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Abstract For a class of semigroups of stochastic dynamical systems, x 7→ Px, where x
denotes a state and Px the state probability transition, we relate its spectral stability with
the combinatorial stability of the underlying non-deterministic dynamics, associated to
the point-set map x 7→ supp(Px).

1 Introduction

Uniformly hyperbolic (Axiom A) systems were introduced by Smale, see [Sm], in the
early sixties, and have been widely studied both from the topological and the ergodic
view-point. See e.g. [S] and references therein. Smooth deterministic uniformly hyper-
bolic systems f : X → X admit a precise description of their dynamics: the spectral
decomposition theorem states that there is a decomposition of the non-wandering set
Ω(f) into a finite number of hyperbolic basic sets which are permuted by f . The dy-
namics of f partially orders the basic set components of Ω(f), the minimal, or final,
elements being the attractors of f . As the name indicates this decomposition relates
with the spectral decomposition of the linear operator which describes the action of
f on the tangent vector fields to X. In the seventies, the ergodic theory of uniformly
hyperbolic systems was established by the work of Sinai, Ruelle and Bowen. See [Si1],
[Ru], [BR], [Bo]. For these dynamical systems each attractor has a physical measure,
whose basin of attraction cover almost every point is state space. Physical measures
were first constructed by Sinai [Si1] for Anosov diffeomorphisms. This was extended
by Ruelle [Ru] for general hyperbolic (Axiom A) diffeomorphisms, and by Bowen-
Ruelle [BR] for Axiom A flows. A physical measure of an attractor is the one that
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describes the system time average for a set of initial states with positive volume. The
set of all such initial states is called the physical measure basin of attraction. A measure
on an attractor is said to be stochastically stable, concept introduced by Kolmogorov
and Sinai, if it is stable under small stochastic perturbations of the deterministic sys-
tem. More precisely, introducing a random noise, the limit measures of the random
perturbations approach the attractor’s physical measure as the noise level tends to
zero. See, e.g., [V1]. The key idea of introducing a random noise in a deterministic
system, and then looking at the limit measures as the noise level tends to zero, goes
back to Kolmogorov. See [Si2]. Kolmogorov expressed the idea that zero-noise limits
represent measures that yield a certain “physical” insight of the system’s behaviour.
See [BDV], [Y2]. The effects of small random errors on the asymptotic distribution of
points in the basin of a hyperbolic attractor were considered, for different perturbation
schemes, by Kifer and Young. They established the stability of uniformly hyperbolic
attractors, for different models of random perturbations. See [K1], [K3], [Y1]. See
also [K4] and [V1]. But, beyond the Axiom A setting, the problem of existence and
finiteness of physical measures and their stability, remains as a major purpose in dy-
namical systems. An open conjecture by Palis [P] is that every dynamical system can
be approximated by one with finitely many attractors, each having a stochastically stable
physical measure, whose basins of attraction cover almost every point in state space.
See, e.g., [V2]. A good comprehension of which dynamical systems admit physical
measures was not yet achieved, but some work has been done. See [BDV], [V2], [Y2]
for surveys on much of the progress already made. See also [Li] for a recent survey on
random dynamical systems. Under very mild conditions, a random noise can have a
powerful simplifying effect on the complexity of the dynamics of a deterministic sys-
tem. Namely, under arbitrary small random perturbations any deterministic system has
finitely many attractors (see, for instance, [A]). The spectrum of the Perron-Frobenius
operator, which reflects the action of dynamics upon measures, may also be simplified.
In general, the spectrum of this linear operator can be complex, but when we add a
random noise this usually makes the operator compact or weakly compact with pure
point spectrum. A compact operator can be, from the spectral point of view, well
approximated by finite-dimension operators. Thus random perturbations of a deter-
ministic system may, just as well, be considered on finite (discrete) approximations of
state space. Finite state Markov chains can be viewed as stochastic, or random dynam-
ical systems on a finite state space. One may think that these dynamical systems are
what we actually see when running computer simulations of deterministic dynamical
systems. Each such dynamical system is specified by a stochastic matrix with the state
probability transitions. The Perron operator of this finite state system is the stochas-
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tic matrix. The Markov chain also determines an oriented graph, encapsulating some
qualitative aspects of the system behaviour. The theory of finite state Markov chains
establishes a correspondence between spectral properties of the stochastic matrix on
one side, and combinatorial properties of the corresponding graph on the other hand.
See, e.g., [B], [D]. This theory can be nicely extended into a theory for continuous,
or lower semi-continuous, random dynamical systems of Markov type on a compact
manifold, which is the main purpose of this work. In a previous article [DT] we have
developed such a theory in its topological and combinatorial aspects, which we now
summarise.

2 Combinatrial Stability of Open Maps

From now on X will denote a compact Riemannian manifold and m will be the cor-
responding normalized Riemannian volume on X, i.e. m(X) = 1. We denote by
O(X) the space of all multi-valued maps1 ϕ : X → P(X) whose graph graphϕ =
{(x, y) ∈ X ×X : y ∈ ϕ(x)} is an open set in X×X, and such that ϕ(x) is non-empty
and connected for every x ∈ X. Such systems will be referred as open maps. Given
two open maps ϕ, ψ : X → P(X) the composition ϕ ◦ ψ : X → P(X) of ϕ and ψ
at x is defined to be (ϕ ◦ ψ) (x) := ϕ (ψ(x)) = ∪y∈ψ(x)ϕ(y) . With this composition,
O(X) is a semigroup. We think of open maps on X as non-deterministic dynamical
systems with state space X. For an open map ϕ : X → P(X) and a subset A ⊆ X
the image ϕ(A) ∈ P(X) is defined by ϕ(A) = ∪x∈Aϕ(x), and we say that A ⊆ X is
ϕ−invariant when ϕ(A) ⊆ A. Let us now briefly recall the main dynamical concepts
for open maps. Given ϕ ∈ O(X), a sequence x0, x1, · · · , xn such that xi ∈ ϕ(xi−1) for
all i = 1, · · · , n is called a ϕ−orbit, and we say that xn is a ϕ−iterate of x0. If for every
ε > 0, y is a ϕ∗ε−iterate of x, where ϕ∗ε is the open map whose graph is an ε−radius
ball of graph (ϕ), we say that y is a ϕ−pseudo-iterate of x. The recurrent and chain-
recurrent sets of ϕ are defined respectively by Ω(ϕ) = {x ∈ X : x is a ϕ−iterate of x}
and R(ϕ) = {x ∈ X : x is a ϕ−pseudo-iterate of x}. Both these sets split into equiv-
alence classes, each class being formed by states which are accessible from each other.
The set of all these classes is then partially ordered by the dynamics of ϕ. At the
bottom of this hierarchy are two special limit sets: the final recurrent and the fi-
nal chain-recurrent sets, denoted respectively by Ωfinal(ϕ) and Rfinal(ϕ), of all states

1A multi-valued or point-set map ϕ : X → P(Y ) is one that to each point x ∈ X associates some
set ϕ(x) ⊆ Y . See [AF] for an overview on multi-valued analysis.
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x ∈ Ω(ϕ) (x ∈ R(ϕ)) such that every iterate (pseudo-iterate) of x still has some iterate
(pseudo-iterate) which comes back to x. These limit sets contain all the asymptotic
dynamical behaviour of ϕ. They both decompose into a finite number of equivalence
classes, called respectively Ω−final and R−final classes. We denote by ΛΩ

final (ϕ) respec-
tively ΛR

final (ϕ) the set of all equivalence classes of the limit sets Ωfinal(ϕ) and Rfinal(ϕ).
Each Ω−final and R−final class decomposes into a finite number of connected pieces,
called respectively Ω−final and R−final components, which are permuted by ϕ. See
Theorems 5.1 and 5.2 of [DT]. The restriction of ϕ to each of these pieces is in some
sense irreducible. We call period of a final class to the number of its connected com-
ponents. The period of a connected component is the period of its class. We denote
by ΣΩ

final (ϕ) respectively ΣR
final (ϕ) the set of connected pieces of the limit sets Ωfinal(ϕ)

and Rfinal(ϕ). Thus, each open map ϕ ∈ O(X) induces a permutation πϕ on the set
ΣΩ

final (ϕ) of Ω−final components. Given ϕ, ψ ∈ O(X), we say that ϕ is combinatorially
equivalent to ψ if and only if the permutations πϕ and πψ are conjugated, that is, there
is a bijective map h : ΣΩ

final (ϕ) → ΣΩ
final (ψ) such that πψ ◦ h = h ◦ πϕ. Next we topol-

ogize the sub-semigroups O1 of O(X) in order to prove that under general conditions
generic elements of O1 are combinatorially stable. To be precise, if the semigroup O1

has some topology we say that ϕ ∈ O1 is combinatorially stable if and only if ϕ is
combinatorially equivalent to every ψ in some neighborhood of ϕ. Because there are
several natural non-equivalent ways of endowing O(X), and its sub-semigroups, with
some topology we give the following abstract definition:

Definition 2.1. We say that O1 is a topological semigroup of open maps if

(1) the Hausdorff distance between open map graphs is continuous;

(2) for each ϕ ∈ O1, there is a family of open maps {ϕ̃ε}ε>0 in O1 such that

(a) graph (ϕ) =
⋂
ε>0 graph (ϕ̃ε);

(b) for all ε1, ε2, if ε1 > ε2 > 0 then graph (ϕ̃ε2) ⊆ graph (ϕ̃ε1); and

(c) limε→0+ ϕ̃ε = ϕ w.r.t. the topology of O1.

(3) given ε > 0, an integer N , and non-empty open subsets U, V ⊆ X such that
U × V ⊆ graph

(
ϕN

)
, there is a neighborhood N of ϕ in O1 such that for all

ψ ∈ N and x ∈ U , m(V \ ψ̂N(x)) < ε, where ψ̂ denotes the regularization of ψ.

We say that an open set U is regular if U =
(
U

)◦
. In general, the set Û :=

(
U

)◦
,

the interior of the closure of U , is called the regularization of U . Similarly, for open
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maps ψ ∈ O(X) the open map ψ̂ defined by graph
(
ψ̂

)
= ̂graph (ψ) is called the

regularization of ψ. Since open maps are open subsets of X×X, in [DT] we consider, on
O(X) and its sub-semigroups, topologies induced from general (topological) spaces of
open sets. See [N] for an overview on topological spaces of sets. Condition (2) above is
an outer continuity assumption that says every open map ϕ can be well approximated
from above within the topology. Condition (3) expresses a kind of inner, or lower,
continuity. With this concept we prove the following theorems. See theorems 5.3 and
5.4 of [DT]. Assume O1 ⊆ O(X) is any topological semigroup of open maps. Then:

Theorem 1 An open map ϕ ∈ O1 is combinatorially stable in O1 if and only if ϕ
induces the same permutation on ΣΩ

final (ϕ) and ΣR
final (ϕ). This in turn is equivalent to∣∣ΛΩ

final (ϕ)
∣∣ =

∣∣ΛR
final (ϕ)

∣∣ and
∣∣ΣΩ

final (ϕ)
∣∣ =

∣∣ΣR
final (ϕ)

∣∣ .

This shows that the combinatorial stability of an open map ϕ ∈ O1 is independent
of the topology in O1.

Theorem 2 The set of O1-combinatorially stable maps is open and dense in O1.

3 Markov Systems

We denote by Mprob(X) the space of all Borel probability measures on the compact
manifold X. This is a subset of the Banach spaceM(X) of all finite Borel real measures
on X, with the usual total variation norm |||µ|||. M(X) is the dual of the Banach
space of continuous real-valued functions on X, denoted here by C0(X), endowed with
the uniform proximity norm ‖ · ‖∞. The space Mprob(X) is a compact and convex
subset of M(X) with respect to the weak-∗ topology, which is the weak topology of
M(X) as dual of C0(X). We will call here Markov system to any weak-∗ continuous
mapping p : X → Mprob(X). The probability measure p(x) = px is referred as the
transition probability at state x ∈ X. We denote by MS(X) the set of all Markov
systems. A Markov system p : X → Mprob(X) will also be referred as a stochastic
dynamical system. A Markov system is called deterministic if for some continuous
mapping f : X → X, we have p(x) = δf(x) for every x ∈ X, where δf(x) denotes the
Dirac measure sitting at the point f(x). The Perron-Frobenius operator of a Markov
system p : X →Mprob(X) is the linear operator Lp : M(X) →M(X), defined by

Lp(µ) =

∫
X

p(x) d µ(x) , for every µ ∈M(X) .
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The integral of the measure-valued function p is well defined, in a sense that can be
found, for instance, in [Ru]. The adjoint operator L∗p : C0(X) → C0(X), is given by

L∗p(ψ)(x) =

∫
X

ψ(y) d px(y) , for every ψ ∈ C0(X) .

Both Lp and L∗p are bounded linear operators with norms less or equal than 1. The
convolution of two Markov systems p, q ∈MS(X) is p ∗ q : X →Mprob(X), where

(p ∗ q)(x) = Lp(qx) = Lp(Lq(δx)) for every x ∈ X .

The space (MS(X), ∗) is a semigroup with identity, where the identity is the determin-
istic Markov system x 7→ δx. The map p 7→ Lp is a semigroup homomorphism taking
MS(X) into the algebra of bounded linear operators on the Banach space M(X). We
will say that a measure µ ∈ M(X) is p−invariant when Lpµ = µ, and that a measur-
able set A ⊆ X is p−invariant when L∗pχA = χA, where χA denotes the characteristic

function χA(x) =

{
1 if x ∈ A
0 if x ∈ X − A

.

We denote by L1(X,m) the Banach space of m-integrable real functions on X with
the usual L1−norm, ‖h‖1 =

∫
X
|h(x)| dm(x). This space is isometrically embedded

in M(X) through the inclusion map L1(X,m) ↪→ M(X), h 7→ hm. We say that a
Markov system p : X →M(X) is absolutely continuous with respect tom if px = fxm,
with fx ∈ L1(X,m), for every x ∈ X. Absolutely continuous Markov systems are
defined by stochastic transition functions f : X×X → R such that:

(a) f(x, y) is measurable on X×X,

(b) f(x, y) ≥ 0, for every (x, y) ∈ X×X,

(c)
∫
X
f(x, y) dm(y) = 1, for every x ∈ X,

(d) the real valued function X → R, x 7→
∫
f(x, y)ψ(y) dm(y), is continuous for

every test function ψ ∈ C0(X).

A function f : X×X → R satisfying (a), (b), (d) and

(c’)
∫
X
f(x, y) dm(y) ≤ 1, for every x ∈ X,

is called a sub-stochastic transition function.
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The subset of all absolutely continuous Markov systems forms a sub-semigroup,
without identity, of MS(X). Given two transition functions f, g : X×X → R, the
convoluted Markov system is defined by the usual function convolution

(f ∗ g)(x, z) =

∫
X

f(x, y)g(y, z) dm(y) .

From now on we shall identify each absolutely continuous Markov system with its
probability transition function f : X×X → R. Given any such absolutely continuous
Markov system f , the operator Lf takes M(X) into L1(X,m) and its restriction to
L1(X,m) is given by

Lf (q)(y) =

∫
X

q(x) f(x, y) dm(x) q ∈  L1(X,m) .

The adjoint action on L∞(X,m) is given by

L∗f (g)(x) =

∫
X

f(x, y) g(y) dm(y) g ∈  L∞(X,m) .

Given a Markov system p : X → Mprob(X), σ(Lp) will denote the spectrum of
the Perron-Frobenius operator Lp. The spectral radius of Lp, i.e. the lowest upper
bound for absolute values of elements in σ(Lf ), will be denoted by r(Lp). Of course
r(Lp) = 1. The discrete spectrum of Lp, i.e. the set of all eigenvalues in σ(Lp) that
are isolated and have finite multiplicity, will be denoted by σdisc (Lp). The complement
of σdisc (Lp) in σ(Lp) is called the essential spectrum of Lp, and denoted by σess (Lp).
The essential spectral radius of Lp, i.e. the lowest upper bound for absolute values of
elements in σess (Lf ), is denoted by ress(Lp). It is well known, see for instance [W],
that the Perron operator Lf of any absolutely continuous Markov system f is a weakly
compact operator. In particular, ress (Lf ) = 0 and, therefore, the spectrum σ(Lf ) is at
most countable. All spectrum points in σ(Lf )−{0} are isolated eigenvalues with finite
multiplicity. Given an absolutely continuous Markov system f , we can decompose the
spectrum of Lf as:

σ(Lf ) = σ0(Lf ) ∪ σ1(Lf ),
where σ0(Lf ) = {λ ∈ σ(Lf ) : |λ| < 1} , and σ1(Lf ) = σ(Lf )−σ0(Lf ). Of course σ1(Lf )
is finite while σ0(Lf ) is at most countable but closed for the complex plane topology.
Consequently, σ0(Lf ) and σ1(Lf ) are disjoint compact sets and, therefore, there is an
associated decomposition of L1(X,m) into two Lf -invariant subspaces:

L1(X,m) = E0(f)⊕ E1(f) ,
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where E1(f) has finite dimension. We shall denote by rint (Lf ) the interior spectral
radius of Lf , i.e. the lowest upper bound of all absolute values of elements in σ0(Lf ).

Given any absolutely continuous Markov system f a sequence x0, x1, · · · , xn such
that f(xi−1, xi) > 0 for all i = 1, · · · , n is called an f−orbit, and we say that xn is
an f−iterate of x0. An absolutely continuous Markov system is called irreducible if for
almost all points x, y ∈ X there is some n ∈ N such that the probability transition
density from x to y in n iterates is positive, i.e. fn(x, y) > 0. A recurrence time is any
integer n ∈ N such that fn(x, x) > 0 with positive probability. Given an absolutely
continuous irreducible Markov system f the greatest common divisor d of all recurrence
times n ∈ N is called the period of f . An irreducible Markov system f is called acyclic
if it has period one. The state space X of an irreducible Markov system f of period d
can be decomposed into a finite union of fd-invariant subsets X = X0∪· · ·∪Xd−1 such
that each restriction (fd)Xi

: Xi×Xi → R, is an irreducible acyclic Markov system on
Xi.

We shall denote by fR the restriction to R×R of a given function f : X×X → R,
for any subset R ⊆ X. If f is stochastic transition function then:

1. fR is a sub-stochastic transition function.

2. fR is a stochastic transition function ⇔ R is f -invariant.

4 Statement of Results

Let H(X) be the set of all absolutely continuous Markov systems (i.e. probability
transition functions) f : X×X → R satisfying the following extra conditions:

(1) f is bounded on X ×X,

(2) f is lower semi-continuous on X ×X,

(3) for each x ∈ X, the open set ϕf (x) = { y ∈ X : f(x, y) > 0 } is connected.

The space H(X) is a convolution sub-semigroup of MS(X). Item (2) in the def-
inition of H(X) ensures that ϕf ∈ O(X). Thus, this semigroup carries a natural
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homomorphism ϕ : H(X) → O(X). Our motivation to consider this space was the
fact that it could be used, in some future work, to address the subtle concept of stochas-
tic stability for continuous deterministic dynamical systems, since H(X) is suitable to
consider random perturbations of such deterministic systems. The main goal of this
work is to relate, for generic systems f ∈ H(X), the combinatorial stability of ϕf with
the spectral stability of f , defined below. The novelty here with respect to finite state
Markov chain theory is that in this context, because we are dealing with continuous
systems, it makes sense defining stability: combinatorial stability or spectral stability.
Assume H1 ⊆ H(X) is sub-semigroup endowed with some topology.

Definition 4.1. We say that f ∈ H(X) is spectrally stable in H1 if and only if there
is a neighborhood U of f in H1 and there is 0 < k < 1 such that for all g ∈ U :

(1) There is a linear map hg : E1(f) → E1(g) that conjugates Lf |E1(f) to Lg |E1(g).

(2) The map hg depends continuously on f w.r.t. the topology in H1, in the sense
that for any ϕ ∈ C0(X), λϕ ◦hg converges to λϕ as g tends to f in H1, where
λϕ : L1(X,m) → R is defined by λϕ(µ) =

∫
ϕdµ.

(3) σ0(Lg) ∩ {λ ∈ C : k < |λ| < 1} = ∅.

We note that item (2) above is equivalent to say that the invariant measures of
Lf vary continuously with f w.r.t. the weak-∗ topology. The fixed points of this
linear operator are precisely the system invariant measures. The spectral stability of
f relates with the fact that no eigenvalues can enter, or leave, the unit circle. Given
ϕ, ψ ∈ O(X), we will write ϕ ≺ ψ to mean that graph (ϕ) ⊆ graph (ψ). Consider now
any sub-semigroup of Markov systems H1 ⊆ H(X), endowed with some topology.

Definition 4.2. We say that H1 is a topological semigroup of Markov systems over a
topological semigroup of open maps O1 if and only if for any f ∈ H1:

(1) ϕf ∈ O1;

(2) The map f 7→ ϕf is continuous for the topology of O1;

(3) H1 admits outer approximations in the sense that given f ∈ H1, for every neigh-
borhood N of f in H1 there is g ∈ N such that ϕf ≺ ϕg;

(4) limg→f

∥∥L∗f ϕ− L∗g ϕ∥∥
∞ = 0 for all ϕ ∈ C0(X);
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(5) The quantities τf (R) and βf (R) , defined in (1) and (2), vary upper semicontin-
uously with f , for any set R ⊆ X.

In proposition 6.2 we give examples of topologies on H(X) which turn it into a
topological semigroup of Markov systems. Then our main results are:

Theorem A (Spectral Stability Characterization)
Given a topological semigroup H1 of Markov systems, f ∈ H1 is spectrally stable if
and only if ϕf is combinatorially stable.

Theorem B (Genericity of Spectral Stability)
Given a topological semigroup H1 of Markov systems, the set of spectrally stable systems
in H1 is open and dense in H1.

5 Abstract Spectral Bounds

Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X, let

τf (R) =
1

2
sup
x,z∈R

∫
R

|f(x, y)− f(z, y)| dm(y) (1)

= 1− min
x,z∈R

∫
R

f(x, y) ∧ f(z, y) dm(y) .

and

τ ∗f (R) = inf
n≥1

[ τfn(R) ]1/n .

The quantity −ln
(
τ ∗f (R)

)
is a kind of mixing rate for the action of Lf on Mprob(R),

which measures how fast the Lf -iterates of any probability distribution on R will
converge to the unique Lf -invariant measure supported in R. Next, we make some
trivial remarks on this concept:

1. τfn(R) = 0 ⇔ the transition probabilities fnx (·) = fn(x, ·) do not depend on x,
for x over R.
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2. If for some pair of points x, y ∈ R, the transition probabilities fnx and fny have
disjoint supports, then τfn(R) = 1.

3. If τ ∗f (R) < 1 then the restriction Markov system fR on R is irreducible and
acyclic.

Under the same invariance assumption on R ⊆ X, ϕf (R) ⊆ R, we define

βf (R) = 1−min
x∈X

∫
R

f(x, y) dm(y) (2)

= sup
x∈X

∫
Rc

f(x, y) dm(y)

and
β∗f (R) = inf

n≥1
[ βfn(R) ]1/n .

The quantity −ln(β∗f (R)) is a kind of escape rate, which measures how fast the restric-
tion to Rc of the Lf -iterates of any probability distribution on X will tend to zero. We
also make some obvious remarks on this concept:

1. βfn(R) = 0 ⇔ ϕfn(X) = (ϕf )
n(X) ⊆ R.

2. If for some point x ∈ X, the transition probability fnx has support disjoint from
R, then βfn(R) = 1.

3. If β∗f (R) < 1 then for every x ∈ X the probability density (fnx )Rc converges to
zero in L1

Rc , as n→ +∞.

Given a subset R ⊆ X, we denote by L1
R the subspace of all functions h ∈ L1(X,m)

which vanish outside R. We denote by L1
R,0 the subspace of functions h ∈ L1

R with
zero average, i.e.,

∫
X
h(x) dm(x) = 0. Of course the subspaces L1

R and L1
R,0 are

Lf−invariant if and only if R is f−invariant. The action of Lf on the invariant sub-
spaces L1

R and L1
R,0 will be denoted by LfR

and LfR,0
, respectively. Assume, as before,
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that R is ϕf−invariant. Then L1
R is Lf−invariant. We can decompose L1(X,m)

as L1(X,m) = L1
R ⊕ L1

Rc , where Rc = X − R. Given h ∈ L1(X,m), denote by
hR = h · χR the function obtained multiplying h by R’s characteristic function χR.

Thus each function q ∈ L1(X,m) can be identified with the pair

[
qR
qRc

]
. Using this

notation, if q′ = (Lf )n q, for some q ∈ L1(X,m), then[
q′R
q′Rc

]
=

[
(LfR

)n ?
O (LfRc )n

] [
qR
qRc

]
,

where O denotes the null operator from L1
R into L1

Rc , LfR
describes the action of

Lf on the invariant subspace L1
R, and LfRc the action of Lf on the non-invariant

subspace L1
Rc composed with the projection onto L1

Rc . Notice that LfRc is a Perron-
Frobenius type of operator associated with the sub-stochastic transition function fRc .
Therefore, we can decompose the spectrum of Lf as

σ (Lf ) = σ (LfR
) ∪ σ (LfRc ) .

Because R is ϕf -invariant, (LfR
)n = L(fn)R

and (LfRc )n = L(fn)Rc , this second
equality because LfRc (q) = LfRc (qRc).

Proposition 5.1. Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X,

τf (R) = sup
q∈L1

R,0

‖LfR
q‖1

‖q‖1

=
∥∥LfR,0

∥∥
1
.

In particular τ ∗f (R) = lim
n→∞

∥∥(LfR,0
)n

∥∥
1

1/n
= r

(
LfR,0

)
is the spectral radius of the

operator LfR,0
.

Proof. We denote by fx the function y 7→ f(x, y). By definition ‖fx− fz‖1 ≤ 2 τf (R),
for every x, z ∈ X. Thus, given q1, q2 ∈ L1

R such that q1, q2 ≥ 0 and
∫
R
q1(y) dm(y) =∫

R
q2(y) dm(y) = 1, averaging fx with q1(x), and fz with q2(z), we obtain the inequality

‖Lf (q1) − Lf (q2)‖1 ≤ 2 τf (R). Now, given q ∈ L1
R,0, define q+ := max{q, 0} , q− :=

max{−q, 0} , and α :=
∫
R
q+(y) dm(y) =

∫
R
q−(y) dm(y) > 0. Notice that both

q1 = α−1 q+ and q2 = α−1 q− are probability densities. Therefore

‖Lf (q)‖1 = α ‖Lf (q1 − q2)‖1 ≤ 2α τf (R) = τf (R) ‖q‖1 ,
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which proves that
∥∥LfR,0

∥∥
1
≤ τf (R). Conversely,

‖fx − fz‖1 = ‖Lf (δx)− Lf (δz)‖1 ≤
∥∥LfR,0

∥∥
1
|||δx − δz||| = 2

∥∥LfR,0

∥∥
1
,

where |||·||| stands for the total variation norm on finite measures. This inequality can
be proved using approximate identities for the Dirac measures δx and δz. This proves
that τf (R) ≤

∥∥LfR,0

∥∥
1

and concludes the proof.

Proposition 5.2. Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X,

βf (R) = sup
q∈L1(X,m)

‖LfRc q‖1

‖q‖1

= ‖LfRc‖1 .

In particular β∗f (R) = lim
n→∞

‖(LfRc )n‖1
1/n = r (LfRc ) is the spectral radius of the

operator LfRc .

Corollary 5.3. Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X,

rint (Lf ) ≤ max{τ ∗f (R), β∗f (R)}.

The next five propositions and corollaries relate the spectral behavior of Lf with
the asymptotics of fn(x, y) as n→∞. Although we state them in our mixed measure-
topological context, they could be restated in more abstract terms, as pure measure-
theoretical statements. See [D]. Given f ∈ H(X) and a set R ⊆ X define

(sup
R
f)(y) = sup

x∈R
f(x, y) , (inf

R
f)(y) = inf

x∈R
f(x, y) ,

and the oscillation of f on R to be

ωf,R(y) = sup
x,z∈R

|f(x, y)− f(z, y)| = (sup
R
f)(y)− (inf

R
f)(y) .

Proposition 5.4. Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X,

ωfn+m,R(y) ≤ τfm(R)ωfn,R(y) ∀ n,m ≥ 1, y ∈ R .

If τ ∗f (R) ≤ r < 1 then there is some constant C > 0 and a lower semicontinuous
function q ∈ L1

R such that q = Lfq, ωfn,R(y) ≤ C rn and |fn(x, y) − q(y)| ≤ C rn

for all n ≥ 1 and (x, y) ∈ R×R. Furthermore, if f is continuous then so is q.

13



Proof. Assume τ ∗f (R) ≤ r < 1 . By proposition 5.1 the operator Lf acts contractively
on the affine space of probability densities in L1

R. Thus, there is a unique probability
density q ∈ L1

Ri
such that fn(x, ·) = Ln−1

f (f(x, ·)) converges in L1 to q as n → ∞. It
follows that fn(x, ·) converges almost everywhere to q. By taking the limit we get q =
Lf (q), which implies that q is lower semicontinuous, and continuous when so is f . The
oscillation inequality can be proved adapting an argument from [D], see p. 197, with
the strengthened Doeblin condition replaced by τ ∗f (R) ≤ r. For x, z ∈ R define B+

f,R =

{y ∈ R : f(x, y)− f(z, y) > 0} and B−
f,R = {y ∈ R : f(x, y)− f(z, y) < 0}. Since∫

R
f(x, y) dy =

∫
R
f(z, y) dy = 1, we have

∫
B+

f,R
f(x, y)− f(z, y) dy = −

∫
B−f,R

f(x, y)−
f(z, y) dy. Thus

fn+m(x, y)−fn+m(z, y) =

∫
R

(fm(x, v)− fm(z, v)) fn(v, y) dv

≤ sup
R
fn(y)

∫
B+

fm,R

fm(x, v)− fm(z, v) dv

+ inf
R
fn(y)

∫
B−fm,R

fm(x, v)− fm(z, v) dv

= ωfn,R(y)

∫
B+

fm,R

fm(x, v)− fm(z, v) dv

Finally, since∫
B+

fm,R

fm(x, v)− fm(z, v) dv =
1

2

∫
R

|fm(x, v)− fm(z, v)| dv ≤ τfm(R) ,

we get that ωfn+m,R(y) ≤ τfm(R)ωfn,R(y). This inequality shows that ωfn,R(y) de-
creases to zero uniformly at a geometric rate dominated by rn. It follows that all
fn(x, ·) converge to q at the same geometric rate. tu

Proposition 5.5. Given f ∈ H(X) and an open ϕf−invariant set R ⊆ X,

sup
X
fn+m(y) ≤ βfm(R) sup

X
fn(y) ∀ n,m ≥ 1, y ∈ Rc .

If β∗f (R) ≤ r < 1 then there is some constant C > 0 such that 0 ≤ fn(x, y) ≤ C rn

for all n ≥ 1 and (x, y) ∈ X ×Rc.
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Proof. Take β∗f (R) ≤ r < 1. Given y ∈ Rc, because R is ϕf -invariant we have

sup
X
fn+m(y) = sup

x∈X

∫
X

fm(x, z) fn(z, y) dz

= sup
x∈X

∫
Rc

fm(x, z) fn(z, y) dz

≤ sup
X
fn(y) sup

x∈X

∫
Rc

fm(x, z) dz

= sup
X
fn(y) βfm(R) .

This proves that fn(x, y) decreases to zero at a geometric rate dominated by rn. tu

We shall say that an open ϕf−invariant set R ⊆ X is an acyclic spectral attractor
for f ∈ H(X) if and only if R is connected and τ ∗f (R) < 1. When the set R splits as
a disjoint union of d connected sets,

R = R0 ∪ ϕf (R0) ∪ · · · ∪ ϕdf (R0),

such that R0 is an acyclic spectral attractor for fd we say that R is a periodic spectral
attractor of period d. We shall say that an open ϕf−invariant set R ⊆ X is spectrally
attractive for f ∈ H(X) if and only if β∗f (R) < 1.

Corollary 5.6. Let R ⊆ X be a periodic spectral attractor of period d for f ∈ H(X)
with connected components R0, · · · , Rd−1 . For each component Ri, (0 ≤ i ≤ d − 1)
there exists a unique Lfd−invariant probability density qi supported in Ri such that
for every (x, y) ∈ Ri ×Ri,

qi(y) = lim
n→∞

fnd(x, y).

Furthermore, given τ ∗
fd(Ri) < r < 1 there is Cr(f) > 0 such that for all (x, y) ∈

Ri ×Ri and n ≥ 1 ∣∣fnd(x, y)− qi(y)
∣∣ ≤ Cr r

n.

Moreover qi is lower semi-continuous and is continuous when f is continuous.
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Proof. Apply proposition 5.4 to each fd-invariant set Ri. tu

Corollary 5.7. Let R ⊆ X be spectrally attractive for f ∈ H(X). For every (x, y) ∈
X ×Rc

lim
n→∞

fn(x, y) = 0.

Furthermore, given β∗f (R) < r < 1 there is Cr(f) > 0 such that for every (x, y) ∈ X×Rc

0 ≤ fn(x, y) ≤ Cr r
n.

Proof. Follows from proposition 5.5. tu

Corollary 5.8. If τ ∗f (R) < 1 and β∗f (R) < 1 then f has a unique invariant measure
supported in R, µ = Lf (µ), which is an attractive fixed point for the the affine action
of operator Lf on Mprob(X).

Finally, we extract some spectral information on Lf from the combinatorics of
ϕf . Notice that, unlike the previous, these propositions can not be restated in pure
measure-theoretical terms.

Proposition 5.9. Given f ∈ H(X), each Ω−final class of period d is a periodic
spectral attractor of period d for f .

Proposition 5.10. Given f ∈ H(X), Ωfinal(ϕf ) is spectrally attractive for f .

Corollary 5.11. Given f ∈ H(X), let ΣΩ
final (ϕf ) = {R1, R2, · · · , Rs}, R be a ϕf -

invariant neighborhood of Ωfinal(ϕf ), and κf be the maximum between β∗f (R) and τ ∗f (Ri),
for i = 1, · · · , s. Then

rint (Lf ) ≤ κf .
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Corollary 5.12. Given f ∈ H(X), let ΣΩ
final (ϕf ) = {R1, R2, · · · , Rs}, where each

component Ri is ϕdi
f −invariant for some power di ≥ 1. Then there is a fdi-invariant

measure supported on Ri, µi = Lfdi µi, for each i = 1, · · · , s, such that:

1. The sum E1(f) of all generalized eigenspaces associated with eigenvalues in the
unit circle is the s−dimensional space spanned by the measures µ1, · · · , µs.

2. The action of Lf on the invariant subspace E1(f) w.r.t. the basis {µ1, · · · , µs}
is represented by the permutation matrix associated with the permutation πϕf

.

3. The eigenvalues of Lf in the unit circle are, with multiplicity, the d−unity roots
Ud = {λ ∈ C : λd = 1 }, counted for every cycle of length d in permutation πϕf

.

4. The operator induced by Lf on the quotient Mprob(X)/E1(f) is contractive, i.e.,
it has norm less than one.

To prove Proposition 5.9 and Proposition 5.10 above we use the concept of final
kernel defined in a previous article. In [DT] we called thickness of ϕf to the smallest
volume (m−measure) of all components in ΣΩ

final (ϕf ). We said that an open set K ⊆
Ωfinal(ϕf ) is a final kernel of ϕf if and only if there is a one-to-one correspondence
R 7→ KR, between components R ∈ ΣΩ

final (ϕ) and connected components KR of K,
such that KR ⊆ R for every R ∈ ΣΩ

final (ϕf ). We said that K is a final kernel with
finite order N if and only if K is a final kernel of ϕf , and furthermore

(1) For each component R ∈ ΣΩ
final (ϕf ) of period d, the only connected component

KR of K contained in R satisfies R×KR ⊆ graph
(
ϕN d
f

)
.

(2) For each x ∈ X, ϕNf (x) contains at least the closure of one of K’s connected
components.

We did call thickness of K to the smallest volume of all connected components of K.
We proved that every final kernel K of ϕf is a final kernel with some finite order N ∈ N.
In particular, ϕf admits finite-order final kernels, whose thickness is arbitrarily close
to the thickness of ϕf . See Lemma 5.20 of [DT].

Proof. of proposition 5.9 Let R1, · · · , Rs be the Ω−final components of ϕf .
Take some final kernel K ⊆ Ωfinal(ϕf ) and choose N ∈ N such that K is a finite
kernel of order N . Let K1, · · · , Ks be the connected components of K corresponding
to R1, · · · , Rs. Item 1. in the definition of finite kernel of order N implies that for
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each component Ri of period di and for all (x, y) ∈ Ri ×Ki, one has fNdi(x, y) >
0. Moreover, because f is lower semi-continuous, there is ci > 0 such that for all
(x, y) ∈ Ri ×Ki, f

Ndi(x, y) ≥ ci. Therefore, τfNdi (Ri) ≤ 1−ci < 1 which implies that
τ ∗
fdi

(Ri) < 1.

Proof. of proposition 5.10 Take some final kernel K ⊆ Ωfinal(ϕf ) and choose
N ∈ N such that K is a finite kernel of order N . Item 2. in the definition of fi-
nite kernel of order N implies that for each x ∈ X ,

∫
K
fN(x, y) dm(y) > 0 . Thus,

since K ⊆ Ωfinal(ϕf ) , one has
∫

Ωfinal(ϕf )
fN(x, y) dm(y) > 0 for each x ∈ X . More-

over, because f is lower semi-continuous, there is α0 > 0 such that for all x ∈ X ,∫
Ωfinal(ϕf )

fN(x, y) dm(y) ≥ α0. Therefore, βfN (Ωfinal(ϕf )) ≤ 1 − α0 < 1 and, conse-

quently, β∗f (Ωfinal(ϕf )) < 1.

6 Topological Semigroups of Markov Systems

We now topologize the semigroup H(X) turning it into a topological semigroup of
Markov systems. Consider

d∞(f, g) = max
(x,y)∈X×X

|f(x, y)− g(x, y)|

and

d1(f, g) = max
x∈X

∫
X

|f(x, y)− g(x, y)| dm(y).

Proposition 6.1. Given f, g ∈ H(X) and N ∈ N,

1.
∥∥fN∥∥

∞ ≤ ‖f‖∞ ;

2.
∥∥fN∥∥

1
≤ ‖f‖1 ;

3. d∞(fN , gN) ≤ d∞(f, g)(1 + (N − 1) ‖f‖∞);

4. d1(f
N , gN) ≤ d1(f, g)(1 + (N − 1) ‖f‖∞).
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Proof. We notice that

f ∗ g(x, ·) = Lf ( g(x, ·) ) and f ∗ g(·, y) = L∗f ( g(·, y) ) .

Using that both operators Lf and L∗f have norm equal to one, it follows that both
sequences ‖fN‖1 and ‖fN‖∞ decrease, which proves 1. and 2.. For the metrics d = d1

and d = d∞ we use the triangle inequality

d(fN , gN) ≤ d(f ∗ fN−1, g ∗ fN−1) + d(g ∗ fN−1, g ∗ gN−1) ,

and the same kind of argument as above, to derive inequalities 3. and 4..

Given f, g ∈ H(X) we say that f is dominated by g when ϕf ≺ ϕg.

Proposition 6.2. Consider any sub-semigroup O1 ⊆ O(X) with a topology defined by
some metric ρ which makes it a topological semigroup of open maps. Define

ρ∞(f, g) = max{d∞(f, g), ρ(ϕf , ϕg)}

and
ρ1(f, g) = max{d1(f, g), ρ(ϕf , ϕg)}.

Then H1 = { f ∈ H(X) : ϕf ∈ O1 } with the topology associated with any of the
metrics ρ∞ and ρ1, is a topological semigroup of Markov systems over O1.

Proof. Consider H1 with any of the topologies induced by the metrics above. We need
to prove that H1 satisfies items (1) to (5) of definition 4.2. Items (1) and (2) are clear.
Let us now prove item(3). Take f ∈ H1. By Definition 2.1, for each ε > 0 we can take
ϕ∗ε ∈ O1 such that ϕf ≺ ϕ∗ε and limε→0+ ρ(ϕf , ϕ

∗
ε) = 0. Let {hε}ε>0, hε : X×X → [0, 1],

be a family of continuous maps such that:

(i) graph (ϕhε) = graph (ϕ∗ε), and

(ii) hε(x, y) = 1 for every (x, y) ∈ graph (ϕf ).

For each map hε and x ∈ X, let

h̃ε(x) =

∫
X

hε(x, y) dm(y),
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and define, for x, y ∈ X,

fε(x, y) =
hε(x, y)

h̃ε(x)
.

For every x ∈ X, h̃ε(x) ≥ m(ϕf (x)) ≥ c0 > 0, where c0 denotes the volume (mmeasure)
of a ball of radius ξ0 > 0, for some ξ0 depending on ϕf . (See Lemma 2.7 in [DT] where
we prove that given ϕ ∈ O(X) there is a map F : X → X and ξ0 > 0 such that the
ξ0-radius ball of graph (F ) is contained in graph (ϕ)). Therefore, fε is bounded and
continuous. We define the family {gε}ε>0 by gε = (1− ε)f + ε fε. It is easy to see that
gε ∈ H(X). Clearly, limε→0 d∞(f, gε) = 0, which implies that limε→0 d1(f, gε) = 0.
Moreover, ϕgε is an open map whose graph coincides with the graph of ϕ∗ε . Therefore,
limε→0 ρ(ϕf , ϕgε) = 0 and limε→0 ρ∞(f, gε) = limε→0 ρ1(f, gε) = 0.

To prove item (4) of definition 4.2 notice that given f, g ∈ H1, for all ϕ ∈ C0(X):

∥∥L∗f ϕ− L∗g ϕ∥∥
∞ = max

x∈X

∣∣L∗f ϕ(x)− L∗g ϕ(y)
∣∣

= max
x∈X

∣∣∣∣∫
X

f(x, y)ϕ(y) dm(y)−
∫
X

g(x, y)ϕ(y) dm(y)

∣∣∣∣
≤ max

x∈X

∫
X

|f(x, y)− g(x, y)| |ϕ(y)| dm(y)

≤ max
y∈X

|ϕ(y)|max
x∈X

∫
X

|f(x, y)− g(x, y)| dm(y)

= max
y∈X

|ϕ(y)| d1(f, g)

≤ max
y∈X

|ϕ(y)| d∞(f, g).

Finally, we prove item (5) of definition 4.2. Given f, g ∈ H1 and open ϕf−invariant
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set R ⊆ X we have that:

|τf (R)− τg(R)| =

∣∣∣∣ min
x,z∈R

∫
R

f(x, y) ∧ f(z, y) dm(y)− min
x,z∈R

∫
R

f(x, y) ∧ g(z, y) dm(y)

∣∣∣∣
≤

∣∣∣∣min
x∈R

∫
R

f(x, y) dm(y)−min
x∈R

∫
R

g(x, y) dm(y)

∣∣∣∣
≤ max

x∈R

∫
R

|f(x, y)− g(x, y)| dm(y)

= d1(f, g) ≤ d∞(f, g)

and

|βf (R)− βg(R)| =

∣∣∣∣min
x∈X

∫
R

f(x, y) dm(y)−min
x∈X

∫
R

g(z, y) dm(y)

∣∣∣∣
≤ max

x∈X

∫
R

|f(x, y)− g(x, y)| dm(y)

= d1(f, g) ≤ d∞(f, g).

7 Spectral Stability

In this final section we prove theorems A and B.

Proposition 7.1. Let H1 be any topological semigroup of Markov systems. Given
f ∈ H1 with ϕf combinatorially stable, let R1, · · · , Rs be the Ω−final components of
ϕf . There is an open neighborhood N of f in H1 and there are open neighborhoods
U1, · · · , Us of R1, · · · , Rs , respectively, such that

(1) Each Ui, (1 ≤ i ≤ s) , is an acyclic spectral attractor for fdi for some di ≥ 1 .

(2) For all g ∈ N , ϕdi
g (Ui) ⊆ Ui (1 ≤ i ≤ s).
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Proof. Since ϕf is combinatorially stable there is a neighborhood U of ϕf in O1

such that every φ ∈ U is combinatorially equivalent to ϕf . By Definition 4.2(2) the
map f 7→ ϕf is continuous and, therefore, there is a neighborhood N of f in H1

such that for every h ∈ N , ϕh ∈ U . Furthermore, Definition 4.2(3) ensures that there
is h ∈ N such that ϕf ≺ ϕh. Let U1, · · · , Us be the Ω−final components of ϕh,
i.e. ΣΩ

final (ϕh) = {U1, U2, · · · , Us}. Because ϕf is combinatorially equivalent to ϕh and
ϕf ≺ ϕh we can sort the Ui so that Ri ⊆ Ui, for i = 1, · · · , s. Take some final kernel
K ⊆ Ωfinal(ϕh) and choose N ∈ N such that K is a finite kernel of order N . Let
K1, · · · , Ks be the connected components of K corresponding to U1, · · · , Us. Item 1.
in the definition of finite kernel of order N implies that that for all (x, y) ∈ Ui ×Ki,
one has fNdi(x, y) > 0. Moreover, because f is lower semi-continuous, there is ci > 0
such that for all (x, y) ∈ Ui ×Ki, f

Ndi(x, y) ≥ ci. Therefore, τfNdi (Ui) ≤ 1 − ci < 1
which implies that τ ∗

fdi
(Ui) < 1.

To prove item 2. choose some neighborhood N of f in H1 such that for all
g ∈ N , graph (ϕg) ⊆ graph (ϕh). Such a neighborhood exists by Definition 2.1(1) and
Definition 4.2(2). Therefore ϕdi

g (Ui) ⊆ ϕdi
h (Ui) ⊆ Ui.

Lemma 7.2. Given ϕ, ψ ∈ O(X), such that ϕ ≺ ψ, if ϕ is combinatorially equivalent
to ψ then ϕ is combinatorially stable.

Proof. Since ϕ ≺ ψ, it is a straightforward consequence of the definitions that we
have: ∣∣ΛΩ

final (ϕ)
∣∣ ≥ ∣∣ΛR

final (ϕ)
∣∣ ≥ ∣∣ΛΩ

final (ψ)
∣∣

and ∣∣ΣΩ
final (ϕ)

∣∣ ≥ ∣∣ΣR
final (ϕ)

∣∣ ≥ ∣∣ΣΩ
final (ψ)

∣∣ .
Because ϕ is combinatorially equivalent to ψ we have that

∣∣ΛΩ
final (ϕ)

∣∣ =
∣∣ΛΩ

final (ψ)
∣∣

and
∣∣ΣΩ

final (ϕ)
∣∣ =

∣∣ΣΩ
final (ψ)

∣∣. Therefore,
∣∣ΛΩ

final (ϕ)
∣∣ =

∣∣ΛR
final (ϕ)

∣∣ and
∣∣ΣΩ

final (ϕ)
∣∣ =∣∣ΣR

final (ϕ)
∣∣, that is, ϕ satisfies the combinatorially stability condition, which implies

that ϕ is combinatorially stable.

Proof. of Theorem A (Spectral Stability Characterization) Given f ∈ H1

assume ϕf is combinatorially stable. By Definition 4.2(2) there is a neighborhood
N of f in H1 such that for all g ∈ N , ϕg is combinatorially equivalent to ϕf .
Consequently it follows from Corollary 5.12 that there is a map hg : E1(f) → E1(g)
that conjugates Lf |E1(f) to Lg |E1(g) , which proves Definition 4.1(1).
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To prove item (2) of Definition 4.1 we just need to note that Definition 4.2(4)
easily implies that the invariant measures of Lf vary continuously with f w.r.t. the
weak-∗ topology. Indeed, given f ∈ H with ϕf combinatorially stable, let N and
Ui , 1 ≤ i ≤ s, be as in Proposition 7.1. We have that every invariant measure of
Lg with g ∈ N is supported in some Ui. Take µf ∈ E1(f) and µg ∈ E1(g) with

µf (Ui) = µg(Ui) = 1. Choose N ∈ N such that
∥∥∥LfN

Ui,0

∥∥∥
1
< 1. For any ϕ ∈ C0(X),

|〈µf − µg, ϕ〉| =
∣∣〈LfNµf − LgNµg, ϕ

〉∣∣
≤

∣∣〈LfNµf , ϕ
〉
−

〈
LfNµg, ϕ

〉∣∣ +
∣∣〈LfNµg, ϕ

〉
−

〈
LgNµg, ϕ

〉∣∣
≤

∣∣〈LfN (µf − µg), ϕ
〉∣∣ +

∣∣〈(LfN − LgN

)
µg, ϕ

〉∣∣
Definition 4.2(4) implies that

lim
g→f

∣∣〈(LfN − LgN

)
µg, ϕ

〉∣∣ = 0.

Therefore,
lim
g→f

|〈µf − µg, ϕ〉| = 0

which proves item (2) of Definition 4.1.
Let R1, · · · , Rs be the Ω−final components of ϕf in ΣΩ

final (ϕf ). By Proposition
7.1(1) for each Ω−component Ri , (1 ≤ i ≤ s) , there is an open neighborhood Ui of
Ri such that Ui is an acyclic spectral attractor for fdi for some power di ≥ 1. In
particular, τ ∗

fdi
(Ui) < 1 which implies that τ ∗f (Ui) < 1 . Set U = ∪si=1Ui. It is clear

that Ωfinal(ϕf ) ⊆ U . Furthermore, because Ωfinal(ϕf ) is spectrally attractive, one has
β∗f (Ωfinal(ϕ)) < 1. These two facts together imply that β∗f (U) < 1. By Corollary 5.11
we have that rint (Lf ) < 1.

By Proposition 7.1(2) we can make N smaller so that for every g ∈ N , one has
ϕgdi (Ui) ⊆ Ui, (1 ≤ i ≤ s) . Thus, it follows immediately from Corollary 5.3 that

rint (Lg) ≤ max
{{
τ ∗g (Ui), 1 ≤ i ≤ s

}
∪

{
β∗g(U)

}}
.

By Definition 4.2(5) τ ∗f (Ui) and β∗f (U) vary upper semicontinuously with f . Therefore
we can make N even smaller so that there is k < 1 such that for every g ∈ N , one
has rint (Lg) ≤ k. This proves Definition 4.1(3) that there is a spectral gap of size k
isolating σ1(Lg) and σ0(Lg). Therefore, f is spectrally stable.
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Assume now that f is H1−spectrally stable and let N be a neighborhood of f in
H1 where all the systems are spectrally equivalent. In particular, by Definition 4.1(1),
all maps ϕg with g ∈ N are combinatorially equivalent. By Definition 4.2(3) there is
g ∈ N such that ϕf ≺ ϕg . Therefore, by Lemma 7.2, ϕf is combinatorially stable.

Proof. of Theorem B (Genericity of Spectral Stability) By definition, spectral
stability is an open property. Thus it is enough to prove density. Let N0 be an arbitrary
neighborhood of f . By Definition 4.2(3) there is g0 ∈ N0 such that ϕf ≺ ϕg0 . If ϕf
is combinatorially equivalent to ϕg0 , Lemma 7.2 ensures that ϕf is combinatorially
stable. Otherwise, let N1 ⊂ N0 be a neighborhood of f where all maps are dominated
by g0 . Such a neighborhood exists by Definition 2.1(1) and Definition 4.2(2). By
Definition 4.2(3) there is g1 ∈ N1 such that ϕf ≺ ϕg1 . If ϕg1 is combinatorially
equivalent to ϕg0 , Lemma 7.2 ensures that ϕg1 is combinatorially stable. Otherwise
we repeat the process considering a sequence of dominated maps

ϕf ≺ · · · ≺ ϕgn ≺ · · · ≺ ϕg1 ≺ ϕg0 .

It is a straightforward consequence of the definitions that we have:∣∣ΛΩ
final (ϕf )

∣∣ ≥ ∣∣ΛΩ
final (ϕgn)

∣∣ ≥ ∣∣ΛΩ
final

(
ϕgn−1

)∣∣ ≥ ∣∣ΛΩ
final (ϕg0)

∣∣
and ∣∣ΣΩ

final (ϕf )
∣∣ ≥ ∣∣ΣΩ

final (ϕgn)
∣∣ ≥ ∣∣ΣΩ

final

(
ϕgn−1

)∣∣ ≥ ∣∣ΣΩ
final (ϕg0)

∣∣ .
Furthermore, since each open map has a finite number of connected components, we
must find an n such that ϕgn is combinatorially equivalent to ϕgn−1 . By Lemma 7.2,
ϕgn is combinatorially stable, which proves the Theorem.
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