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Abstract. We consider an m-dimensional analytic cocycle
T× Rm 3 (x, ~ψ) 7→ (x+ ω,A(x) · ~ψ) ∈ T× Rm, where ω /∈ Q and
A ∈ Cω(T,Matm(R)). Assuming that the d × d upper left corner
block of A is typically large enough, we prove that the d largest
Lyapunov exponents associated with this cocycle are bounded away
from zero. The result is uniform relative to certain measurements
on the matrix blocks forming the cocycle. As an application of this
result we obtain nonperturbative (in the spirit of Sorets-Spencer
theorem) positive lower bounds of the nonnegative Lyapunov ex-
ponents for various models of band lattice Schrödinger operators.

1. Introduction, definitions and notations

In this paper we consider a higher dimensional analytic linear co-
cycle Aλ(x) or a family Aλ,E(x) indexed by the parameter E ∈ R of
such cocycles. We make assumptions on a designated upper left cor-
ner block of this (family of) cocycle(s) which ensure that this block is
“typically large” enough. Under these assumptions we prove that the
d largest Lyapunov exponents of this (family of) cocycle(s) are posi-
tive, where d is the dimension of the designated large block. The result
is nonperturbative (i.e. independent of the underlying frequency) and
uniform relative to certain measurements on the matrix blocks forming
the cocycle.

By a “typically large” matrix block we understand one which con-
sists of a transversal matrix-valued function or which factors out as a
product of transversal matrix-valued functions, multiplied by a large
enough constant λ. The transversality condition on such a matrix-
valued function will either mean that it is not identically singular, or
else that it has no constant eigenvalues. We establish the genericity
of this last condition both in a topological sense (meaning for an open
and dense set of potentials) and in some strong algebraic geometric
sense (where it refers to the complement of some ‘algebraic subvariety’
of ∞-codimension in the space of analytic potentials).
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A natural problem related to the results in this paper is finding a
suitable generic condition on the cocycle that would ensure not only
positivity of the Lyapunov exponents, but also gaps between the Lya-
punov exponents. This is the assumption under which Hölder continu-
ity of the Lyapunov exponents has been recently established in [15].

Choosing the matrix blocks forming the family of cocycles Aλ,E(x)
appropriately, we show that our result on positivity of the Lyapunov ex-
ponents applies to cocycles associated with various models of Schrödinger
operators on a band lattice (which some authors call a strip). These
models include all finite range hopping Schrödinger operators, both on
the integer lattice and on band lattices. The large enough constant λ
will be the coupling constant, while the parameter E will be the energy
corresponding to these models of Schrödinger operators.

In the (one-dimensional) integer lattice case, the Lyapunov exponent
characterizes the absolutely continuous spectrum of the Schrödinger op-
erator completely. This is due to Kotani’s theory, which implies the ab-
sence of absolutely continuous spectrum when the (largest) Lyapunov
exponent is positive. Kotani’s theory has an extension to the standard
band lattice model (see [13]), so at least in that case, our result implies
absence of absolutely continuous spectrum. While the Lyapunov expo-
nents cannot distinguish between point and singular spectra, we expect
that under suitable assumptions, pure point spectrum with exponen-
tially decaying eigenfunctions (i.e. Anderson localization) will hold for
the general band lattice models we consider here.

Standard results on the positivity of the Lyapunov exponent for one-
dimensional Schrödinger operators (i.e. SL2(R) Schrödinger cocycles)
are due to M. Herman (see [10]) and E. Sorets, T. Spencer (see [16]).
Both results use complexification and subharmonicity in order to avoid
the set {x : v(x)− E ≈ 0} (see also chapter 3 in [2]).

Quasi-periodic band lattice Schrödinger operators lead to higher di-
mensional Schrödinger cocycles. I. Ya. Goldsheid and E. Sorets (see
[9]) proved positivity of the Lyapunov exponents for such a model where
the potential has typically large enough quasi-periodic diagonal and
constant off-diagonal entries. J. Bourgain and S. Jitomirskaya (see
[4]) proved Anderson localization for such a model where the potential
function is a quasi-periodic diagonal matrix with typically large enough
entries.

Our paper extends both in scope and in approach Sorets-Spencer’s
theorem to higher dimensional general cocycles. In particular, it also
applies to complex valued cocycles (see section 8).
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We now introduce the basic definitions and notations used in the
paper.

The letter T will refer to the additive group T = R/Z. Given an
irrational number ω ∈ R \Q, consider the translation T = Tω : T→ T,
Tx = x+ ωmod Z, which is an ergodic transformation with respect to
the Haar measure dx on T. Any measurable function A : T→ Matm(R)
determines a skew-product map F : T × Rm → T × Rm defined by
F (x, v) = (Tx,A(x) v). The dynamical system underlying such a map
is called a linear cocycle over the translation T . Sometimes, when T is
fixed, the measurable function A is also referred to as a linear cocycle.
The iterates of F are given by F n(x, v) = (x+ nω,Mn(x) v), where

Mn(x) = A(x+ (n− 1)ω) . . . A(x+ ω)A(x)

The cocycle is called integrable when
∫

T log+ ‖A(x)‖ dx < ∞ and∫
T log+ ‖A(x)−1‖ dx < ∞, where log+(x) = max{log x, 0}. In 1965

Oseledets proved his famous Multiplicative Ergodic Theorem, which
when applied to the previous class of cocycles says that if A is integrable
then there are: numbers L(1) ≥ L(2) ≥ . . . ≥ L(m), an F -invariant mea-

surable decomposition Rm = ⊕`j=1E
(j)
x , and a non decreasing surjective

map k : {1, . . . ,m} → {1, . . . , `} such that for almost every x ∈ T,

every 1 ≤ i ≤ m and every v ∈ E(ki)
x ,

L(i) = lim
n→±∞

1

n
log ‖Mn(x) v‖

Moreover, L(i) = L(i+1) if and only if ki = ki+1, and the subspace

E
(j)
x has dimension equal to #k−1(j). The numbers L(i) are called the

Lyapunov exponents of F , or of A. If furthermore A takes values in
SLm(R), the Lyapunov exponents satisfy the relation

∑m
i=1 L

(i) = 0,
while if m = 2d and A takes values in spd(R), then L(2d+1−i) = −L(i)

for all 1 ≤ i ≤ d.
Defining s

(1)
n (x) ≥ s

(2)
n (x) ≥ . . . ≥ s

(m)
n (x) to be the singular values

of the product matrix Mn(x), it is easy to verify that the Lyapunov
exponents are

L(i) = lim
n→∞

1

n
log s(i)

n (x) for a.e.x ∈ T (1 ≤ i ≤ m) (1.1)

From Birkhoff’s Ergodic Theorem, the largest Lyapunov exponent is

L(1) = lim
n→∞

1

n
log ‖Mn(x)‖ for a.e. x ∈ T

= lim
n→∞

1

n

∫
T

log ‖Mn(x)‖ dx (1.2)
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Throughout this paper, we will denote by Symd(R), Symd(C) and
Hermd(C) the space of d × d real symmetric, complex symmetric and
respectively Hermitian matrices. If M is any real vector space, say
Symd(R) or Matm(R), we denote by Cω(T,M) the space of real analytic
functions V : T→M. For any 0 < ρ < 1,

Aρ := { z ∈ C : 1− ρ ≤ |z| ≤ 1 + ρ }
denotes the 2ρ-width annulus. Let Cω

ρ (T,M) (mind the subscript
ρ) be the subspace of all functions V (x) ∈ Cω(T,M) which have
a holomorphic extension V (z) : int(Aρ) → MC = M ⊗ C, which
are continuous up to the boundary of Aρ. Endowed with the norm
‖V ‖ρ = maxz∈Aρ ‖V (z)‖, the space Cω

ρ (T,M) becomes a Banach space.

Given any submanifold N ⊂ M, let Cω
ρ (T,N) be the Banach subman-

ifold of all functions V ∈ Cω
ρ (T,M) such that V (x) ∈ N, for every

x ∈ T. Elements in the spaces Cω
ρ (T, SLm(R)) and Cω

ρ (T, SLm(C)) are
called analytic cocycles. The blocks forming an analytic cocycle are
matrix-valued analytic functions.

We introduce some measurements on a matrix-valued analytic func-
tion V : T → Matd(R). We denote by Nρ(V ) the number of zeros
of det(V (z)) in Aρ, and by βρ(V ) the minimum value on Aρ of the
holomorphic function obtained by factoring out all zeros of det(V (z)).

Moreover, for V : T → Symd(R) we consider the functions N̂ρ(V ) =

maxE∈RNρ(V − E · I) and β̂ρ(V ) = minE∈R βρ(V − E · I). For every
V ∈ Cω

ρ (T, Symd(R)) which satisfies a generic transversality condition,

we will show that N̂ρ(V ) < +∞ and β̂ρ(V ) > 0 and moreover, that
these quantities depend continuously on V (see section 4 for details).

The paper is organized as follows. In section 2 we present the two
main statements, Theorem 2.1 and Theorem 2.2, and the main appli-
cation Theorem 2.3. The following two sections describe the assump-
tions made in the main statements on the designated upper left corner
block: in section 3 we show that these assumptions are generic in a
strong sense, while in section 4 we define certain measurements on the
function(s) forming this block and we show that they depend contin-
uously on it. The subsequent two sections contain the main technical
tools used in the proof, described in general terms: in section 5 we
prove a growth result for products of block matrices that have a desig-
nated “large” block, while section 6 contains an estimate on the mean
of a subharmonic function. Section 7 contains the proof of the main
statements, while in section 8 we show that our statements apply to
cocycles associated to general band lattice Schrödinger operators with
both real and complex entries.
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2. The main statements

We consider two families of m-dimensional cocycles of the form

(T,A) : T× Rm 3 (x, ~ψ) 7→ (x+ ω,A(x) · ~ψ) ∈ T× Rm (2.1)

where ω ∈ R \Q and A ∈ Cω
ρ (T,Matm(R)).

In the first family of cocycles, the matrix A depends on a coupling
constant λ and consists of block matrices of the form

Aλ(x) =

 λV (x) W [(x)

W ](x) O(x)

 (2.2)

with the upper left corner being a square d-dimensional matrix block
(1 ≤ d < m).

In the second family of cocycles, the matrix A depends on the cou-
pling constant λ and on an energy parameter E, and consists of block
matrices of the form

Aλ,E(x) =

 λU(x)(V (x)− E · I) W [(x)

W ](x) O(x)

 (2.3)

where the upper left corner is a d-dimensional matrix block (1 ≤ d < m)
with V symmetric.

For both families we prove that if the matrix-valued functions V (x),
respectively V (x) and U(x), are transversal and if the coupling constant
λ is large enough, then the d largest Lyapunov exponents associated to
these cocycles are bounded away from zero.

The result is nonperturbative, in the sense that the threshold λ0 on
the size of the coupling constant λ does not depend on the frequency
ω but only on certain measurements on the matrix-valued analytic
functions V (x) and U(x), and on the sup norms of the other blocks
W [(x), W ](x) and O(x). In particular, the threshold λ0 and the lower
bounds on the Lyapunov exponents are uniform in these measurements,
which is what makes the statements below appear more technical.

We make the following assumptions on the block matrices that form
the first family of cocycles Aλ(x).

Uniform bounds: for some constants N ∈ N, β > 0 and B > 0,

Nρ(V ) ≤ N and βρ(V ) > β (2.4)

max {‖V ‖ρ ,
∥∥W [

∥∥
ρ
,
∥∥W ]

∥∥
ρ
, ‖O‖ρ} ≤ B (2.5)

Transversality condition:

det(V (x)) 6≡ 0 (2.6)
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For the second family of cocycles Aλ,E(x), we assume that V (x)
is symmetric, and we make similar but stronger (i.e. uniform in the
parameter E ∈ R) assumptions on its matrix blocks.

Uniform bounds: for some constants N1, N2 ∈ N, β1, β2 > 0 and
B > 0,

Nρ(U) ≤ N1 and βρ(U) > β1 (2.7)

N̂ρ(V ) ≤ N2 and β̂ρ(V ) > β2 (2.8)

max {‖V ‖ρ , ‖U‖ρ ,
∥∥W [

∥∥
ρ
,
∥∥W ]

∥∥
ρ
, ‖O‖ρ} ≤ B (2.9)

Transversality condition:

det(U(x)) 6≡ 0 (2.10)

det(V (x)− E · I) 6≡ 0 for any E ∈ R (2.11)

The second condition above says that V (x) has no constant eigenvalues,
as functions of x.

Theorem 2.1. Consider the cocycle (2.1) where Aλ ∈ Cω
ρ (T,Matm(R))

is defined as in (2.2). We assume the uniform bounds (2.4) and (2.5)
and the transversality condition (2.6).

There are constants λ0(ρ,B,N, β, d) > 0 and c = c(ρ,B,N, β, d) > 0
such that for λ > λ0, the d largest Lyapunov exponents associated with
this cocycle are positive:

L(k)(Aλ) ≥ log λ− k c for all 1 ≤ k ≤ d (2.12)

When the parameter E is fixed, the second family of cocycles Aλ,E(x)
is of the same type as the first. The following theorem says that if we
assume instead the stronger transversality condition (2.11) and the
stronger uniform bounds (2.8) (which have the effect of increasing the
size of the constants λ0 and c), then the same result holds for the family
of cocycles Aλ,E(x) uniformly in the parameter E.

Theorem 2.2. Consider the cocycle (2.1) where Aλ,E ∈ Cω
ρ (T,Matm(R))

is defined as in (2.3), with V (x) symmetric. We assume the uniform
bounds (2.7), (2.8) and (2.9) and the transversality conditions (2.10)
and (2.11).

Then there are constants λ0(ρ,B,N1, N2, β1, β2, d) > 0 and ĉ =
ĉ(ρ,B,N1, N2, β1, β2, d) > 0 such that for λ > λ0, the d largest Lya-
punov exponents associated with the cocycles Aλ,E are positive:

L(k)(Aλ,E) ≥ log λ− k ĉ for all E ∈ R and 1 ≤ k ≤ d (2.13)
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Remark 2.1. The transversality conditions (2.6), (2.10), (2.11) are
generic in a strong sense (see section 3).

Remark 2.2. The symmetry of V (x) in Theorem 2.2 is enough for our
purposes but not essential. The same statement holds for a non sym-
metric matrix-valued function V (x) if we redefine the measurements

N̂ρ(V ) and β̂ρ(V ) respectively as a maximum and a minimum of the
same quantities but over complex parameters E (see definition 4.1).

We now describe the main application of Theorem 2.2 to a mathe-
matical physics model.

Let W (x), R(x), D(x) ∈ Matd(R) for all x ∈ T. Assume that R(x)
and D(x) are symmetric and denote by W T (x) the transpose of the
matrix W (x). Moreover, for all n ∈ N, denote

Wn(x) := W (x+nω), Rn(x) := R(x+nω), Dn(x) := D(x+nω) (2.14)

Consider the quasi-periodic Schrödinger (or Jacobi, as referred to by
other authors) operator H = Hλ,x acting on l2(Z,Rd) by

[Hλ,x
~ψ]n := −(Wn+1(x) ~ψn+1 +W T

n (x) ~ψn−1 +Rn(x) ~ψn) + λDn(x) ~ψn
(2.15)

where ~ψ = {~ψn}n∈Z ∈ l2(Z,Rd) is any state, x ∈ T is a parameter that
introduces some randomness into the system and λ > 0 is a coupling
constant.

This model contains all quasi-periodic, finite range hopping Schrödinger
operators on integer or band integer lattices. The hopping term is given
by the “weighted” Laplacian:

[Sx ~ψ]n := −Wn+1(x) ~ψn+1 +W T
n (x) ~ψn−1 +Rn(x) ~ψn (2.16)

where the hopping amplitude is encoded by the quasi-periodic matrix
valued functions Wn(x) and Rn(x), while the potential is given by the
quasi-periodic matrix valued function λDn(x). The physically more
relevant situation is when Dn(x) (hence D(x)) is a diagonal matrix,
but our result applies to any symmetric matrices.

The associated Schrödinger equation

Hλ,x
~ψ = E ~ψ

for a (generalized) state ~ψ = {~ψn}n∈Z ⊂ Rd and energy E ∈ R, gives
rise to a Schrödinger cocycle Aλ,E(x). Let L(k)(Aλ,E) be the kth Lya-
punov exponent of this Schrödinger cocycle.
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Theorem 2.3. Consider the Schrödinger equation associated to the
operator (2.15):

− (Wn+1(x) ~ψn+1 +W T
n (x) ~ψn−1 +Rn(x) ~ψn) + λDn(x) ~ψn = E ~ψn

(2.17)

where ~ψ = {~ψn}n∈Z ⊂ Rd, E ∈ R, and the hopping amplitude and the
potential are defined as in (2.14).

Assume that W ∈ Cω
ρ (T,Matd(R)), R ∈ Cω

ρ (T, Symd(R)) and D ∈
Cω
ρ (T, Symd(R)). Assume moreover that

det[W (x)] 6≡ 0 (2.18)

D(x) has no constant eigenvalues (2.19)

Then there are constants λ0 = λ0(W,R,D) and c = c(W,R,D) such
that if λ > λ0, then the d largest Lyapunov exponents associated with
the equation (2.17) have the lower bounds:

L(k)(Aλ,E) ≥ log λ− c for all E ∈ R, 1 ≤ k ≤ d (2.20)

Moreover, the other d Lyapunov exponents are the additive inverses
of the d largest Lyapunov exponents.

Remark 2.3. Assumptions (2.18) and (2.19) on the data are generic
in a strong sense (see section 3). In physics applications, the entries of
the amplitude matrix-valued function W (x) are usually trigonometric
polynomials, hence the determinant will have some zeros.

3. Genericity of the potential function

Throughout this section we shall write Symd and Matd as a short
notation for Symd(R) and Matd(R), respectively.

Given a Banach space E, let us call a finite codimension algebraic
subvariety any subset Σ ⊂ E such that for some continuous linear
epimorphism π : E → Rn, and for some algebraic subvariety S ⊂ Rn

we have Σ = π−1(S). The codimension of Σ in E is defined to be the
codimension of S in Rn. The complement of an algebraic subvariety
Σ ⊂ E with codimension ≥ 1 is always a prevalent set, a concept
introduced by J. Yorke et al. in [12]. By definition, E \Σ is prevalent,
since there is a measure µ compactly supported on E transverse to
Σ. This measure µ can be taken to be the Lebesgue measure on some
manifold M ⊂ E transversal to Σ, with dim(M) = codim(Σ, E).

We say that a potential V ∈ Cω
ρ (T,Matd) has no constant eigenvalues

if there is no common eigenvalue E ∈ C to all matrices V (x) with x ∈ T.
The main purpose of this section is to prove the following:
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Theorem 3.1. Consider E = Matd or E = Symd and let V ⊆ Cω
ρ (T, E)

denote the subset of analytic potentials with no constant eigenvalues.
Then:

(a) V is open and dense;
(b) the complement of V in Cω

ρ (T, E) is contained in algebraic sub-
varieties of arbitrary large codimension in Cω

ρ (T, E).

Fix d ≥ 1, and for any 1 ≤ k ≤ d consider the k-th elementary
symmetric function

edk(λ1, . . . , λd) = (−1)k
∑

1≤i1<i2<...<ik≤d

λi1λi2 . . . λik .

We have

ed1(λ1, . . . , λd) = −(λ1 + . . .+λd) and edd(λ1, . . . , λd) = (−1)dλ1 . . . λd .

Define ek : Matd → R by ek(A) = edk(λ1, . . . , λd), where λ1, . . . , λd
are the eigenvalues of A. Note that e1(A) = −tr(A) and ed(A) =
± det(A). By the considerations at the end of section 5, we have
ek(A) = (−1)ktr(∧kA). Hence, for each 1 ≤ k ≤ d, ek(A) is a ho-
mogeneous polynomial of degree k in the entries of A, and for every
E ∈ R and A ∈ Matd,

det(A− E I) =
d∑

k=0

ek(A)Ed−k . (3.1)

Set λE : Cd → C to be the affine form

λE(x1, . . . , xd) = Ed +
d∑

k=1

xk E
d−k ,

and e∗ : Matd → Rd, the non-linear map e∗(A) = (e1(A), . . . , ed(A)).
For E = Matd and E = Symd, define Jetd(E) = Ed+1 as the

space of d-jets of E-valued one variable functions. The d-jet of a
function V : T → E, at a point x ∈ T, is the vector jetdx(V ) =
(V (x), V ′(x), . . . , V (d)(x)). Each potential V ∈ Cω

ρ (T, E) induces an

analytic curve jetd(V ) : T→ Jetd(E) in the space of d-jets.
Next we define a map I : Jetd(E)→ Matd setting

I(A0, A1, . . . , Ad) =

(
di

dti

[
ej

(
d∑

k=0

tk

k!
Ak

)]
t=0

)
1≤i,j≤d
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The map I is defined so that I(jetdx(V )) is the matrix with rows (e∗◦V )′,
(e∗ ◦ V )′′, . . ., (e∗ ◦ V )(d). We say that a potential V : T → E is non-
degenerate at a point x ∈ T if det I(jetdx(V )) 6= 0, otherwise V is said
to be degenerate at x.

Proposition 3.1. If a potential V is non-degenerate at some point
x ∈ T then V has no constant eigenvalues.

Proof. Assume E ∈ C is a common eigenvalue to all matrices V (x).
Then λE(e∗(V (x)) = det(V (x)−E I) ≡ 0. This implies that the range
of e∗ ◦ V is contained in the hyperplane {λE = 0}. Hence the rows of
I(jetdx(V )), (e∗ ◦V )′(x), . . . , (e∗ ◦V )(d)(x), are linearly dependent. Thus
V is degenerate at every point x ∈ T. �

Proof of Theorem 3.1. Let us first prove part (b). Fix N distinct points
x1, x2, . . . , xN ∈ T and consider the linear map J : Cω

ρ (T, E)→ Jetd(E)N

defined by J(V ) = { jetdxi(V ) }1≤i≤N . Clearly J is a continuous epimor-
phism. Note that given a finite set of d-jets at the points x1, x2, . . . , xN ,
we can always interpolate them with a trigonometric polynomial with
coefficients in the space E. Define now Σ to be the set of all families of
d-jets {Ai}1≤i≤N such that det(I(Ai)) = 0, for every 1 ≤ i ≤ N . The
set Σ is an algebraic variety of codimension N in Jetd(E)N . Therefore,
S = J−1(Σ) is a algebraic subvariety of codimension N in Cω

ρ (T, E).
By proposition 3.1, every potential V ∈ Cω

ρ (T, E) with a constant
eigenvalue must be contained in S. Finally, the density part in (a) is
a direct consequence of (b). To show that V is open, note that the ith
eigenvalue λi(x) of an analytic potential V (x) is a continuous function

of x and that if λ̃i(x) stands for the ith eigenvalue of another potential

Ṽ (x), then we have |λi(x)− λ̃i(x)| ≤ ‖V (x)− Ṽ (x)‖ (see for instance

Lemma B.4 in [6]). Hence if λi(x) is not constant and if Ṽ is close

enough to V then λ̃i(x) cannot be constant either. �

Corollary 3.2. The set of potentials U ∈ Cω
ρ (T,Matd) such that

det(U(x)) 6≡ 0 satisfies conditions (a) and (b) of Theorem 3.1.

Proof. If det(U(x)) ≡ 0 then 0 is a constant eigenvalue of U(x). �

4. Uniform bounds on analytic functions

Consider the compact annulus of width 2 r > 0

Ar = { z ∈ C : 1− r ≤ |z| ≤ 1 + r }
and denote by H(Ar) the Banach space of continuous functions f :
Ar → C which are holomorphic over int(Ar), endowed with the usual
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max norm ‖f‖r = maxz∈Ar |f(z)|. Let us fix some annulus A = AR and
introduce some measurements for non trivial holomorphic functions in
H(A) over a compact sub-annulus Aρ ⊂ A where ρ < R. Given a
function f ∈ H(A), f 6≡ 0, let z1, . . . , zr be the zeros of f(z) in int(A),
and n1, . . ., nr the corresponding multiplicities. Set then

Nρ(f) :=
∑

||zj |−1|≤ρ

nj, Zρ(f)(z) :=
∏

||zj |−1|<ρ

(
z − zj

2(R + 1)

)nk
gρ(f)(z) :=

f(z)

Zρ(f)(z)
, βρ(f) := min

z∈Aρ

∣∣∣g ρ+R
2

(f)(z)
∣∣∣ .

Note that since diam(A) = 2(R + 1), |Zρ(f)(z)| ≤ 1 for all z ∈ Aρ.
The following properties are also clear.

Proposition 4.1. Given f1, f2 ∈ H(A), f1 f2 6≡ 0

(1) Nρ(f1 f2) = Nρ(f1) +Nρ(f2),
(2) Zρ(f1 f2) = Zρ(f1)Zρ(f2),
(3) gρ(f1 f2) = gρ(f1) gρ(f2),
(4) βρ(f1 f2) ≥ βρ(f1) βρ(f2).

Proposition 4.2. Given ρ < R,

(1) H(A) \ {0} 3 f 7→ Nρ(f) ∈ N is upper semicontinuous;
(2) H(A) \ {0} 3 f 7→ βρ(f) ∈ (0,∞) is lower semicontinuous.

Proof. We begin with part (1). Fix f0 ∈ H(A), f0 6≡ 0 and take ρ1 > ρ
sufficiently close to ρ so that f0(z) has no zeros in Aρ1 \Aρ. Note that
f0(z) may have zeros in ∂Aρ. Then there is some neighborhood U of f0

such that for every f ∈ U, f(z) has no zeros in ∂Aρ1 . By the Argument
Principle, for every f ∈ U

Nρ1(f) =
1

2πi

∫
∂Aρ1

f ′(z)

f(z)
dz ,

hence f 7→ Nρ1(f) is continuous over U. Since Nρ1(f) ≥ Nρ(f) and
Nρ1(f0) = Nρ(f0), it follows that f 7→ Nρ(f) is upper semicontinuous
at f0.

We now turn to prove part (2). Fix f0 ∈ H(A), f 6≡ 0 and take ρ0 < ρ
sufficiently close to ρ so that f0(z) has no zeros in int(Ar) \ int(Ar0),
where r0 = ρ0+R

2
and r = ρ+R

2
. Note that f0(z) may have zeros in

∂Ar but not in ∂Ar0 . Hence there is some neighborhood U of f0 such
that for every f ∈ U, f(z) has no zeros in ∂Ar0 . Thus, denoting by
zj = zj(f) the zeros of f(z) such that r0 < ||zj| − 1| < r, and by
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nj = nj(f) their respective multiplicities, we have

|gr0(f)(z)| =
∏
j

∣∣∣∣ z − zj
2(R + 1)

∣∣∣∣nj · |gr(f)(z)| ≤ |gr(f)(z)| ,

hence
η(f) := min

z∈Aρ
|gr0(f)(z)| ≤ min

z∈Aρ
|gr(f)(z)| = βρ(f) .

Note also that η(f0) = βρ(f0). Therefore, the lower semi-continuity of
βρ at f0, follows because η : U → R is continuous. This last continu-
ity relies on the fact that functions f ∈ U are always non zero near
∂Ar0 . To be more precise, the divisor of f(z) on Ar0 is a formal linear
combination, divr0(f) =

∑r
k=1 nk zk, of the zeros of f(z) in Ar0 , us-

ing their multiplicities as coefficients. We identify divisors with finite
combinations of point mass measures, and topologize them with the
weak-∗ topology. The argument principle implies that f 7→ divr0(f) is
continuous on U. If µ denotes the measure associated with the divisor
divr0(f), the polynomial Zr0(f)(z) can be expressed as the following
integral

Zr0(f)(z) = exp

{∫
C

log

(
z − w

2(R + 1)

)
dµ(w)

}
,

where ‘log’ denotes any branch of the logarithm function that contains
the zeros zk of f(z) in Ar0 . This shows that the map µ → Zr0(f) is
continuous on U, and hence so is f 7→ Zr0(f). Let us now prove that
U 3 f 7→ gAr0

(f) ∈ H(Ar0) is continuous. Because Zr0(f)(z) does not
vanish on ∂Ar0 , the quotient gr0(f) = f/Zr0(f) depends continuously
on f w.r.t. the norm ‖f‖∂Ar0

. Then Cauchy’s integral formula

gr0(f)(z) =
1

2πi

∫
∂Ar0

gr0(f)(ζ)

ζ − z
dζ ,

shows that f 7→ gAr0
(f) is continuous on U, hence so is the function

η : U→ R defined by η(f) = minz∈Aρ |gr0(f)(z)|.
�

Proposition 4.3. Given 0 < δ < ρ, N > 0, β > 0, there is some
ε0 = ε0(ρ, δ,N, β) > 0 such that given two concentric annuli A′ ⊂ Aρ,
A′ of width 2δ, and given any function f(z) holomorphic over Aρ which
satisfies Nρ(f) ≤ N and βρ(f) > β, there is at least one circle C ⊆
int(A′) such that |f(z)| ≥ ε0 for every z ∈ C.

Proof. TakeR > ρ, arbitrary close to ρ > 0 and set ε0 = ε0(ρ, δ,N, β) :=

β
(

δ
2(R+1)N

)N
= β

(
η0

2(R+1)

)N
∼ β

(
δ

2(ρ+1)N

)N
, where η0 = δ

N
. Let
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z1, . . . , zr be the zeros in Aρ of some function f ∈ H(AR) with mul-
tiplicities n1, . . . , nr. Then n1 + . . . + nr = Nρ(f) ≤ N , and, because
N η0 = δ < 2 δ, the width of A′, there is at least one circle C concentric
with Aρ which does not intersect any of the disks Dη0(zk). Hence, for
every z ∈ Aρ \ ∪ri=1Dη0(zk), and in particular for every z ∈ C, we have

|f(z)| = |gρ(f)(z)|
∏r

i=1

∣∣∣ z−zi
2(R+1)

∣∣∣ni ≥ β
(

η0
2(R+1)

)N
= ε0. �

Remark 4.1. As observed in the proof, the constant ε0 > 0 in propo-
sition 4.3 is explicitely given by

ε0(ρ, δ,N, β) ∼ β

(
δ

2(ρ+ 1)N

)N
(4.1)

For any V ∈ Cω
ρ (T, Symd(R)) and E ∈ R, we define the function

fE(V ) : Aρ → C by

fE(V )(z) := det(V (z)− E · I)

Clearly fE(V ) ∈ H(Aρ). Moreover, if V has no constant eigenvalues,
then all functions fE(V ) are non trivial, i.e. fE(V ) 6≡0, hence we have
Nρ(fE(V )) <∞ and βρ(fE(V )) > 0.

Since R 3 E 7→ fE(V ) ∈ H(Aρ) is continuous for any fixed potential
V ∈ V, from proposition 4.2 it follows that the map

R 3 E → Nρ(fE(V )) ∈ N
is upper semi-continuous, while the map

R 3 E 7→ βρ(fE(V )) ∈ (0,∞)

is lower semi-continuous.
This shows that their maximum and respectively minimum values

are attained on a compact interval of energies E. Since clearly for
large enough values of E the functions fE(V )(z) have no zeros, we can
then take E over the whole set of reals and define the following uniform
in E measurements on the potential function V .

Definition 4.1. For any V ∈ V, the open set of potential functions in
Cω
ρ (T, Symd(R)) with no constant eigenvalues, let

N̂ρ(V ) := max
E∈R

Nρ(fE(V )) <∞

β̂ρ(V ) := min
E∈R

βρ(fE(V )) > 0

Proposition 4.4. The two maps defined above satisfy the following:

(1) V 3 V 7→ N̂ρ(V ) ∈ N is upper semi-continuous;



14 P. DUARTE AND S. KLEIN

(2) V 3 V 7→ β̂ρ(V ) ∈ (0,∞) is lower semi-continuous.

Proof. Since the map R × V → H(A), (E, V ) 7→ fE(V ), is continu-

ous, by proposition 4.2 the functions Ñ , β̃ : R × V → R defined by

Ñ(E, V ) := Nρ(fE(V )) and β̃(E, V ) := βρ(fE(V )) are respectively
upper and lower semi-continuous. Fix some ε > 0. Given V0 ∈ V, con-
sider the compact interval I = [−2 ‖V ‖ρ , 2 ‖V ‖ρ], and take a neigh-

bourhood U0 ⊆ V of V0 such that for V ∈ U0, E /∈ I, and z ∈ Aρ,
|fE(V )(z)| = |det(V (z)− E)| ≥ 1. This shows that for V ∈ U0

and E /∈ I, Nρ(fE(V )) = 0 and βρ(fE(V )) ≥ 1, thus proving that

N̂ρ(V ) = supE∈I Nρ(fE(V )) and β̂ρ(V ) = supE∈I Nβ(fE(V )). Because

Ñ and β̃ are semi-continuous, for each E ∈ I we can take an open
interval JE ⊆ R, with E ∈ JE, and a neighbourhood UE ⊆ V of V0

such that for every (E ′, V ′) ∈ JE × UE,

Nρ(fE′(V ′)) ≤ Nρ(fE(V0)) ≤ N̂ρ(V0), and

βρ(fE′(V ′)) ≥ βρ(fE(V0))− ε ≥ β̂ρ(V0)− ε .
Since I is compact there are energies E1, . . . , E` ∈ I such that I ⊆
∪`j=1JEj . Hence, setting U = U0 ∩ ∩`j=1Uj, we have for every V ∈ U

and every E ∈ I, with E ∈ JEj ,

Nρ(fE(V )) ≤ Nρ(fEj(V0)) ≤ N̂ρ(V0), and

βρ(fE(V )) ≥ βρ(fEj(V0))− ε ≥ β̂ρ(V0)− ε .
Thus, for every V ∈ U

N̂ρ(V ) ≤ N̂ρ(V0) and β̂ρ(V ) ≥ β̂ρ(V0)− ε ,

which proves that N̂ρ is upper semi-continuous and β̂ρ is lower semi-
continuous. �

For holomorphic matrix-valued functions U : Aρ → Matd(C) we use
the notation:

Nρ(U) := Nρ(detU) and βρ(U) := βρ(detU)

Corollary 4.5. Given 0 < δ < ρ, N ∈ N, β > 0, there is some ε0 =
ε0(ρ, δ,N, β) > 0 such that for any annulus A′ ⊂ Aρ of width δ, and
for any function U ∈ Cω

ρ (T,Matd) with Nρ(U) ≤ N and βρ(U) > β,
there is a circle C ⊆ int(A′) such that:

|det[U(z)]| ≥ ε0 for all z ∈ C (4.2)

Proof. Simply apply Proposition 4.3 to the holomorphic function f(z) :=
det(U(z)) on Aρ. �
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Corollary 4.6. Given 0 < δ < ρ, N1, N2 ∈ N, β1, β2 > 0, there is
some ε0 = ε0(ρ, δ,N1, N2, β1, β2) > 0 such that for any E ∈ R, any
annulus A′ ⊂ Aρ of width δ, and any functions U ∈ Cω

ρ (T,Matd),

V ∈ Cω
ρ (T, Symd) with Nρ(U) ≤ N1, N̂ρ(V ) ≤ N2 and βρ(U) > β1,

β̂ρ(V ) > β2, there is a circle C ⊆ int(A′) such that:

|det[U(z) · (V (z)− E · I)]| ≥ ε0 for all z ∈ C (4.3)

Proof. Fix E ∈ R and let

f(z) := det[U(z) · (V (z)− E · I)] = det[U(z)] · det[V (z)− E · I]

which is clearly a holomorphic function on Aρ.
Using Proposition 4.1 we have:

Nρ(f) = Nρ(det[U(z)]) +Nρ(det[V (z)− E · I])

≤ Nρ(U) + N̂ρ(V ) ≤ N1 +N2 =: N <∞

βρ(f) ≥ βρ(det[U(z)]) · βρ(det[V (z)− E · I])

≥ βρ(U) · β̂ρ(V ) ≥ β1 · β2 =: β > 0

Now simply apply Proposition 4.3 to the function f(z). Note that ε0
does not depend on f(z) per se, but only on the uniform measurements
N and β of f(z). In particular, ε0 is independent of E. �

5. The growth lemma

Throughout this paper, an appropriate measure of the size of a square
matrix will be its minimum expansion. For completeness we will review
some of the properties of this quantity.

Let P ∈ Matd(C) be a square matrix of dimension d. The minimum
expansion of P is defined as:

m(P ) := min{‖Px‖ : ‖x‖ = 1} = the least singular value of P

Clearly

P ∈ GLd(C) if and only if m(P ) > 0

Since the norm of P is given by

‖P‖ = max{‖Px‖ : ‖x‖ = 1} = the largest singular value of P

we have that

0 ≤ m(P ) ≤ ‖P‖
and

m(P ) =
∥∥P−1

∥∥−1
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Moreover, this implies that the minimum expansion is super-multiplicative:

m(P1 · P2) ≥ m(P1) ·m(P2) for any P1, P2 ∈ Matd(R)

Since |detP | is the product of the singular values of P , we have:

|det(P )|
‖P‖d−1

≤ m(P ) ≤ |det(P )|1/d

This inequality says that given an upper bound on the norm of the
matrix P , having a lower bound on the minimum expansion of P is the
same as having a lower bound on the determinant of P .

In particular, if |det(P )| ≥ ε and if ‖P‖ ≤ B then

m(P ) ≥ ε

Bd−1
(5.1)

We will also need the following inequalities. If P ∈ Matd(C) such
that ‖P‖ ≤ δ < 1 then∥∥(I + P )−1

∥∥ ≤∑
n≥0

‖P‖n ≤ 1

1− δ
(5.2)

and

m(I + P ) =
∥∥(I + P )−1

∥∥−1 ≥ 1− δ (5.3)

We will consider block matrices whose upper left corner blocks are
large (i.e. their minimum expansions are large) and show that the norm
of their product grows.

All block matrices below are in Matm(C) and their upper left corner
blocks are in Matd(C), where 1 ≤ d ≤ m.

Lemma 5.1. Consider the product of block matrices L W [

W ] O

 ·
 S ∗

T ∗

 =

 LS +W [T ∗

W ]S +OT ∗

 =:

 S̃ ∗

T̃ ∗


where ∗ stands for blocks that do not matter here. Assume that:

m(L) ≥ λ and
∥∥W [

∥∥ ,∥∥W ]
∥∥ , ‖O‖ ≤ B

where λ and B are some positive constants such that λ > 3B.
If m(S) ≥ µ and ‖T S−1‖ < 1 then similar estimates hold for the

corresponding blocks of the product:

m(S̃) ≥ (λ−B) · µ and ||T̃ S̃−1|| < 1
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Proof. We write

LS +W [T = [I +W [ (T S−1) L−1] · LS

Since ∥∥W [ (T S−1) L−1
∥∥ ≤ ∥∥W [

∥∥ · ∥∥T S−1
∥∥ · ∥∥L−1

∥∥ < B

λ

according to (5.3) we have:

m [I +W [ (T S−1) L−1] ≥ 1− B

λ

We then conclude

m(LS +W [T ) ≥ m [I +W [ (T S−1) L−1] ·m(L) ·m(S)

≥
(

1− B

λ

)
λµ = (λ−B)µ

Moreover

T̃ S̃−1 = (W ]S +OT ) · (LS +W [T )−1

= (W ] S +OT ) · (LS)−1 · [I +W [ (T S−1) L−1]−1

= (W ] S · S−1L−1 +O · (T S−1) · L−1) · [I +W [ (T S−1) L−1]−1

Then ∥∥∥T̃ S̃−1
∥∥∥ ≤ (B

λ
+B · 1 · 1

λ

)
· 1

1− B
λ

=
2B

λ−B
< 1

since λ > 3B.
�

Lemma 5.2. Consider the product of block matrices

Mn =

 Sn ∗

Tn ∗

 :=
1∏

j=n

 Lj W [
j

W ]
j Oj


If for all 1 ≤ j ≤ n we have

m(Lj) ≥ λ and
∥∥W [

j

∥∥ , ||W ]
j ||, ‖Oj‖ ≤ B

where λ > 3B, then

m(Sn) ≥ (λ−B)n (5.4)

In particular, we get:

‖Mn‖ ≥ (λ−B)n (5.5)
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Proof. The statement follows immediately by induction from Lemma

5.1. The only thing we need to verify is that
∥∥∥W ]

1 L
−1
1

∥∥∥ < 1. Indeed:∥∥L−1
1

∥∥ = [m(L1)]
−1 <

1

λ
so ∥∥∥W ]

1 L
−1
1

∥∥∥ < B
1

λ
< 1

�

Given a real (or complex) vector space V , consider formal k-products
v1 ∧ . . .∧ vk of vectors in V , which we assume to be skew-symmetric in
the sense that for any permutation σ ∈ Sk,

vσ1 ∧ . . . ∧ vσk = (−1)sgn(σ)v1 ∧ . . . ∧ vk .
The linear space spanned by all such formal k-products is called the
k-exterior power of V and denoted by ∧kV . We shall briefly recall
some of the properties of this exterior product construction, which can
be found in [8]. Let Λn

k be the set of all k-subsets I = {i1, . . . , ik} ⊂
{1, . . . , n}, with i1 < . . . < ik, and order it lexicographically. Given a
basis {e1, . . . , en} of V , define for each k-subset I ∈ Λn

k , the k-exterior
product eI = ei1 ∧ . . .∧eik . The ordered family {eI : I ∈ Λn

k} is a basis
of ∧kV . Any linear map T : V → V induces a linear map ∧kT : ∧kV →
∧kV such that ∧kT (v1∧ . . .∧vk) = T (v1)∧ . . .∧T (vk), for given vectors
v1, . . . , vk ∈ V . This construction is functorial in the sense that ∧k(T ′ ◦
T ) = ∧kT ′◦∧kT , whenever T, T ′ : V → V are linear maps. Given I, J ∈
Λn
k , letAI×J be the square submatrix ofA with indices (i, j) ∈ I×J . If a

linear map T : V → V is represented by the matrix A = (aij)i,j relative
to a basis {e1, . . . , en}, then the k-exterior power ∧kT : ∧kV → ∧kV is
represented by the matrix (detAI×J)I,J relative to the basis {eI : I ∈
Λn
k}. Each inner product in V induces an inner product in ∧kV such

that if {e1, . . . , en} is an orthonormal basis in V then {eI : I ∈ Λn
k} is

also an orthonormal basis of ∧kV . In particular, if T : V → V is an
orthogonal transformation then so is ∧kT : ∧kV → ∧kV . Given some
eigenbasis {e1, . . . , en} of T , with associated eigenvalues λ1, . . . , λn ∈ C,
then ∧kT (eI) = (

∏
i∈I λi) eI , which shows that {eI : I ∈ Λn

k} is an
eigenbasis of ∧kT . Hence, if T is represented by a diagonal matrix D
in the first basis, then ∧kT is represented by the diagonal matrix ∧kD in
the second basis. The singular value decomposition M = R1DR2, with
R1, R2 orthogonal (or unitary) matrices, and D diagonal, induces the
singular value decomposition ∧kM = (∧kR1) (∧kD) (∧kR2) at the level
of k-exterior products. The singular values of ∧kM are the products of
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k singular values of M . In particular, the minimum expansion m(M)
is the product of the k lowest singular values of M .

Corollary 5.3. Consider matrices Mn ∈ Matm(C), Sn ∈ Matd(C)
satisfying the assumptions of Lemma 5.2.

Then for any 1 ≤ k ≤ d, we have

m (∧kSn) ≥ (λ−B)kn , (5.6)

and in particular,

‖∧kMn‖ ≥ (λ−B)kn . (5.7)

Proof. Let 0 < s
(n)
1 ≤ s

(n)
2 ≤ . . . ≤ s

(n)
r be the singular values of Sn.

Then

m(∧kSn) = s
(n)
1 . . . s

(n)
k ≥ (s

(n)
1 )k = m(Sn)k ≥ (λ−B)kn .

Because Sn is the submatrix of Mn indexed in {1, . . . , r} it follows that
∧kSn is the submatrix of ∧kMn indexed in Λr

k. Hence

‖∧kMn‖ ≥ ‖∧kSn‖ ≥ m(∧kSn) ≥ (λ−B)kn

�

6. An estimate on the mean of a subharmonic function

The following result is the main analytic tool used in this paper
to establish lower bounds on Lyapunov exponents. It is based on a
convexity argument for means of subharmonic functions.

Proposition 6.1. Let u(z) be a subharmonic function on a neighbor-
hood of the annulus Aρ = {z : 1− ρ ≤ |z| ≤ 1 + ρ}. Assume that:

u(z) ≤ S for all z : |z| = 1 + ρ (6.1)

u(z) ≥ γ for all z : |z| = 1 + y0 (6.2)

where 0 ≤ y0 < ρ.
Then ∫

T
u(x) dx ≥ 1

1− α
(γ − αS) (6.3)

where

α =
log(1 + y0)

log(1 + ρ)
∼ y0

ρ
(6.4)
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Proof. The proof is a simple consequence of a general result on subhar-
monic functions, used to derive Hardy’s convexity theorem (see Theo-
rem 1.6 and the Remark following it in [7]). This result says that given
a subharmonic function u(z) on an annulus, its mean along concentric
circles is log - convex. That is, if we define

m(r) :=

∫
|z|=r

u(z)
dz

2π

and if

log r = (1− α) log r1 + α log r2 (6.5)

for some 0 < α < 1, then

m(r) ≤ (1− α)m(r1) + αm(r2) (6.6)

It can be shown, using say Green’s theorem, that if u(z) were har-
monic, then m(r) would be log - affine. Then the above result for
subharmonic functions would follow using the principle of harmonic
majorant (see [7] for details).

We apply (6.6) with r = 1 + y0, r1 = 1, r2 = 1 + ρ, so for (6.5) to
hold, α will be chosen as in (6.4). Then the convexity property (6.6)
implies:

m(1 + y0) ≤ (1− α)m(1) + αm(1 + ρ) (6.7)

where

m(1) =

∫
|z|=1

u(z)
dz

2π
=

∫
T
u(x)dx (6.8)

m(1 + ρ) =

∫
|z|=1+ρ

u(z)
dz

2π
≤ S (6.9)

m(1 + y0) =

∫
|z|=1+y0

u(z)
dz

2π
≥ γ (6.10)

where (6.9) and (6.10) are due to (6.1) and (6.2) respectively.
The estimate (6.3) then follows from (6.7) - (6.10).

�

Remark 6.1. In a previous version of this paper, we derived a similar
estimate via a more complicated argument which used harmonic mea-
sures. This simpler approach and the reference [7] were suggested to
the second author by Barry Simon. This convexity argument in fact
improves our previous lower bound on the mean of u(x) along the torus
T (because of the extra factor 1

1−α) and this in turn improves the lower
bounds on the first d Lyapunov exponents.
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7. The proof of the main statements

The conclusion in Theorem 2.2 is stronger than the one in Theorem
2.1, since the lower bounds on the Lyapunov exponents for the family
of cocycles (T,Aλ,E) hold uniformly in E ∈ R. The assumptions are
also stronger: the potential function V (x) has no constant eigenvalues
vs. the potential V (x) does not have 0 as a constant eigenvalue. The
size λ0 of the coupling constant is also larger in Theorem 2.2, since
it depends on the stronger uniform bounds (2.8) rather than on the
weaker uniform bounds (2.4).

We present here only the proof of Theorem 2.2, since modulo some
obvious modifications, the proof of Theorem 2.1 is similar.

Proof. For every 1 ≤ k ≤ d and for every n ≥ 1, let:

u(k)(x) = u(k)
n (x;λ,E) :=

1

n
log ‖∧kMn(x;λ,E)‖ (7.1)

where

Mn(x;λ,E) :=
0∏

j=n−1

Aλ,E(T j x) (7.2)

is the nth iteration of the cocycle (T,Aλ,E(x)), and ∧kMn(x;λ,E) is
the k-exterior power of Mn(x;λ,E) as defined in Section 5.

From (1.1) and (1.2) we have:

L(1)(Aλ,E) + . . .+ L(k)(Aλ,E) = lim
n→∞

∫
T
u(k)
n (x;λ,E) dx (7.3)

Since Aλ,E(x) ∈ Cω
ρ (T,Matm(R)), the cocycle has a holomorphic

extension Aλ,E(z) ∈ Matm(C) to a neighborhood of the annulus Aρ =
{z : 1 − ρ ≤ |z| ≤ 1 + ρ}. The transfer matrices and their exterior
powers will also have holomorphic extensions to the same neighborhood

of Aρ. Therefore, the functions u(k)(x) = u
(k)
n (x;λ,E) defined above

have subharmonic extensions

u(k)(z) = u(k)
n (z;λ,E) :=

1

n
log ‖∧kMn(z;λ,E)‖

to a neighborhood of the annulus Aρ.
Given the upper bounds (2.9) on the norms of the blocks forming

the cocycle Aλ,E, for every z ∈ Aρ we have

‖Aλ,E(z)‖ ≤ λ ·B (B + |E|)

which then implies:

‖Mn(z;λ,E)‖ ≤ [λ ·B (B + |E|)]n
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and

‖∧kMn(z;λ,E)‖ ≤ [λ ·B (B + |E|)]kn

Hence for all 1 ≤ k ≤ d we have:

u(k)(z) ≤ k log [λ ·B (B + |E|)] (7.4)

In particular, using (7.3), we have the following upper bound on the
sum of the first k − 1 Lyapunov exponents (if k > 1):

L(1)(Aλ,E) + . . .+ L(k−1)(Aλ,E) ≤ (k − 1) log [λ ·B (B + |E|)] (7.5)

For every 1 ≤ k ≤ d, we will derive a lower bound on the sum of the
first k Lyapunov exponents which, when combined with (7.5) above,
will lead to a lower bound on each individual Lyapunov exponent. We
first explain the strategy used to obtain these lower bounds.

As in [16], [2], we avoid the set {x : m[U(x) (V (x) − E · I)] ≈ 0}
through complexification in the space variable x. Combining this with
the fact that the coupling constant λ is large enough, we will ensure
that the assumptions in the growth lemma 5.2 are met along a circle
{z : |z| = 1 + y0} which is close enough to the torus T (i.e. y0 � ρ).
This will give us a lower bound on the subharmonic function u(k)(z)
along the circle {z : |z| = 1 + y0}. An upper bound for these functions
along the (outer) circle {z : |z| = 1 + ρ} follows from (7.4).

Using then the subharmonic estimate (6.3) in Proposition 6.1, we will
get a lower bound on the mean of the subharmonic function u(k)(z)
along the torus T, which in turn, using (7.3) will lead to the lower
bound on the sum of the first k Lyapunov exponents.

We need to distinguish between the case when the parameter E is
large relative to the function V , and the case when E is close to the
range of the function V .

Assume that E is large relative to the bound B on the sup norm
of V , say |E| > 2B. In this case, for every 1 ≤ k ≤ d, we will obtain
upper and lower bounds both of order k log(λ |E|).

From (7.4) we get the following upper bound on the subharmonic
function u(k)(z) on the outer circle:

u(k)(z) ≤ k log(λ |E|)+k log (
3

2
B) =: S(k) for all z : |z| = 1+ρ (7.6)

We now derive the lower bound. Let

Lλ,E(z) := λU(z) · (V (z)− E · I)

be the upper left corner of Aλ,E(z).
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For all z ∈ Aρ we have:

V (z)− E · I = (−E · I) · [I − E−1 · V (z)]

But
m(−E · I) = |E|

and ∥∥E−1 · V (z)
∥∥ < (2B)−1 ·B =

1

2
so by (5.3)

m[I − E−1 · V (z)] ≥ 1− 1

2
=

1

2
It follows that for all z ∈ Aρ:

m[V (z)− E · I] ≥ m(−E · I) ·m[I − E−1 · V (z)] >
|E|
2

(7.7)

Fix 0 < δ � ρ, to be specified at the end of the proof, and let
A′ := {z : 1 + δ ≤ |z| ≤ 1 + 2δ}.

Given the bounds (2.7) on U(z), applying Corollary 4.5 we get: there
is ε0 = ε0(ρ, δ,N1, β1) > 0 and there is a circle C = {z : |z| = 1 + y0} ⊆
int(A′), hence y0 ∼ δ such that:

|det[U(z)]| ≥ ε0 for all z : |z| = 1 + y0

Since also ‖U(z)‖ρ ≤ B, from (5.1) we get:

m[U(z)] ≥ ε0
Bd−1

=: ε1 for all z : |z| = 1 + y0 (7.8)

Combining (7.8) and (7.7) we conclude:

m[Lλ,E(z)] > λ
|E|
2
ε1 for all z : |z| = 1 + y0 (7.9)

If we choose

λ >
3

ε1
=: λ0 (7.10)

then from (7.9) we have

m[Lλ,E(z)] > λ
|E|
2
ε1 > 3B for all z : |z| = 1 + y0 (7.11)

Since every circle centered at 0 is invariant under the complex ex-
tension of the rotation Tx = x + ω, then (7.11) applies to zj := T j z
for all z : |z| = 1 + y0 and all j ≥ 0. Therefore, the assumptions in the
growth lemma 5.2 apply to the matrices

Aλ,E(zj) =

 Lλ,E(zj) W [(zj)

W ](zj) O(zj)
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Since

Mn(zj;λ,E) =
0∏

j=n−1

Aλ,E(zj;λ,E)

using Corollary 5.3 we conclude that

‖∧kMn(z;λ,E)‖ ≥ (λ |E| ε1
2
−B)kn > (λ |E| ε1

3
)kn (7.12)

provided we choose λ > λ0.
For every z : |z| = 1 + y0 we then have:

u(k)(z) = u(k)
n (z;λ,E) =

1

n
log ‖∧kMn(z;λ,E)‖ ≥ k log(λ |E| ε1

3
)

Hence

u(k)(z) ≥ k log(λ |E|)− k log
3

ε1
=: γ(k) for all z : |z| = 1 + y0 (7.13)

Given the upper bound (7.6) and the lower bound (7.13), we may
apply Proposition 6.1 and conclude from (6.3) that∫

T
u(k)(x)dx ≥ 1

1− α
(γ(k) − αS(k)) =

1

1− α
[(k log(λ |E|)− k log

3

ε1
)− α(k log(λ |E|) + k log

3

2
B)] =

k log(λ |E|)− k 1

1− α
[log

3

ε1
+ α log

3

2
B]

Hence if 0 < α < 1
2
, then∫

T
u(k)(x)dx ≥ k log(λ |E|)− k log

27B

2ε21
(7.14)

provided λ > λ0.
From (7.14) and (7.3) we get:

L(1)(Aλ,E) + . . .+ L(k)(Aλ,E) ≥ k log(λ |E|)− k log
27B

2ε21
(7.15)

From (7.6) and (7.3) we have:

L(1)(Aλ,E) + . . .+L(k−1)(Aλ,E) ≤ (k− 1) log(λ |E|) +k log
3B

2
(7.16)

Combining (7.15) and (7.16), we conclude that if λ > λ0 = 3
ε1

, then

L(k)(Aλ,E) ≥ log (λ |E|)− k log
81B2

4ε21
(7.17)

which shows that when E is large relative to the function V (x), the
first d Lyapunov exponents are all of order log(λ |E|).
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Assume that the parameter E is near the range of the function
V (x). Then from now on, E will be a fixed parameter in the compact
set [−2B, 2B].

From (7.4) we get the following upper bound on the subharmonic
function u(k)(z) on the outer circle:

u(k)(z) ≤ k log λ+ k log(3B2) =: S(k) for all z : |z| = 1 + ρ (7.18)

Fix 0 < δ � ρ to be specified at the end of the proof.
Since the function V (x) satisfies the uniform bounds (2.8), by Corol-

lary 4.6 there is ε0 = ε0(ρ, δ,N1, N2, β1, β2) > 0 such that for the fixed
parameter E, there is a circle C = {z : |z| = 1 + y0}, where y0 ∼ δ so
that along this circle we have:

|det[U(z) · (V (z)− E · I)]| ≥ ε0 for all z : |z| = 1 + y0

Combining this lower bound on the determinant with the upper
bound ‖U(z) · (V (z)− E · I)‖ ≤ 3B2 on the norm, and using (5.1)
we conclude that for all z : |z| = 1 + y0 we have:

m[U(z) · (V (z)− E · I)] ≥ ε0
(3B2)d−1

=: ε1 (7.19)

Then along this circle, we have the following lower bound on the
minimum expansion of the upper left corner Lλ,E(z) of the cocycle:

m[Lλ,E(z)] ≥ λ ε1 for all z : |z| = 1 + y0 (7.20)

If we choose λ such that

λ >
3B

ε1
=: λ0 (7.21)

then from (7.20) we have

m[Lλ,E(z)] ≥ λ ε1 > 3B for all z : |z| = 1 + y0 (7.22)

As before, (7.22) holds for zj := T j z, for all z : |z| = 1 + y0 and for
all j ≥ 0. Therefore, the assumptions in the growth lemma 5.2 apply
to the matrices Aλ,E(zj) and using Corollary 5.3 we conclude that

‖∧kMn(z;λ,E)‖ ≥ (λ ε1 −B)kn ≥ (λ
2

3
ε1)

kn (7.23)

For every z : |z| = 1 + y0 we then have:

u(k)(z) = u(k)
n (z;λ,E) =

1

n
log ‖∧kMn(z;λ,E)‖ ≥ k log λ

2

3
ε1

Hence

u(k)(z) ≥ k log λ− k log
3

2ε1
=: γ(k) for all z : |z| = 1 + y0 (7.24)
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We can now apply Proposition 6.1 to the functions u(k)(x) = u
(k)
n (x)

and conclude that: ∫
T
u(k)(x)dx ≥ 1

1− α
(γ(k) − αS(k)) =

1

1− α
[(k log λ− k log

3

2ε1
)− α(k log λ+ k log 3B2)] =

k log λ− k 1

1− α
[log

3

2ε1
+ α log 3B2]

Hence if 0 < α < 1
2
, then∫

T
u(k)(x)dx ≥ k log λ− k log

27B2

4ε1
2 (7.25)

provided λ > λ0.
From (7.25) and (7.3) we get:

L(1)(Aλ,E) + . . .+ L(k)(Aλ,E) ≥ k log λ− k log
27B2

4ε1
2 (7.26)

From (7.18) and (7.3) we have:

L(1)(Aλ,E) + . . .+ L(k−1)(Aλ,E) ≤ (k − 1) log λ+ k log 3B2 (7.27)

Combining (7.26) and (7.27), we conclude that if λ > λ0 = 3B
ε1

then

L(k)(Aλ,E) ≥ log λ− k log
81B4

4ε1
2 (7.28)

We now indicate how δ, the width of the annulus A′ (where we find
the circles along which we have uniform hyperbolicity) is chosen.

Since

α =
log(1 + y0)

log(1 + ρ)

and since y0 < 2δ, to ensure that 0 < α < 1
2
, it is enough to choose

0 < δ <

√
1 + ρ− 1

2

�

Remark 7.1. In the case of parameters E in a bounded interval
[−2B, 2B], to obtain the lower bound (7.28) on the first d Lyapunov
exponents of the cocycle, the coupling constant λ needs to be chosen
such that:

λ > λ0 =
3B

ε1
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where

m[U(z) · (V (z)− E · I)] ≥ ε1 (7.29)

holds along some circle which is close enough to the torus T.
This shows that the threshold λ0 for the size of the coupling constant,

and the lower bounds (7.28) on the first d Lyapunov exponents do not,
a-priori, depend on the dimension d of the upper left corner block of
the cocycle. They depend only on the lower bound of its minimum
expansion along a circle which is close enough to the unit circle, and
on the sup norms of the blocks of the cocycle.

The calculations above show that λ0 can be estimated explicitly from
the measurements on the matrix blocks forming the cocycle. Those
estimates may involve the dimension d of the upper left corner block, if
an estimate on the minimum expansion is obtained using (5.1), i.e. via
a lower bound on the determinant and an upper bound on the norm.

However, if one has an independent procedure for estimating the
minimum expansion of the upper left corner block of the cocycle, then
the dimension d would not enter the estimates on the coupling constant
and on the lower bounds of the Lyapunov exponents.

A similar observation applies to the case of large parameters E, the
only difference being that the relevant quantity is the minimum expan-
sion of the factor U(z).

8. Applications and extensions of the main statements

Standard examples of linear cocycles are Schrödinger coycles associ-
ated with lattice Schrödinger operators.

Given a potential function v ∈ Cω
ρ (T,R), a frequency ω ∈ R \Q and

a coupling constant λ > 0, consider the quasi-periodic integer lattice
Schrödinger operator Hλ,x acting on square summable sequences of real
numbers l2(Z,R) by

[Hλ,x ψ]n := −ψn+1 − ψn−1 + λ v(x+ nω)ψn (8.1)

The associated Schrödinger equation

[Hλ,x ψ]n = −ψn+1 − ψn−1 + λ v(x+ nω)ψn = E ψn (8.2)

can be written as[
ψn+1

ψn

]
= Aλ,E(x+ nω) ·

[
ψn
ψn−1

]
(8.3)

where

Aλ,E(x) =

[
λ v(x)− E −1

1 0

]
∈ SL2(R) (8.4)



28 P. DUARTE AND S. KLEIN

is called the Schrödinger (family of) cocycle(s) associated to the equa-
tion (8.2).

Assuming that the potential function v(x) is non-constant, and that
the coupling constant λ is large enough, positivity of the Lyapunov
exponent for the family of cocycles (8.4) is given by Sorets-Spencer’s
theorem (see [16]).

More generally, consider the quasi-periodic band lattice Schrödinger
operator Hλ,x acting on l2(Z× {1, . . . d},R) ∼= l2(Z,Rd), d ≥ 1 by

[Hλ,x
~ψ]n := −~ψn+1 − ~ψn−1 + Vλ(x+ nω) ~ψn (8.5)

where Vλ ∈ Cω
ρ (T, Symd(R)) and ~ψn is regarded as a vector in Rd.

If Vλ(x) is diagonal and Vλ(x) = λ diag [v1(x), . . . , vd(x)], then
the corresponding 2d-dimensional Schrödinger cocycle is a direct sum
of 2-dimensional Schrödinger cocycles. Therefore, if each of the di-
agonal entries vj(x) is a non-constant analytic function, positivity of
the d largest Lyapunov exponents of Aλ,E(x) is a direct consequence of
Sorets-Spencer’s one-dimensional result. Moreover, other one-dimensional
results and methods extend to this model (although not in such a
straightforward manner, but involving much more effort): J. Bourgain
and S. Jitomirskaya proved (see [4]) Anderson localization for this di-
agonal model with large coupling constant λ.

Positivity of the first d Lyapunov exponents for the case of a con-
stant perturbation of the diagonal was established by I. Ya. Goldsheid
and E. Sorets (see [9]).

More precisely, the result holds for the operator (8.5) with Vλ(x) =
λ diag [v1(x), . . . , vd(x)]−R, where R ∈ Symd(R) is a constant matrix,
each diagonal entry vj(x) is a non-constant analytic function, and λ is
large enough.

The corresponding Schrödinger operator in this case can of course
be written in the form:

[Hλ,x
~ψ]n := −(~ψn+1 + ~ψn−1 +R ~ψn) + λD(x+ nω) ~ψn

where

D(x) = diag [v1(x), . . . , vd(x)] =

 v1(x) . . . 0
...

. . .
...

0 . . . vd(x)


Given the generality of the cocycle Aλ,E(x) we have defined in (2.3),

Theorem 2.2 will apply to a much more general version of the above co-
cycles. This application includes cocycles associated to quasi-periodic
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Jacobi operators or to quasi-periodic, finite range hopping lattice or
band lattice Schrödinger operators.

Recall from section 2 that given “weight” functionsW ∈ Cω
ρ (T,Matd(R)),

R ∈ Cω
ρ (T, Symd(R)) and a potential function D ∈ Cω

ρ (T, Symd(R)), if
we denote

Wn(x) := W (x+ nω), Rn(x) := R(x+ nω), Dn(x) := D(x+ nω)

then we can define the self-adjoint operator Hλ,x on l2(Z,Rd) by

[Hλ,x
~ψ]n := −(Wn+1(x) ~ψn+1 +W T

n (x) ~ψn−1 +Rn(x) ~ψn) + λDn(x) ~ψn
(8.6)

Consider the associated Schrödinger equation

−(Wn+1(x) ~ψn+1+W T
n (x) ~ψn−1+Rn(x) ~ψn)+λDn(x) ~ψn = E ~ψn (8.7)

We are now ready to prove our main application, namely Theo-
rem 2.3.

Proof. The Schrödinger equation (8.7) can be written in the form:

Wn+1(x) ~ψn+1 = [λDn(x)−Rn(x)− E · I] ~ψn −W T
n (x) ~ψn−1

To simplify notations, replace E by E/λ and denote:

V (x) := D(x)− λ−1R(x) and Vn(x) := V (x+ nω)

Then the above equation becomes:

~ψn+1 = λW−1
n+1(x) · [Vn(x)− E · I] ~ψn −W−1

n+1(x) ·W T
n (x) ~ψn−1 (8.8)

Writing it as a first order finite differences vectorial equation, we get: ~ψn+1

~ψn

 = Aλ,E(x+ nω) ·

 ~ψn

~ψn−1

 (8.9)

where

Aλ,E(x+ nω) =

 λW−1
n+1(x) (Vn(x)− E · I) −W−1

n+1(x) ·W T
n (x)

I O


Therefore, the linear cocycle associated with (8.7) is given by

Aλ,E(x) :=

 λW−1(x+ ω) (V (x)− E · I) −W−1(x+ ω) ·W T (x)

I O


(8.10)

The matrix valued function W (x) is not necessarily invertible for
every value of x ∈ T. However, due to (2.18) we have

g(x) := det[W (x)] 6≡ 0
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Moreover, since W (x) ∈ Cω
ρ (T,Matd(R)), g(x) also has a holomorphic

extension, hence g(x) ∈ Cω
ρ (T,R).

Therefore, g(z) has finitely many zeros in the annulus Aρ, so there
are finitely many values of x ∈ T for which W−1(x) is not defined.

Hence the cocycle Aλ,E(x) in (8.10) and its iterates are defined for
all but a countable (hence negligible) set of phases x ∈ T. In particular
the Lyapunov exponents of this cocycle are well defined.

We replace the cocycle Aλ,E(x) by one with no singularities, for which
Theorem 2.2 applies, and transfer all singularities to a one dimensional
cocycle.

By Cramer’s rule, for all x ∈ T,

W (x) · W̃ (x) = det[W (x)] · I

or, for all but finitely many x ∈ T,

W−1(x) =
1

det[W (x)]
· W̃ (x)

where W̃ (x) is the adjugate matrix of W (x) (i.e. the transpose of the
matrix whose entries are the minors of W (x)).

Then if we multiply the cocycle Aλ,E(x) by g(x+ω) = det[W (x+ω)],
we obtain the cocycle

Ãλ,E(x) :=

 λ W̃ (x+ ω) (V (x)− E · I) −W̃ (x+ ω) ·W T (x)

g(x+ ω) · I O


(8.11)

If we set

U(x) := W̃ (x+ ω)

W [(x) := −W̃ (x+ ω) ·W T (x)

W ](x) := g(x+ ω) · I
O(x) := O

then the hypotheses (2.7) - (2.11) of Theorem 2.2 apply to the cocycle
Ãλ,E(x). Indeed:

det[U(x)] = det[W̃ (x+ ω)] = (g(x+ ω))d−1 6≡ 0

so (2.10) holds, and in particular Nρ(U) =: N1 <∞ and βρ(U) > β1 >
0, which establish (2.7).

From the assumption (2.19), the matrix D(x) has no constant eigen-
values, i.e. D(x) ∈ V. Since V is open, there is ε = ε(D) > 0 such that



HIGHER DIMENSIONAL QUASIPERIODIC COCYCLES 31

if ∥∥λ−1R
∥∥
ρ

=
‖R‖ρ
λ

< ε

then

V (x) = D(x)− λ−1R(x) ∈ V

provided λ is large enough depending on D and R. This means that
V (x) has no constant eigenvalues either, hence (2.11) holds.

Moreover, since D(x) ∈ V, we have N̂ρ(D) < ∞, β̂ρ(D) > 0. By

proposition 4.4, the uniform estimates N̂ρ and β̂ρ are upper semi-
continuous and lower semi-continuous respectively. Then for λ large
enough depending on D and R, we have:

N̂ρ(V ) = N̂ρ(D − λ−1R) ≤ N̂ρ(D) + 1 =: N2 <∞

β̂ρ(V ) = β̂ρ(D − λ−1R) ≥ β̂ρ(D)

2
=: β2 > 0

which shows that (2.8) holds as well.
Finally, assuming λ > 1, we clearly have:

‖U‖ρ =
∥∥∥W̃∥∥∥

ρ
≤ ‖W‖d−1

ρ

‖V ‖ρ ≤ ‖D‖ρ + λ−1 ‖R‖ρ ≤ ‖D‖ρ + ‖R‖ρ∥∥W [
∥∥
ρ
≤ ‖W‖d−1

ρ · ‖W‖ρ = ‖W‖dρ∥∥W ]
∥∥
ρ
≤ ‖W‖dρ

Putting

B := max{‖W‖d−1
ρ , ‖W‖dρ , ‖D‖ρ + ‖R‖ρ} <∞

we have that (2.9) holds as well.
Theorem 2.2 then applies to the cocycle Ãλ,E(x) and we have: there

are constants λ0 = λ0(W,R,D) and c = c(W,R,D) such that if λ > λ0,
then:

Lk(Ãλ,E) ≥ log λ− c for all E ∈ R, 1 ≤ k ≤ d (8.12)

From the definition of the cocycle (8.11), it is clear that

Ãλ,E(x) = g(x+ ω) · Aλ,E(x)

Then if

M̃n(x) = M̃n(x;λ,E) :=
0∏

j=n−1

Ãλ,E(x+ jω)
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are the transfer matrices of the cocycle Ãλ,E(x), we have

1

n
log
∥∥∥M̃n(x)

∥∥∥ =
1

n

n∑
j=1

log |g(x+ jω)|+ 1

n
log ‖Mn(x)‖

and

1

n
log
∥∥∥∧k M̃n(x)

∥∥∥ = k · 1

n

n∑
j=1

log |g(x+ jω)|+ 1

n
log ‖∧kMn(x)‖

for all 1 ≤ k ≤ d.
Then for every 1 ≤ k ≤ d we have:

Lk(Ãλ,E) = L(g) + Lk(Aλ,E) (8.13)

where L(g) is the Lyapunov exponent of the one dimensional cocycle
g(x).

Since g(x) has a holomorphic extension to the annulus Aρ, and since
g(x) 6≡ 0, it is easy to see by factoring out its zeros that log |g(x)| ∈
L1(T). In particular, by Birkhoff’s ergodic theorem,

lim
n→∞

1

n

n∑
j=1

log |g(x+ jω)| =
∫

T
log |g(x)| dx for a.e. x ∈ T

hence

L(g) =

∫
T

log |g(x)| dx =

∫
T

log |det[W (x)]| dx (8.14)

which is a real number that depends on W (x).
Then the bound (2.20) on the first d Lyapunov exponents in the

conclusion of the theorem follows from (8.13), (8.12) and (8.14).

To conclude that the other d Lyapunov exponents are the additive
inverses of the first d exponents, we will show that the cocycle Aλ,E(x)
in (8.10) is conjugated to a symplectic cocycle, for which this property
holds automatically.

Indeed, as before, replace E by E/λ and denote V (x) := D(x) −
λ−1R(x). We can write the Schrödinger equation (8.7) in the form: Wn+1(x)~ψn+1

~ψn

 = AWλ,E(x+ nω) ·

 Wn(x)~ψn

~ψn−1


where

AWλ,E(x) :=

 λ (V (x)− E · I)W−1(x) −W T (x)

W−1(x) O

 ∈ spd(R) (8.15)
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The cocycle Aλ,E(x) which corresponds to solving the Schrödinger

equation (8.7) for the vector

[
~ψn+1

~ψn

]
is conjugated to the “weighted”

cocycle AWλ,E(x) which corresponds to solving the same equation for the

“weighted” vector

[
Wn+1(x) ~ψn+1

~ψn

]
.

Indeed, a simple calculation shows that

Aλ,E(x) = [C(x+ ω)]−1 · AWλ,E(x) · C(x) (8.16)

where

C(x) :=

 W (x) O

O I


Since det[C(x)] = det[W (x)] = g(x), and since log |g(x)| ∈ L1(T), it

is easy to verify that log ‖C(x)‖ , log ‖[C(x)]−1‖ ∈ L1(T). Then from
(8.16) we conclude that the cocycle Aλ,E(x) has the same Lyapunov
exponents as the symplectic cocycle AWλ,E(x).

�

Remark 8.1. If in Theorem 2.3 we assume that the potential D(x) =
diag [v1(x), . . . , vd(x)] is a diagonal matrix, then the assumption (2.19)
on D(x) having non-constant eigenvalues simply means that the diag-
onal entries vj(x) are non-constant functions.

If, moreover, we let R(x) ≡ R and W (x) ≡ I, then we obtain the
aforementioned result of I. Ya. Goldsheid and E. Sorets (see [9]).

Since our main statements in section 2 hold for real-valued cocycles
of any dimension, they can be extended to hold for complex-valued
cocycles as well. Thus we will prove complex versions of theorems 2.1,
2.2, as well as of its main consequence, theorem 2.3.

To each complex number a+ ib ∈ C we associate the matrix

Ma+ib :=

[
a −b
b a

]
∈ Mat2(R) .

The set C = {Mz ∈ Mat2(R) : z ∈ C } is an algebra isomorphic
to the complex field C. Given any matrix A ∈ Matd(C), we call its

realification the real matrix Ã ∈ Mat2d(R) obtained by replacing each
complex entry aij by the real matrix block Maij ∈ Mat2(R). For any
square (real or complex) matrix A, we denote by spec(A) the spectrum
ofA, and by sing(A) its singular spectrum, i.e., the set of singular values
of A. A complex matrix A ∈ Matd(C) is called hermitian if A∗ = A. We
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shall denote by Hermd(C) the real vector space of hermitian matrices
in Matd(C).

Proposition 8.1. Given A ∈ Matd(C), the realification Ã of A satis-
fies the following relations:

(a) det(Ã) = |detC(A)|2;

(b) spec(Ã) = spec(A) ∪ spec(A);

(c) sing(Ã) = sing(A), but each singular value of Ã has twice the
multiplicity than it has as a singular value of A;

(d) ‖Ã‖ = ‖A‖ and m(Ã) = m(A);

(e) Ã ∈ Sym2d(R) ⇔ A ∈ Hermd(C).

Proof. Given A+ iB ∈ Matd(C), with A,B ∈ Matd(R), its realification
is conjugate (by row and column permutation) to the block matrix[
A −B
B A

]
. Hence, using the determinant rule for 2×2 block matrices

det(Ã+ iB) = det

[
A −B
B A

]
= det(A2 −B (−B))

= det(A2 +B2) = detC[(A+ iB)(A− iB)]

= detC(A+ iB) detC(A+ iB) = |detC(A+ iB)|2 .
To prove part (b) just remark that

det(Ã− λ I) = |detC(A− λ I)|2 = detC(A− λ I) detC(A− λ I) .

For the next part we observe that the realification process, A 7→ Ã, is

an algebra homomorphism such that Ã∗ = ÃT . Then part (b) implies
(c) because the singular values of A are the square roots of eigenvalues

of A∗A, the singular values of Ã are the square roots of eigenvalues

of ÃT Ã, and we have Ã∗A = ÃT Ã. Part (d) is a consequence of (c)
because ‖A‖ and m(A) are, respectively, the largest and smallest sin-
gular values of a matrix A. Finally, to prove (e) take a complex matrix

A + iB, with A,B ∈ Matd(R). Identifying Ã+ iB with

[
A −B
B A

]
,

this matrix is symmetric if and only if AT = A and BT = −B, which
is equivalent to A+ iB being hermitian. �

We define the realification of a complex potential V : T→ Hermd(C)

and that of a complex cocycle A : T → Matm(C) to be Ṽ : T →
Sym2d(R) and respectively Ã : T → Mat2m(R), where these functions

assign to each x ∈ T the realification Ṽ (x) of V (x) and respectively

the realification Ã(x) of A(x).



HIGHER DIMENSIONAL QUASIPERIODIC COCYCLES 35

Proposition 8.2. Any integrable cocycle A : T → Matm(C) has the

same Lyapunov exponents as its realification Ã. More precisely,

L(i)(A) = L(2i−1)(Ã) = L(2i)(Ã) for 1 ≤ i ≤ m .

Proof. The conclusion follows from the characterization of the Lya-
punov exponents in terms of singular vaules, mentioned in the intro-
duction, and item (c) of proposition 8.1. �

Proposition 8.3. Given V : T→ Hermd(C) and A : T→ Matm(C),

(a) Ṽ ∈ Cω
ρ (T, Sym2d(R)) ⇔ V ∈ Cω

ρ (T,Hermd(C));

(b) Ã ∈ Cω
ρ (T,Mat2m(R)) ⇔ A ∈ Cω

ρ (T,Matm(C)).

Proof. The proof is straighforward. �

With the obvious interpretations of the basic assumptions (2.4)-
(2.11), the main theorems of section 2 extend from real matrix val-
ued functions to complex matrix valued functions. More precisely the
following holds.

Theorem 8.1. The statements of theorems 2.1 and 2.2 hold for cocy-
cles A ∈ Cω

ρ (T,Matm(C)) of the form (2.1). In theorem 2.2 we assume
V : T→ Hermd(C).

Proof. Given a hermitian potential V : T → Hermd(C), remark that

Nρ(Ṽ ) = Nρ(V ), βρ(Ṽ ) = βρ(V ), ‖Ṽ ‖ρ = ‖V ‖ρ, ‖Λ̃‖ρ = ‖Λ‖ρ, etc.

Also, for every x ∈ T, det Ṽ (x) = |detC V (x)|2, and for every z ∈ Aρ,

m(Λ̃(z)) = m(Λ(z)). Hence the assumptions (2.4)-(2.11) of theo-
rems 2.1 and 2.2 on the complex cocycle A imply the corresponding

assumptions for its realification Ã. Applying these theorems we derive

the wanted conclusion on the real cocycle Ã, which by proposition 8.2
implies the corresponding conclusion for the complex cocycle A. �

Remark 8.2. The same complex extension, with obvious interpreta-
tions, holds for our main application, theorem 2.3. We of course have to
assume that W ∈ Cω

ρ (T,Matd(C)) and that R, D ∈ Cω
ρ (T,Hermd(C)).
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Moser sur le tore de dimension 2, Comment. Math. Helv. 58 (1983), no. 3,
453–502.

11. Morris W. Hirsch, Differential topology, Springer-Verlag, New York, 1976,
Graduate Texts in Mathematics, No. 33.

12. Brian R. Hunt, Tim Sauer, and James A. Yorke, Prevalence: a translation-
invariant “almost every” on infinite-dimensional spaces, Bull. Amer. Math.
Soc. (N.S.) 27 (1992), no. 2, 217–238.

13. S. Kotani and B. Simon, Stochastic Schrödinger operators and Jacobi matrices
on the strip, Comm. Math. Phys. 119 (1988), no. 3, 403–429.



HIGHER DIMENSIONAL QUASIPERIODIC COCYCLES 37

14. B. Ya. Levin, Lectures on entire functions, Translations of Mathematical Mono-
graphs, vol. 150, American Mathematical Society, Providence, RI, 1996, In
collaboration with and with a preface by Yu. Lyubarskii, M. Sodin and V.
Tkachenko, Translated from the Russian manuscript by Tkachenko.

15. Wilhelm Schlag, Regularity and convergence rates for the Lyapunov exponents
of linear co-cycles, preprint (2012), 1–21.

16. Eugene Sorets and Thomas Spencer, Positive Lyapunov exponents for
Schrödinger operators with quasi-periodic potentials, Comm. Math. Phys. 142
(1991), no. 3, 543–566.
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