is maximal invariant set defined
in Section 2.5. This map semi-conjugates the billiard map Φf,P with the shift on
the space of sequences (S × NP )N0 . Since h(D) is not compact we introduce the
following definition extending the notion of billiard trajectory.

Although NP = {η1, . . . , ηN}, in order to simplify our notation from now on we
will write ηj , j ∈ N0, for any normal in NP and not necessarily the j-th normal in
NP .

Definition 5.1. A sequence {(vj , ηj)}j≥0 ∈ (S×NP )N0 is called a trajectory if for
all j ∈ N

1. 〈vj−1, ηj〉 ≤ 0,
2. vj = Cηj ◦Rηj (vj−1),

whereRη is the reflection introduced in section 2, and Cη is the contracting reflection
law defined in subsection 2.3. We denote by T = Tf,P the space of all trajectories.
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Note that

h(D) ⊂ T ⊂ (S×NP )N0 .

Given i < j in N0, we denote by [i, j] := {i, i + 1, . . . , j} ⊆ N0 the time interval
between the instants i and j. Given a trajectory {(vj , ηj)}j≥0 and a time interval
[i, j], the linear span V[i,j] := 〈〈vi, vi+1, . . . , vj〉〉 is called the velocity front of the
trajectory along the time interval [i, j]. The linear span N[i,j] := 〈〈ηi, ηi+1, . . . , ηj〉〉
is called the normal front of the trajectory along the time interval [i, j]. Given
i ∈ N, let Li : v⊥i−1 → v⊥i be the linear map defined by

Li = Pvi⊥ ◦ Pvi−1,η⊥i
.

Finally we define the velocity tangent flow along [i, j] to be the linear map L[i,j] :

v⊥i → v⊥j defined by

L[i,j] = Lj ◦ . . . ◦ Li+1.

When the trajectory is associated to a billiard orbit {(pl, vl)}l≥0 of Φf,P , the linear
map L[i,j] represents, in Jacobi coordinates, the first component of the derivative

DΦj−if,P at (pi, vi). By definition, given i < j < k,

L[i,k] = L[j,k] ◦ L[i,j] .

We now extend Definition 2.8 to trajectories.

Definition 5.2. We say that the trajectory {(vl, ηl)}l≥0 is generating on [i, j] if
N[i,j] = Rd. Given k ∈ N, we say that the trajectory is k-generating if it is generating
on any interval [i, j] with j − i ≥ k.

We can now state this section’s main result.

Theorem 5.3. Given ε > 0, d-dimensional polytope P and contracting reflec-
tion law f , there exists a constant σ = σ(ε, d, f) > 1 such that for any trajectory
{(vj , ηj)}j≥0 in Tf,P the following holds. If

1. P is ε-spanning,
2. {(vj , ηj)}j≥0 is k-generating, with k ∈ N,

then the linear map L[0,2k] : v⊥0 → v⊥2k satisfies∥∥L[0,2k](v)
∥∥ ≥ σ ‖v‖ for all v ∈ v⊥0 .

The proof of this theorem is done at the end of the section.

Remark 1. From the previous theorem’s conclusion, for any n ≥ 0,∥∥L[0,n](v)
∥∥ ≥ σ n

2k−1 ‖v‖ all v ∈ v⊥0 .

This means, minimum growth expansion rate larger or equal than σ
1
2k > 1.

5.2. Properties of trajectories. The following result says that the trajectory
space T is compact.

Proposition 7. The space T is a closed subspace of the product space (S×NP )N0 .
In particular, with the induced topology T is a compact space.

Proof. The trajectory space T is closed in the product space because conditions (1)
and (2) in Definition 5.1 are closed conditions. By Thychonoff’s theorem (S×NP )N0

is compact, and hence T is compact too.
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Lemma 5.4. Given any trajectory {(vj , ηj)}j≥0 there exist scalars αj , βj ∈ R such
that for any j ≥ 1,

vj = αjηj + βjvj−1

where

cos
(π

2
λ(f)

)
< αj < 2 and 0 ≤ βj < 1.

Moreover, ∣∣∣∣ 〈vj , ηj〉〈vj−1, ηj〉

∣∣∣∣ =
cos f(θj)

cos θj
where θj = arccos |〈vj−1, ηj〉|.

Proof. According to Proposition 2,

vj = (aj + bj) cos θj ηj + bjvj−1

where

aj =
cos f(θj)

cos θj
, bj =

sin f(θj)

sin θj
and θj = arccos |〈vj−1, ηj〉|.

Since λ(f) < 1, we have 1 ≤ aj + bj < 2 and 0 ≤ bj < 1. Moreover, cos θj >
cos(π2λ(f)). The last claim is a simple computation.

Lemma 5.5. Given a trajectory {(vl, ηl)}l≥0, for all intervals [i, j],

1. V[i,j] = 〈〈vi〉〉+N[i+1,j] and V[i,j]
⊥ ⊆ v⊥i ∩ v⊥j .

2. L[i,j] : v⊥i → v⊥j is the identity on V[i,j]
⊥.

3. m(L[i,j]) ≥ 1.

Proof. Straightforward computation.

5.3. Collinearities. Throughout the rest of this section, we assume that ε > 0 is
fixed and that P is ε-spanning.

Consider a trajectory {(vl, ηl)}l≥0 in T.

Definition 5.6. A time interval [i, j] is called a collinearity of the trajectory
{(vl, ηl)}l≥0 if its velocity and the normal fronts along the time interval [i, j] co-
incide, i.e. V[i,j] = N[i,j]. The number j − i will be referred as the length of the
collinearity [i, j].

Definition 5.7. A collinearity is called minimal if it contains no smaller subinterval
which is itself a collinearity.

For instance, if vi ∈ 〈〈ηi〉〉 then {i} is a minimal collinearity of length 0.

Proposition 8. Given a trajectory {(vl, ηl)}l≥0, assume vi ∈ N[i,j] with i ≤ j.
Then there is some i′ ∈ [i, j] such that the time interval [i′, j] is a collinearity.

Proof. The proof goes by induction on the length r = j − i. If the length is 0 then
i = j and we have necessarily vi ∈ 〈〈ηi〉〉, in which case it is obvious that [i, i] = {i} is
a collinearity. Assume now that the statement holds for all time intervals of length
less than r, and let vi = λiηi + · · ·+ λjηj with j − i = r. We consider two cases:

First suppose that λi 6= 0. By item (1) of Lemma 5.5,

V[i,j] = 〈〈vi〉〉+N[i+1,j] ⊆ N[i,j].

Conversely, because λi 6= 0 we have ηi ∈ 〈〈vi〉〉+N[i+1,j] which proves that

N[i,j] ⊆ 〈〈vi〉〉+N[i+1,j] = V[i,j],
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where in the last equality we have used again item (1) of Lemma 5.5. Therefore,
[i, j] is a collinearity in this case.

Assume next that λi = 0. By Lemma 5.4, there are scalars αi+1 and βi+1

such that vi+1 = αi+1ηi+1 + βi+1vi. We may assume that βi+1 6= 0. Otherwise
vi+1 ∈ 〈〈ηi+1〉〉 and [i+ 1, j] is a collinearity. Thus

λi+1ηi+1 + . . .+ λjηj = vi =
1

βi+1
(vi+1 − αi+1ηi+1) .

In this case

vi+1 = βi+1

[(
λi+1 −

αi+1

βi+1

)
ηi+1 + λi+2ηi+2 + . . .+ λjηj

]
.

and the conclusion follows by the induction hypothesis applied to the time interval
[i+ 1, j] of length p− 1.

Proposition 9. Given a trajectory {(vl, ηl)}l≥0 and i < j ≤ j′ the following holds:

1. If [i, j] is a collinearity then [i, j′] is also a collinearity.
2. If vj ∈ V[i,j−1] and ηj /∈ N[i,j−1], then there is some i < i′ ≤ j such that [i′, j]

is a collinearity.

Proof. Let i < j ≤ j′.
1. Assume V[i,j] = N[i,j]. Then by Lemma 5.5,

V[i,j′] = 〈〈vi〉〉+N[i+1,j] +N[j+1,j′] = N[i,j] +N[j+1,j′] = N[i,j′].

2. Assume now vj ∈ V[i,j−1]. By Lemma 5.4,

ηj =
1

αj
(vj − βjvj−1) ,

where αj 6= 0. Thus ηj ∈ V[i,j−1]. By Lemma 5.5 we can write ηj = λivi + u
for some u ∈ N[i+1,j−1]. By assumption, λi 6= 0. Thus vi ∈ N[i+1,j]. Again
by Lemma 5.4, we conclude that vi+1 ∈ N[i+1,j]. Now the claim follows by
Proposition 8.

Corollary 7. Let {(vl, ηl)}l≥0 be a trajectory and k ≥ i ≥ 0 be integers such that
the time segment [i, k] contains no subinterval which is a collinearity. Then for
every j ∈ [i, k] either

1. ηj ∈ {ηi+1, . . . , ηj−1}, or else
2. vj /∈ V[i,j−1].

Proof. This corollary is a reformulation of item (2) of Proposition 9.

5.4. Quantifying collinearities. We are now going to prove quantified versions
of Propositions 8, 9 and Corollary 7. The following abstract continuity lemma will
be useful.

Lemma 5.8. Let X be a compact topological space and f, g : X→ R be continuous
functions such that g(x) = 0 for all x ∈ X with f(x) = 0. Given δ > 0 there is
δ′ > 0 such that for all x ∈ X, if f(x) < δ′ then g(x) < δ.
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Proof. Assume, to get a contradiction, that the claimed statement does not hold.
Then there is δ > 0 such that for all n ∈ N there is a point xn ∈ X with f(xn) < 1

n
and g(xn) ≥ δ. Since X is compact, by taking a subsequence we can assume xn → x
in X. By continuity of f and g, f(x) = 0 and g(x) ≥ δ, which contradicts the lemma
hypothesis.

Definition 5.9. Given δ > 0, we call δ-collinearity of a trajectory {(vl, ηl)}l to any
time interval [i, j] such that dimV[i,j] = dimN[i,j] and

∠
(
V[i,j], N[i,j]

)
< δ .

Proposition 10. Given δ > 0 there exists δ′ > 0 such that for any trajectory
{(vl, ηl)}l the following holds. If

∠
(
vi, N[i,j]

)
< δ′

for some 0 ≤ i ≤ j, then there exists i′ ∈ [i, j] for which the time interval [i′, j] is a
δ-collinearity of the given trajectory.

Proof. Notice that, because the space of trajectories T is shift invariant, there is no
loss of generality in assuming that [i, j] = [0, p]. For each k ≥ 0, define the functions
fk, gk : T → R by

fk ({(vl, ηl)}l) = ∠
(
v0, N[0,k]

)
,

gk ({(vl, ηl)}l) = min
0≤i≤k

∠
(
V[i,k], N[i,k]

)
.

These functions are clearly continuous.
Proposition 8 shows that for all x ∈ T and 0 ≤ k ≤ p, fk (x) = 0 implies

gk (x) = 0. Thus, given δ > 0, by Lemma 5.8, there exists δ′ > 0 such that for any
0 ≤ k ≤ p and x ∈ T,

fk (x) < δ′ ⇒ gk (x) < δ .

Proposition 11. Given any trajectory {(vl, ηl)}l, i < j ≤ j′ and δ > 0 the following
holds.

1. If [i, j] is a δ-collinearity, then [i, j′] is a δ′-collinearity, where δ′ = arcsin( sin δ
sin ε ).

2. There exists δ′ > 0 such that, if

∠(vj , V[i,j−1]) < δ′

and ηj /∈ N[i,j−1], then there is some i < i′ ≤ j such that [i′, j] is a δ-
collinearity.

Proof. Denote by H the linear space spanned by the ‘new’ normals ηl in the range
j < l ≤ j′, i.e., normals which are not in {ηi, . . . , ηj}. By definition of H we have,

V[i,j′] = V[i,j] +H ,

N[i,j′] = N[i,j] +H .

Hence by Lemma 2.2, if [i, j] is a δ-collinearity,

sin∠
(
V[i,j′], N[i,j′]

)
≤ 1

sin ε
sin∠

(
V[i,j], N[i,j]

)
≤ sin δ

sin ε
= sin δ′,

which proves that [i, j′] is a δ′-collinearity. This proves (1).
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Figure 2. Composition of the projections Pv′⊥ ◦ Pv,η⊥

To prove item (2) note that, as in the proof of Proposition 10, there is no loss of
generality in assuming that [i, j] = [0, p]. Define the functions fk, gk : T → R by

fk ({(vl, ηl)}l) = ∠
(
vk, V[0,k−1]

)
,

gk ({(vl, ηl)}l) = min
1≤i≤k

∠
(
V[i,k], N[i,k]

)
.

These functions are clearly continuous.
Item (2) of Proposition 9 shows that for every x = {(vl, ηl)l} ∈ T and for every

1 ≤ k ≤ p for which ηk /∈ N[0,k−1], fk (x) = 0 implies gk (x) = 0. Thus, given δ > 0,
by Lemma 5.8, there exists δ′ > 0 such that for every x = {(vl, ηl)l} ∈ T and for
every 1 ≤ k ≤ p for which ηk /∈ N[0,k−1],

fk (x) < δ′ ⇒ gk (x) < δ .

This proves (2).

Corollary 8. Given δ > 0 there is δ′ > 0 such that the following dichotomy holds.
Let [i+ 1, j] be a time segment of a trajectory that contains no subinterval which is
a δ-collinearity of that trajectory. Then for every l ∈ [i+ 1, j] either

1. ηl ∈ {ηi+1, . . . , ηl−1}, or else
2. ∠(vl, V[i,l−1]) ≥ δ′.

Proof. This corollary is a reformulation of Proposition 11 (2).

5.5. Expansivity lemmas. Recall the map Lv,η,v′ defined in (4). The first lemma
says that this map has two singular values: λ = 1 with multiplicity d − 1, and
λ = |〈v′, η〉/〈v, η〉| with multiplicity 1. See Figure 2.

Lemma 5.10. Given coplanar unit vectors v′, v, η ∈ Rd, the composition Lv,η,v′ :
Rd → Rd satisfies:

(a) Lv,η,v′(v) = 0,
(b) Lv,η,v′(x) = x, for every x ∈ η⊥ ∩ v⊥,
(c) Lv,η,v′ maps the line v⊥ ∩ W onto the line v′⊥ ∩ W , where W = 〈〈v, η〉〉,

multiplying the vector’s norms by the factor |〈v′, η〉/〈v, η〉|.
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Proof. Straightforward computation.

Remark 2. If v, η, v′ are collinear vectors then Lv,η,v′ = id on v⊥.

The remaining lemmas are abstract. Let V , V ′, V ′′ be Euclidean spaces of the
same dimension, and L : V → V ′, L′ : V ′ → V ′′ be linear isomorphisms.

Given σ ≥ 1 and a subspace E ⊂ V , we say that L is a σ-expansion on E if
‖Lv‖ ≥ σ ‖v‖ for all v ∈ E, i.e., m(L|E) ≥ σ. Given another linear subspace H ⊆ V
such that E ⊆ H we say that L is a relative σ-expansion on H w.r.t. E if and only
if the quotient map L : V/E → V ′/L(E) is a σ-expansion on H/E. Note that the
quotient space V/E is an Euclidean space which can naturally be identified with
E⊥. Finally, we say that L is a σ-expansion to mean that L is a σ-expansion on its
domain V .

If we do not need to specify the minimal rate of expansion we shall simply say
that L is a uniform expansion on E, or that L is a relative uniform expansion on
H w.r.t. E.

Lemma 5.11. Given a linear subspace H ⊆ V , if

1. L is a σ-expansion on H, and
2. L is a relative σ-expansion on V w.r.t. H

then L is a σ-expansion on V .

Proof. Follows immediately from the definition of σ-expansion and relative σ-expansion.

We will now derive some explicit formulas for the minimum expansion of compo-
sitions of linear expanding maps. For that purpose we introduce an exotic operation
on the set [0, 1] that plays a key role in these formulas.

a⊕ b := a+ b− a b .
With it, ([0, 1],⊕) becomes a commutative semigroup isomorphic to ([0, 1], ·). In
fact, the map Ψ : ([0, 1],⊕)→ ([0, 1], ·), Ψ(x) := 1−x, is a semigroup isomorphism.
The numbers 0 and 1 are respectively the neutral and the absorbing elements of the
semigroup ([0, 1],⊕). An important property of this exotic operation is that for all
a, b ∈ [0, 1],

a⊕ b < 1 ⇔ a < 1 and b < 1.

We will write ⊕nx := x⊕ . . .⊕ x for any ⊕-sum of n equal terms x ∈ [0, 1].
The following lemmas use the notation introduced in subsection 2.1.

Lemma 5.12. Let L,L′ : R2 → R2 be linear maps such that m(L) ≥ 1, m(L′) ≥ 1,
λ = ‖L‖ > 1 and λ′ = ‖L′‖ > 1. If the sine of the angle between v(L∗) and v(L′) is
at least ε, then L′ ◦ L has minimum expansion

m(L′ ◦ L) ≥ 1√
(1− ε2)⊕ λ−2 ⊕ λ′−2

> 1 .

Proof. Without loss of generality we can assume that the automorphisms L,L′ ∈
GL(R2) have two singular values, respectively {1, λ} with 1 < λ, and {1, λ′}
with 1 < λ′. Otherwise simply normalize L and L′ dividing them by the min-
imum expansion. Hence

∥∥L−1
∥∥ = 1 =

∥∥(L′)−1
∥∥. These maps have gap ratios∥∥L−1

∥∥ /m(L−1) = λ and
∥∥(L′)−1

∥∥ /m((L′)−1) = λ′. The conclusion of this lemma
will folllow from [3, Proposition 2.23] applied to the composition of linear maps
L−1 ◦ (L′)−1. The quantity α((L′)−1, L−1) in that proposition is the cosine of the
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angle between the most expanding directions of the linear maps ((L′)−1)∗ and L−1

which coincide with the least expanding directions of L′ and L∗, respectively. Since
these directions are orthogonal to v(L′) and v(L∗) we have

α((L′)−1, L−1)2 = cos2 ∠(v(L′), v(L∗)) ≤ 1− ε2.

Thus by [3, Proposition 2.23]∥∥(L′ ◦ L)−1
∥∥ =

∥∥L−1 ◦ (L′)−1
∥∥ =

∥∥L−1 ◦ (L′)−1
∥∥

‖L−1‖ ‖(L′)−1‖
≤ β((L′)−1, L−1) ≤

√
(1− ε2)⊕ λ−2 ⊕ λ′−2.

Since m(L′ ◦ L) = 1/
∥∥(L′ ◦ L)−1

∥∥, the claim follows.

Lemma 5.13. Consider linear maps L : V → V ′ e L′ : V ′ → V ′′ between Euclidean
spaces of dimension d. Given 1 ≤ k < d assume that

1. m(L) ≥ 1 and λ = sk(L) > 1,
2. λ′ = ‖L′‖ > 1 = s2(L′).

If sin∠(v(L′), v≥λ (L∗)) ≥ ε then

sk+1(L′ ◦ L) ≥ 1√
(1− ε2)⊕ λ−2 ⊕ λ′−2

> 1.

Proof. We can assume that V = V ′ = V ′′ = Rd. Consider the singular value
decomposition L = U DV , where U and V are orthogonal matrices, and D = (Dij)
is the diagonal matrix with diagonal entries Dii = si(L) for i = 1, . . . , d. We can

factor D as a product D = D̂ D0 of two diagonal matrices: D̂ =

[
λIk 0
0 Id−k

]
and D0 with diagonal entries D

(0)
ii = Dii/D̂ii ≥ 1. Set L̂ = U D̂ and L0 = D0 V , so

that L = L̂ ◦ L0. The linear mapping L̂ has singular values

s1(L̂) = . . . = sk(L̂) = λ > 1 = sk+1(L̂) = . . . = sd(L̂),

while m(L0) ≥ 1. Hence sk+1(L′ ◦ L) ≥ sk+1(L′ ◦ L̂). To simplify the geometry we

assume from now on that L = L̂.
Take a unit vector v′ ∈ v(L′). By assumption v′ /∈ v≥λ (L∗). Let v′0 denote

the orthogonal projection of v′ onto v≥λ (L∗). These two vectors span a plane P0 :=

〈〈v′, v′0〉〉. Define also the subspaces E0 := v≥λ (L∗)∩(v′0)⊥ and G0 := v≥λ (L∗)⊥∩(v′)⊥.

These three subspaces determine an orthogonal decomposition Rd = P0⊕E0⊕G0.
Because the mappings L : v≥λ (L) → v≥λ (L∗) and L : v≥λ (L)⊥ → v≥λ (L∗)⊥ are both

conformal, it follows that Rd = P− ⊕ E− ⊕ G− is an orthogonal decomposition,

where P− := L−1P0, E− := L−1E0 and G− := L−1G0. In fact, since P0∩v≥λ (L∗) ⊥
E0 and L : v≥λ (L) → v≥λ (L∗) is conformal their pre-images are also orthogonal,

P− ∩ v≥λ (L) ⊥ E−. Similarly, since v≥λ (L∗)⊥ ∩P0 ⊥ G0 and L : v≥λ (L)⊥ → v≥λ (L∗)⊥

is conformal their pre-images are also orthogonal, v≥λ (L)⊥ ∩ P− ⊥ G−. Define now
P+ := L′P0, E+ := L′E0 and G+ := L′G0. Because m(L′) ≥ 1 with v(L′) ⊂ P0

and v((L′)∗) ⊂ P+, it follows that Rd = P+ ⊕ E+ ⊕ G+ is also an orthogonal
decomposition. Therefore the singular values of L′ ◦ L are the singular values of
the restricted compositions L′|P0 ◦ L|P− , L′|E0 ◦ L|E− and L′|G0 ◦ L|G− . Applying
Lemma 5.12 to the linear maps L′|P0 and L|P− we see that L′|P0 ◦L|P− has minimum

expansion β :=
(
(1− ε2)⊕ λ−2 ⊕ λ′−2

)−1/2
. The map L′|E0 : E0 → E+ is an

isometry while L|E− : E− → E0 is λ-conformal. Therefore the second composition
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has a unique singular value λ with multiplicity k−1 = dimE0. Note that (1−ε2)⊕
λ−2 ⊕ λ′−2 ≥ λ−2 which implies that λ ≥ β. Finally notice that L|G− : G− → G0

and L′|G0
: G0 → G+ are isometries. Hence 1 is the only the singular value of the

third composition. Since dim(P− ⊕ E−) = dim(P0 ⊕ E0) = k + 1, this proves that
sk+1(L′ ◦ L) ≥ min{β, λ} = β.

The next lemma is designed to be applied to a sequence of linear maps Lvi−1,ηi,vi : v⊥i−1 →
v⊥i associated with an orbit segment of the billiard map Φf,P . Compare assumptions
(1)-(2) of Lemma 5.14 with the conclusions of Lemma 5.10 and Remark 2.

Lemma 5.14. Given ε > 0 and λ > 1 consider unit vectors {v0, v1, . . . , vn} in Rd
and a family of linear maps Li : v

⊥
i−1 → v⊥i , 1 ≤ i ≤ n, such that:

1. if u ∈ v⊥i−1 ∩ v⊥i then Li u = u,

2. if {vi−1, vi} are linearly independent and u ∈ v⊥i−1 ∩ 〈〈vi−1, vi〉〉 then Liu ∈
v⊥i ∩ 〈〈vi−1, vi〉〉 and ‖Li u‖ ≥ λ ‖u‖.

3. for each i = 1, . . . , n, either vi ∈ 〈〈v0, . . . , vi−1〉〉 or else

sin∠ (vi, 〈〈v0, . . . , vi−1〉〉) ≥ ε.
Then the composition map L(n) := Ln ◦ . . . ◦ L0 : v⊥0 → v⊥n satisfies

∥∥L(n) u
∥∥ ≥

σ ‖u‖ for all u ∈ v⊥0 ∩ 〈〈v0, . . . , vn〉〉, where

σ = 1/
√

(⊕d−1(1− ε2))⊕ (⊕dλ−2) > 1.

Proof. For each i = 1, . . . , n define, L(i) := Li ◦ . . . ◦ L0 : v⊥0 → v⊥i and Wi :=
〈〈v0, . . . , vi〉〉. Since W⊥i = v⊥0 ∩ . . . ∩ v⊥i ⊂ ∩ij=0v

⊥
j , and every vector u ∈ W⊥i is

fixed by all Lj with 0 ≤ j ≤ i, we have L(i) u = u for every u ∈W⊥i .
We can delete from {v0, v1, . . . , vn} all vectors vi such that {vi−1, vi} is linearly

dependent, which by item (1) correspond to maps Li = id, and in this way assume
that for all i = 1, . . . , n, the vectors {vi−1, vi} are linearly independent and ‖Li‖ ≥ λ.

Because W⊥i is a singular subspace it follows that L(i)(v⊥0 ∩Wi) = v⊥i ∩Wi. We
claim that L(i) : v⊥0 ∩Wi → v⊥i ∩Wi is a σi-expansion, where ki := dim(Wi) − 1
and

σi := 1/
√

(⊕ki−1(1− ε2)⊕ (⊕kiλ−2).

The proof of this claim goes by induction in i, applying Lemma 5.13.
The claim holds for i = 1 with k1 = 1 and σ1 = λ.
Assume now (induction hypothesis) that L(i−1) is a σi−1-expansion on v⊥0 ∩Wi−1.

We know by assumption (3) that either vi ∈Wi−1 or else sin (∠(vi,Wi−1)) ≥ ε.
Assume first that sin (∠(vi,Wi−1)) ≥ ε.

We have v≥σi−1
((L(i−1))∗) = v⊥i−1 ∩Wi−1 and v(Li) = v⊥i−1 ∩ 〈〈vi−1, vi〉〉. To apply

Proposition 5.13 we need to check that

sin∠
(
v⊥i−1 ∩Wi−1, v

⊥
i−1 ∩ 〈〈vi−1, vi〉〉

)
≥ ε. (5)

Let v0
i denote the unit vector obtained normalizing the orthogonal projection of

vi onto v⊥i−1, so that

vi = (cosα) v0
i + (sinα) vi−1 ,

with
∥∥v0
i

∥∥ = 1, 〈v0
i , vi−1〉 = 0 and where α = ∠(v0

i , vi). Note that v⊥i−1 ∩ 〈〈vi−1, vi〉〉
is the line spanned by v0

i . Take any unit vector v ∈ v⊥i−1 ∩Wi−1 and let us prove

that sin(∠(v0
i , v)) ≥ ε. This will establish (5). Define

v′ := (cosα) v + (sinα) vi−1



HYPERBOLIC BILLIARDS ON POLYTOPES 25

which is a unit vector in Wi−1. We can assume that 〈v0
i , v〉 ≥ 0 for otherwise

the angle ∠(v0
i , v) that we want to minimize would be obtuse. Using the previous

expressions for vi and v′ we have

〈vi, v′〉 = (cos2 α)〈v0
i , v〉+ sin2 α .

Since this expresses 〈vi, v′〉 as a convex combination between 〈v0
i , v〉 and the number

1, it follows that

cos(∠(vi, v
′)) = 〈vi, v′〉 ≥ 〈v0

i , v〉 = cos(∠(v0
i , v))

which implies that
sin
(
∠(v0

i , v)
)
≥ sin (∠(vi, v

′)) ≥ ε .
This proves (5) and shows the assumptions of Proposition 5.13 are met. From this
proposition, we get that on the linear subspace v⊥0 ∩Wi, of dimension ki = ki−1 +1,
the linear map L(i) = Li ◦ L(i−1) is a σ̂i-expansion where

σ̂i :=
(
(1− ε2)⊕ σ−2

i−1 ⊕ λ
−2
)−1/2 ≥ σi.

The case vi ∈ Wi−1 is somewhat simpler. We have Wi = Wi−1, ki = ki−1,
and σi = σi−1. Hence, since m(Li) ≥ 1 by induction hypothesis the map L(i) =
Li ◦ L(i−1) is a σi-expansion on v⊥0 ∩Wi.

5.6. Proof of Theorem 5.3. In this subsection we relate collinearities with ex-
pansion of the velocity tangent flow, and then prove Theorem 5.3.

Recall that we are assuming that P is ε-spanning.

Proposition 12. There exists σ > 1, depending only on d, f and ε, such that given
a collinearity [i, j0] of some trajectory, for all j > j0, the velocity flow L[i,j] is a

relative σ-expansion on v⊥i ∩ V[i,j] w.r.t. v⊥i ∩ V[i,j0].

Proof. Assume {(vl, ηl)}l is a trajectory with collinearity [i, j0]. Because P is ε-
spanning, for all j > j0 such that ηj /∈ N[i,j−1] we have ∠(ηj , N[i,j−1]) ≥ ε.

Notice that V[i,j−1] = N[i,j−1], for all j > j0, and by Lemma 5.4, we have
vj = αjηj + βjvj−1 with αj ≥ cos(π2λ(f)) > 0. Hence there is some 0 < ε′ < ε
depending on ε and on λ(f), such that for all j > j0 with ηj /∈ N[i,j−1],

∠(vj , V[i,j−1]) ≥ ε′ .
Consider the set of ‘new normal’ times

J := {j0 < l ≤ j : ηl /∈ N[i,l−1]}
and the corresponding velocity subspace

VJ := 〈〈vl : l ∈ J〉〉,
so that V[i,j] = V[i,j0] ⊕ VJ .

By Lemma 5.14 there exists σ > 1, depending only on d, f and ε such that
L[j0,j] is a σ-expansion on v⊥j0 ∩V[j0,j]. In particular, L[j0,j] is also a σ-expansion on

v⊥j0 ∩ VJ ⊆ v
⊥
j0
∩ V[j0,j]. By Lemma 2.5 we have

∠min(V[i,j0], VJ) ≥ arcsin(sind(ε′)) =: ε̃.

Hence there exists 1 < σ̃ < σ depending only on ε̃ and σ such that L[j0,j] is a

σ̃-expansion on (V[i,j0])
⊥ ∩ V[j0,j]. This implies that L[i,j] is a relative σ̃-expansion

on v⊥i ∩ V[i,j] w.r.t. v⊥i ∩ V[i,j0].
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Corollary 9. Given the constant σ > 1 in Proposition 12, and 1 < σ′ < σ, there
is δ > 0 such that for every trajectory {(vl, ηl)}l, if [i, j0] is a δ-collinearity then
for all j > j0, the velocity flow L[i,j] is a relative σ′-expansion on v⊥i ∩ V[i,j] w.r.t.

v⊥i ∩ V[i,j0].

Proof. This follows from Proposition 12 with a continuity argument like the one
used in the proof of Proposition 10.

Proposition 13. Given δ > 0 there exists σ > 1, depending on d, f , ε and δ, such
that if a time interval [i+ 1, j] of some trajectory contains no subinterval which is
a δ-collinearity then L[i,j] is a σ-expansion on v⊥i ∩ V[i,j].

Proof. Let [i, j] be a time interval such that [i+1, j] contains no subinterval which is
itself a δ-collinearity. By Corollary 8, there is δ′ > 0 such that for every l ∈ [i+1, j]
either ηl ∈ {ηi+1, . . . , ηl−1}, or else

∠(vl, V[i,l−1]) ≥ δ′ .

Thus by Lemma 5.14 L[i,j] is a uniform expansion on v⊥i ∩ V[i,j].

Now we can prove Theorem 5.3.

Proof of Theorem 5.3. Take the constant σ > 1 given in Proposition 12. Set σ′ =
1
2 + 1

2σ ∈ (1, σ), and pick δ = δ(σ′) > 0 as provided by Corollary 9. Fix the constant
σ′′ = σ(δ) > 1 given by Proposition 13 and set σ0 = min{σ′, σ′′}.

Fix some integer k ≥ 0 and let {(vj , ηj)}j∈N0
be a trajectory. We consider three

cases:

If [0, k] contains no δ-collinearity, by Proposition 13 L[0,k] is a σ′′-expansion

on v⊥0 ∩ V[0,k]. But since any trajectory is generating on [0, k], we have v⊥0 =

v⊥0 ∩ V[0,k], which proves that L[0,k] is a σ′′-expansion. Finally, because L[k,2k] is
non contracting, L[0,2k] = L[k,2k] ◦ L[0,k] is also a σ′′-expansion.

If [0, k] contains a δ-collinearity [i, j] ⊆ [0, k], we can assume it is minimal, in
the sense that [i, j] contains no proper subinterval which is itself a δ-collinearity.
Consider first the case j ≥ i + 1. By Proposition 13, L[i,j] is a σ′′-expansion on

v⊥i ∩ V[i,j]. Because L[i,2k] = L[j,2k] ◦ L[i,j], and L[j,2k] is non contracting, the map

L[i,2k] is also a σ′′-expansion on v⊥i ∩V[i,j]. Remark that since i ≤ k, the trajectory

is generating on [i, 2k], and hence v⊥i = v⊥i ∩ V[i,2k]. Hence by Proposition 9, L[i,2k]

is a relative σ′-expansion on v⊥i w.r.t. v⊥i ∩ V[i,j]. Thus by Lemma 5.11, L[i,2k] is a
σ0-expansion, which implies so is L[0,2k].

Finally we consider the case [0, k] contains δ-collinearities, but the minimal ones
have length zero, say {i} ⊂ [0, k] is a δ-collinearity. In this case we have ∠(vi, ηi) < δ,
and the proof is somehow simpler. By Lemma 2.2

∠(V[i,j−1], N[i,j−1]) = ∠(〈〈vi〉〉+N[i+1,j−1], 〈〈ηi〉〉+N[i+1,j−1])

≤ arcsin

(
sin δ

sin ε

)
=: δ̂ .
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On the other hand, because vj = αj ηj + βj vj−1 with αj ≥ c and c = cos(π2λ(f)),
whenever ηj /∈ {ηi, . . . , ηj−1} we have

∠(vj , V[i,j−1]) ≥
c

2
∠(ηj , V[i,j−1])

≥ c

2
∠(ηj , N[i,j−1])−

c δ̂

2

≥ c

2
(ε− δ̂) ≥ c ε

4
,

provided δ is small enough. Thus, using Lemma 5.10 we get by induction that
L[i,i+k] is a uniform expansion, and as before that L[0,2k] is also a uniform expansion.

Therefore, L[0,2k] is a σ0-expansion in all cases.

6. Proof of the Main Statements. Let P be a spanning polytope and f a
contracting reflection law. Denote by Φ = Φf,P : D → D the billiard map for P
and f .

Proof of Theorem 2.10. Let x = (p, v) ∈ D be any k-generating point. We can
identify the tangent space TxM with v⊥ × v⊥ using the Jacobi coordinates (J, J ′).
From the proof of Proposition 4, the subbundle Ecu(x) in the coordinates (J, J ′)
is {(J, J ′) ∈ v⊥ × v⊥ : J ′ = 0}. Moreover, by Theorem 5.3, there exists σ > 1
depending only on P and f such that

‖DΦ2k(x)(J, 0)‖ = ‖L[0,2k](J)‖ ≥ σ‖J‖, ∀ J ∈ v⊥.

This uniform minimum growth expansion on Ecu proves the theorem.

Proof of Theorem 2.12 . Assume that (Φ, µ) is ergodic and
∫
T dµ < +∞. First

note that, by Proposition 4,

lim sup
n→∞

1

n
log ‖DΦn(x)|Es‖ = log λ(f) < 0

for every x ∈ D. Consider now the partition {An = T−1{n}}n∈N of D, and define

the measurable function T̃ : D → N, T̃ = n on A′n := Φ(An). This function satisfies

T
(

Φ−T̃ (x)(x)
)

= T̃ (x) for all x ∈ D .

Moreover
∫
T̃ dµ =

∫
T dµ < +∞. From Theorem 2.10 we have∥∥∥DΦ−2 T̃ (x)(x)|Ecu

∥∥∥ ≤ 1/σ for all x ∈ D .

Define recursively the following sequence of backward iterates and stopping times{
x0 = x

t0 = 2 T̃ (x0)

{
xj+1 = Φ−tj (xj)

tj+1 = 2 T̃ (xj+1)
.

Let us write τn =
∑n−1
j=0 tj . Since tj ≥ 2 d for all j, this sequence tends to +∞, and

we have

− 1

τn
log
∥∥DΦ−τn(x)|Ecu

∥∥ ≥ − 1∑n−1
j=0 tj

n−1∑
j=0

log
∥∥DΦ−tj (xj)|Ecu

∥∥
≥ − n∑n−1

j=0 tj
log σ−1 =

log σ
1
n

∑n−1
j=0 T̃ (xj−1)

.



28 P. DUARTE, J. P. GAIVÃO AND M. SOUFI

Thus, by Birkhoff’s ergodic theorem, for µ-almost every x ∈ D,

lim sup
n→+∞

− 1

n
log
∥∥DΦ−n(x)|Ecu

∥∥ ≥ log σ∫
T̃ dµ

> 0 .

By Kingman’s ergodic theorem, the above lim sup is actually a limit. Thus,

lim
n→∞

1

n
log
∥∥DΦ−n(x)|Ecu

∥∥ < 0

for µ-almost every x ∈ D. This proves that µ is a hyperbolic measure.

Proof of Theorem 2.13 . Assume that Λ ⊂ D is Φ-invariant. By Proposition 4, Φ is
uniformly partially hyperbolic on Λ. Moreover, it follows from Theorem 2.10 that
there exists a constant C > 0 depending only on P and f such that

‖DΦ−n(x)|Ecu(x)‖ ≤ C
(

1

σ

) n
2k

for every x ∈ Λ that is k-generating. Since the escaping time function T is bounded
on Λ, every x ∈ Λ is τ -generating where τ := supx∈Λ T (x). So the expansion

rate can be made uniform and equal to σ1/τ > 1. This shows that Φ is uniformly
hyperbolic on Λ.

Proof of Corollary 3. Suppose P is in general position, in particular P is a spanning
polytope. By Corollary 5 there exists a positive constant λ0 = λ0(P ) such that the
escaping time function T is bounded on D. The claim follows by Theorem 2.13.

Proof of Corollary 4. Suppose P is an obtuse polytope in general position, in par-
ticular P is a spanning polytope. By Corollary 6 the escaping time function T is
bounded on D. The claim follows by Theorem 2.13.

7. Examples. In this section we study in detail the contracting billiard on a family
of 3-dimensional simplexes, illustrating the applicability of our main theorems.

Let {e1, . . . , ed+1} be the canonical basis of Rd+1. Given d ≥ 2, we denote by ∆d
h

the d-simplex in Rd+1 defined as the convex hull of the vertexes vj = ej for 1 ≤ j ≤ d
and vd+1 = 1−h

d

∑d
j=1 ej+h ed+1. For any set of d facets of ∆d

h ((d−1)-dimensional

faces), their normals are linearly independent. Therefore, ∆d
h is in general position

according to Definition 3.1 and it is spanning according to Definition 2.9.

7.1. Near conservative billiards. We firstly consider contracting reflection laws
close to the specular one. It will be shown that the escaping time is uniformly
bounded, by computing the barycentric angles of ∆d

h.
The simplex ∆d

h has d+ 1 barycentric angles, one for each vertex. By symmetry
all barycentric angles at base vertexes vj , with 1 ≤ j ≤ d, are the same. Denote
the barycentric angle at the base vertexes by φ1 = φ1(h) and the barycentric angle
at vd+1 by φ2 = φ2(h). Define

λ0(h) := 1− 4 min{φ1(h), φ2(h)}/π. (6)

Proposition 14. For every h > 0 and every contracting reflection law f satisfying
λ0(h) < λ(f) < 1 the billiard map Φf,∆d

h
is uniformly hyperbolic.

Proof. Notice that ∆d
h is in general position and spanning. Moreover, by Theorem

4.5, if 2φi > π/2 − f(π/2) > π/2 − λ(f)π/2 for i = 1, 2 then the polyhedral cones
have bounded escaping time. This is the case when λ(f) > 1 − 4 min{φ1, φ2}/π.
Thus, by Theorem 2.13, Φf,∆d

h
is uniformly hyperbolic.
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Figure 3 shows the graphs of the λ0(h) defined in (6) for d = 3, 4 and 5. The
shaded regions bounded between these graphs and λ = 1 are called admissible
regions. This figure shows that the admissible regions decrease as the dimension
increases. The bottom tips of these admissible regions correspond to the heights h
of the regular d-simplexes.

Figure 3. Parameter regions with uniform bounded escaping time

7.2. Near slap billiards. Here we consider the situation when λ(f) ≈ 0 for a given
contracting reflection law f . These reflection laws are called strongly contracting
(see [5]). In this context the dynamics may loose uniformity due to unbounded
escaping times. To any strongly contracting billiard we can associate a degenerate
billiard map called the ‘slap map’ corresponding to f = 0, where reflections are
always orthogonal to the faces. When h is small enough the slap map has a trapping
region, called a chamber, away from acute wedges. Hence the escaping time is
bounded on the chamber. This concept generalizes the notion of chamber introduced
in [6].

For simplicity we will assume d = 3.

Proposition 15. For any h ∈ (0, 1/2) there exists λ0 = λ0(h) > 0 such that for
every contracting reflection law f satisfying λ(f) < λ0(h), the billiard map Φf,∆3

h

is uniformly hyperbolic.

Proof. Firstly, let us assume that λ(f) = 0. This means that the billiard particle
always reflects orthogonally to each face of the polytope. Since after the first iterate
the angle is zero, we can reduce Φf,∆3

h
to a multi-valued map Φ0 : ∆3

h → ∆3
h

(skeleton points may have more than one image). Let Ai, i = 1, . . . , 4 denote the
vertexes of the simplex ∆3

h with A4 being the top vertex. The triangle A1A2A3

is called the base of the simplex (see Figure 4). We show that there is a set V

on the base of the simplex which is invariant by Φ2
0. Let C0 denote the center of

A1A2A3, i.e., the point mapped by Φ0 to the top vertex of the simplex. Then,
the base triangle is partitioned into three triangles, namely A1A2C0, A1A3C0 and
A2A3C0. Since Φ0(C0) is the intersection of the three faces, it has three distinct
images by Φ0. A simple calculation shows that when h < h0 for some h0 > 0,
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these images belong to the base of the simplex. Denote them by C1, C2 and C3.
The image of triangles A1A2C0, A2A3C0 and A3A1C0 under Φ2

0 are respectively
triangles A1A2C3, A2A3C1 and A3A1C2. Therefore Φ2

0 maps the triangle A1A2A3

to itself.
Now we construct an hexagon H = M1M2M3M4M5M6 as follows (see Figure 4):

the point M1 is the intersection of A1C2 with the perpendicular to A1C0 through C1.
Likewise, M2 is the intersection of A2C1 with the perpendicular to A2C0 through
C2. The other Mj ’s are similarly defined. The hexagon H is the union of three
pentagons whose images under Φ2

0 are in the hexagon H. On the right of Figure 4,
we can see the image of the pentagon P = C0C2M2M1C1, Φ2

0(P) = C ′0C
′
2M
′
2M
′
1C
′
1.

Figure 4.

Moreover, the intersection of the pentagon Φ2
0(P) with the boundary of H is just

the point C ′0 = C3. Hence, for some small enough neighborhood V of H on the base

triangle A1A2A3 we have Φ2
0(V) ⊂ V.

It is easy to see that every orbit of Φ0 eventually enters V. In fact, every orbit
starting near the wedges of the simplex will escape by a zig-zag movement and
enter H ⊂ V. Since V is away from the wedges, the escaping time T (x) for x ∈ V is
uniformly bounded.

Denote by η the inward normal to the base of the simplex and given λ0 > 0
define

S+
η,λ0

=
{
v ∈ S+

η : 〈v, η〉 > cos
(
λ0
π

2

)}
.

Also define Λλ0
:=
(
V× S+

η,λ0

)
∩ M+. Then, by continuity, there exists λ0 =

λ0(h) > 0 such that for every contracting reflection law satisfying λ(f) < λ0 we
have

Φ2
f,∆3

h
(Λλ0

) ⊂ Λλ0
and D =

⋂
n≥0

Φnf,∆3
h
(Λλ0

).

The previous equality follows from the fact that for each x ∈M+ there exists n ≥ 0
such that Φn

f,∆3
h
(x) ∈ Λλ0

. Since the escaping time is bounded on Λλ0
, it is also

bounded on D. Therefore, the proposition follows from Theorem 2.13.
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