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Pedro Duarte and Maria Joana Torres

Abstract A space of non-deterministic dynamical systems of Markov type on com-
pact manifolds is considered. This is a natural space for stochastic perturbations
of maps. For such systems, both the combinatorial stability, of the periodic attrac-
tors, and the spectral stability, of the invariant measures, are characterized and its
genericity established.

1 Introduction

Given a state space X , any function f that associates to each state x ∈ X a state
probability transition fx on X will be called a (discrete time) stochastic dynamical
system or, simply, a Markov system. Deterministic dynamical systems correspond
to such functions when each value fx = δ f (x) is a Dirac measure sitting on some
point f (x) ∈ X .

In the present work we will consider a space H (X) of stochastic dynamical
systems defined on a compact Riemannian manifold X , with volume measure m,
which is large and natural to make stochastic perturbations in continuous deter-
ministic dynamical systems. Our main goal is to study and compare, for generic
systems f ∈H (X), the combinatorial-topological stability of the limit behaviour
of the nondeterministic system ϕ f : x 7→ supp( fx), with the spectral stability of the
linear operator L f : µ 7→ f∗µ , that to each probability distribution µ associates the
µ-conditional probability distribution in the next instant, also known as the Perron-
Frobenius operator.
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Given a point-set map ϕ : X →P(X), any sequence x0, x1, · · · ,xn such that
xi ∈ ϕ(xi−1) for i = 1, · · · ,n will be called an orbit of ϕ , and we shall say that xn
is an iterate of the state x0. If there is ε > 0 such that d(xi,ϕ(xi−1)) < ε for all
i = 1, . . . ,n then x0, x1, · · · ,xn will be called an ε-pseudo orbit of ϕ and we shall
say that xn is an ε-pseudo iterate of x0. We shall say that xn is a pseudo iterate of x0
if for every ε > 0, xn is an ε-pseudo iterate of x0.

The recurrent set of ϕ , denoted by Ω(ϕ), is the set of all states x ∈ X such that x
is an iterate of x. Analogously, the chain recurrent set of ϕ , denoted by R(ϕ), is the
set of all states x ∈ X such that x is a pseudo iterate of x.

The point-set map ϕ has two limit sets: the Ω -final, or final recurrent set, de-
noted by Ωfinal(ϕ), of all states x ∈Ω(ϕ) such that every iterate of x still has some
iterate which comes back to x, and the R-final, or final chain recurrent set, denoted
by Rfinal(ϕ), of all states x ∈ R(ϕ) such that every pseudo iterate of x still has some
pseudo iterate which comes back to x. These limit sets contain all the asymptotic
dynamical behaviour of the point-set map ϕ .

A point-set map ϕ is called open when its graph

graph(ϕ) = {(x,y) ∈ X×X : y ∈ ϕ(x), ∀x ∈ X }

is an open set in X×X , and ϕ(x) is connected for all x ∈ X .

Theorem
If ϕ is an open map then both limit sets Ωfinal(ϕ) and Rfinal(ϕ) decompose into a
finite number of connected pieces which are permuted by ϕ .

The restriction of ϕ to each of these pieces is, in some sense, irreducible.
The system ϕ will be called combinatorially stable when this topological decom-

position is stable under perturbations. Since any iterate is also a pseudo iterate, there
is a natural relation between the connected pieces of Ωfinal(ϕ) and those of Rfinal(ϕ).
We shall see that for a generic system ϕ , with respect to some natural topology, this
relation is bijective, and that whenever this happens the system is combinatorially
stable, thus obtaining:

Theorem
There is an open and dense set of combinatorially stable systems.

Given f ∈ H (X), both topological decompositions for the limit sets of ϕ f ,
correspond to the unit circle spectral decomposition of the linear operator L f
acting on the Banach space L1(X ,m). There is an L f -invariant spectral decom-
position L1(X ,m) = E0( f )⊕ E1( f ) which corresponds to the spectrum partition
σ
(
L f
)
= σ0

(
L f
)
∪σ1

(
L f
)
, where

σ0
(
L f
)
= {λ ∈ σ

(
L f
)

: |λ |< 1 } ,

and
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σ1
(
L f
)
= {λ ∈ σ

(
L f
)

: |λ |= 1 } .

This second component of the spectrum consists of a finite number of eigenvalues,
all with finite multiplicity. Hence dimE1( f ) < +∞, and the operator L f is quasi-
compact.

The system f will be called spectrally stable if there is some 0 < k < 1 such that
for every small perturbation g of f :

a) L f |E1( f ) is conjugated to Lg |E1(g);
b)
∥∥Lg |E0(g)

∥∥≤ k.

In our setting the operator L f depends continuously on f and, therefore, so does the
spectrum σ

(
L f
)
. The spectral stability of f relates with the fact that no eigenvalue

can enter, or leave, the unit circle.
In section 5 we establish the spectral stability for a generic system f , with respect

to some natural metric in H (X).

Theorem
There is an open and dense set of systems f ∈H (X) for which ϕ f is combinatori-
ally stable and f is spectrally stable.

We are naturally led to consider finite state Markov chains when trying to ap-
proximate a continuous dynamical system by discretizing the manifold X . Finite
state Markov chains are the stochastic, or random dynamical systems on a finite
state space. One may think that these dynamical systems are what we actually see
when running computer simulations of deterministic dynamical systems. Each such
dynamical system is specified by a stochastic matrix with the state probability tran-
sitions. The stochastic matrix is the Perron operator of this finite state system. The
Markov chain also determines an oriented graph, encapsulating some qualitative as-
pects of the system behaviour. The theory of finite state Markov chains establishes
a correspondence between spectral properties of the stochastic matrix on one side,
and combinatorial properties of the corresponding graph on the other hand. See,
e.g., [1].

For measurable spaces and Markov systems satisfying the Doeblin-condition
similar spectral results were obtained in a more general setting by Doob [2],
but the stability problem is never addressed. As far as we know the topological-
combinatorial approach of our work is also new (see [3] and [4]).

In the theory of smooth deterministic hyperbolic systems f : X → X the spectral
decomposition theorem states that there is a decomposition of the non-wandering
set Ω( f ) into a finite number of hyperbolic basic sets which are permuted by f . The
dynamics of f partially orders the basic set components of Ω( f ), the minimal, or
final, elements being the attractors of f . Analogously, in our setting, there are par-
tially ordered decompositions of the recurrent and chain recurrent sets, Ω(ϕ) and
R(ϕ), respectively. The final connected components in Ωfinal(ϕ), and Rfinal(ϕ), are
the attractors’ equivalent in Ω(ϕ), and R(ϕ), respectively. As the name indicates
this decomposition relates with the spectral decomposition of the linear operator
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which describes the action of f on the tangent vector fields to X . The ergodic theory
of these systems is also well studied. It is well known that in each attractor there is a
unique ergodic stochastically stable measure, called the physical measure of the at-
tractor. Furthermore, almost every point x∈ X lies in the basin of attraction of one of
these physical measures. The concept of stochastic stability is usually attributed to
Kolmogorov. Roughly, a measure µ is said stochastically stable if it is stable under
small stochastic perturbations of the system f . In general it has been conjectured by
J. Palis [6] that for a dense set of dynamics, the system has a finite set of transitive,
stochastically stable attractors whose basins of attraction cover almost every point
in X . This conjecture suggested the main motivation for the present study: to under-
stand stochastic stability in the realm of stochastic dynamical systems, at least in a
class of Markov systems which is suitable for stochastic perturbations of continuous
maps.

2 Topological semigroups of open maps

Several semigroups of point-set maps are defined, namely open, continuous and Lipschitz point-set
maps. The key concept of topological semigroup of open maps is introduced.

Throughout this work X will denote a compact Riemannian manifold of dimen-
sion n, d will be the geodesic distance on X and m will be the corresponding nor-
malized (m(X) = 1) Riemannian volume. Similar notation will be used on X ×X ,
where d will stand for the metric d((x1,y1),(x2,y2)) = max{d(x1,x2),d(y1,y2)} .

Let S (X) be the space of all point-set maps on X , that is, ϕ ∈ S (X) if and
only if ϕ is a map from X into the power set of X , i.e. ϕ : X →P(X). For a point-
set map ϕ ∈ S (X) and a subset A ⊆ X the image ϕ(A) ∈P(X) is defined by
ϕ(A) = ∪x∈Aϕ(x). We say that A⊆ X is ϕ-invariant when ϕ(A)⊆ A. Analogously,
we say that A is fully ϕ-invariant if ϕ(A) = A. For two point-set maps ϕ,ψ ∈S (X)
the usual composition product ϕ ◦ψ : X →P(X) of ϕ and ψ at x is defined by

(ϕ ◦ψ)(x) = ϕ (ψ(x)) = ∪y∈ψ(x)ϕ(y) .

Clearly, S (X) with this composition product is a semigroup.
We define O(X) to be the space of all open point-set maps ϕ in S (X). See the

definition of open map in the introduction.

Proposition 1. ([3, Proposition 4.1.]) Given ϕ ∈ O(X) and an open set C ⊆ X, if C
is connected then ϕ(C) is open and connected.

From the previous proposition we easily have the following.

Proposition 2. ([3, Proposition 4.2.]) O(X) is a subsemigroup of S (X).

Given sets U,V ⊆ X we will use the following notation: Br(U), respectively
Br(U), denotes the set of all points whose distance d to U is less than, respectively
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less than or equal to r, and ρH(U,V ) = inf { r > 0 : U ⊆ Br(V ) and V ⊆ Br(U) }
denotes the Hausdorff distance between U and V . Furthermore, U is the closure of
U in X and U◦ is the interior of U in X . Similar notation will be used on X×X .

We say that a point-set map is Lipschitz if and only if the map x 7→ ϕ(x) is
Lipschitz with respect to the Hausdorff distance ρH , i.e. there is K > 0 such that
ρH (ϕ(x),ϕ(y))≤ K d(x,y) for every y ∈ X . We shall denote by Lip(ϕ) the greatest
lower bound of all Lipschitz constants K for this map. We denote by OLip(X) the
subset of all Lipschitz point-set maps in O(X).

We recall the following continuity concepts. A point-set map ϕ : X →P(X)
with non-empty values is called lower semi-continuous, respectively upper semi-
continuous, if for every x ∈ X and ε > 0 there is a neighborhood Nx of x in X
such that for any y ∈ Nx, ϕ(x) ⊆ Bε(ϕ(y)), respectively ϕ(y) ⊆ Bε(ϕ(x)). It is
called continuous if ϕ : X →P(X) is both lower semi-continuous and upper semi-
continuous. This means continuity with respect to the Hausdorff distance. We denote
by OCont(X) the subset of all continuous point-set maps in O(X).

Proposition 3. ([3, Proposition 4.6.]) OLip(X) and OCont(X) are both subsemigroups
of O(X).

Given ϕ ∈ O(X) we define ϕ, ϕ̂ : X →P(X) by setting

graph(ϕ) = graph(ϕ) and

graph(ϕ̂) =
(

graph(ϕ)
)◦

,

We call the open map ϕ̂ , whose graph is the interior of the closure of graph(ϕ), the
regularization of ϕ . The following proposition is easily proved.

Proposition 4. ([3, Proposition 4.7.])

(1) All maps ϕ in O(X) are lower semi-continuous.
(2) For every map ϕ ∈ O(X), ϕ is upper semi-continuous.
(3) Every map ϕ ∈ OLip(X) is continuous.

Because there are several natural non-equivalent ways of endowing O(X), and
its sub-semigroups, with some topology we give the following abstract definition.
Consider any sub-semigroup of open maps O1 ⊆ O(X), endowed with some topo-
logy.

Definition 1. We say that O1 is a topological semigroup of open maps if

(1) the Hausdorff distance between open map graphs is continuous;
(2) for each ϕ ∈ O1, there is a family of open maps {ϕ̃ε}ε>0 in O1 such that

(a) graph(ϕ) =
⋂

ε>0 graph(ϕ̃ε);



6 Pedro Duarte and Maria Joana Torres

(b) for all ε1, ε2, if ε1 > ε2 > 0 then graph(ϕ̃ε2)⊆ graph(ϕ̃ε1); and

(c) limε→0+ ϕ̃ε = ϕ w.r.t. O1 topology;

(3) given ε > 0, an integer N ∈ N, and non-empty open subsets U,V ⊆ X such that
U×V ⊆ graph

(
ϕN
)
, there is a neighborhood N of ϕ in O1 such that for all

ψ ∈N and x ∈U , m(V \ ψ̂N(x))< ε , where ψ̂ denotes the regularization of ψ .

Condition (2) above is an outer continuity assumption that says every open map ϕ

can be well approximated from above within the topology. Condition (3) expresses
a kind of inner, or lower, continuity.

Identifying each ϕ ∈ O(X) with its graph we can see O(X) as a subset of the
space of all non-empty connected open subsets of X ×X . Therefore, we can con-
sider on O(X) and its sub-semigroups, topologies induced from general (topolog-
ical) spaces of open sets. See [5] for an overview on topological spaces of sets.
We shall now topologize O(X) with a topology that is natural to address the sub-
tle concept of combinatorial stability for continuous deterministic dynamical sys-
tems (see [3, Section 6]). First let U (X) denote the space of all non-empty con-
nected open subsets of X . We define the following pseudo-metric ρ in U (X). Given
U,V ∈U (X),

ρ(U,V ) = max{ρH(U,V ),ρH(Ue,V e)} ,

where ρH stands for the Hausdorff distance and Ue denotes the exterior of U in X .
Now consider O(X) as a subset of U (X ×X) and let ρ be the induced pseudo-
metric, which is given by

ρ(ϕ,ψ) = ρ (graph(ϕ) ,graph(ψ)) .

Proposition 5. With the topology associated to ρ , O(X) is a topological semigroup
of open maps.

To prove Proposition 5, we first introduce the following two families of open
maps. Given ϕ ∈ O(X), define ϕ∗ε by

graph(ϕ∗ε ) = Bε(graph(ϕ)) ,

and define ϕ◦ε setting ϕ◦ε (x) to be the largest connected component of the open set

{ y ∈ X : d ((x,y), graph(ϕ)c )> ε } ,

where graph(ϕ)c denotes the complement of graph(ϕ) in X×X . Then ϕ∗ε ∈O(X),
and ϕ◦ε ∈ O(X) for all small enough ε > 0.

Next we provide the following characterization of the ε-ball for the pseudo-
metric ρ . Given open maps ϕ,ψ : X →P(X), we will write ϕ ≺ ψ to mean that
graph(ϕ)⊆ graph(ψ).
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Proposition 6. Given ε > 0, for every ϕ,ψ ∈ O(X),

ρ(ϕ,ψ)< ε =⇒ ψ
◦
ε ≺ ϕ̂ ≺ ψ

∗
ε .

Proof. First ρH(ϕ,ψ)< ε implies that

graph(ϕ̂) ⊆ graph(ϕ) ⊆ Bε(graph(ψ)) = graph(ψ∗ε ) .

On the other hand ρH(graph(ϕ)e,graph(ψ)e)< ε implies that

graph(ϕ)e ⊆ Bε(graph(ψ)e) ⊆ Bε(graph(ψ)c),

which in turn implies that ψ◦ε ≺ ϕ̂ . ut

We prove now Proposition 5.

Proof. It is clear that Definition 1(1) holds. To prove Definition 1(2) we just need
to take ϕ̃ε ≡ ϕ∗ε . To prove Definition 1(3), let U,V ⊆ X be non-empty open sets
such that U×V ⊆ graph

(
ϕN
)
. Taking δ > 0 small enough we have U×V ⊆

graph
(
(ϕ◦

δ
)N
)
. Consider the δ−neighbourhood N = Bδ (ϕ) with respect to the

pseudo-metric ρ . If ψ ∈N then, by Proposition 6, ϕ◦
δ
≺ ψ̂ , implying that

U×V ⊆ graph
(
(ϕ◦

δ
)N)⊆ graph

(
(ψ̂)N)⊆ graph

(
ψ̂N
)
.

Therefore, m(V \ ψ̂N(x)) = 0 for all x ∈U . ut

3 Combinatorial stability of open maps

Combinatorial stability of open maps is defined and characterized. Its genericity is proved.

Let us briefly recall the main dynamical concepts for open maps (see [3]). Given
ϕ ∈ O(X), a sequence x0, x1, · · · ,xn such that xi ∈ ϕ(xi−1) for all i = 1, · · · ,n
is called a ϕ−orbit, and we say that xn is a ϕ−iterate of x0. If for every ε > 0,
y is a ϕ∗ε−iterate of x, where ϕ∗ε is the open map whose graph is an ε−radius
ball of graph(ϕ), we say that y is a ϕ−pseudo-iterate of x. The recurrent and
chain-recurrent sets of ϕ are defined respectively by Ω(ϕ) = {x ∈ X : x is a ϕ −
iterate of x} and R(ϕ) = {x ∈ X : x is a ϕ− pseudo-iterate of x}. Both these sets
split into equivalence classes, each class being formed by states which are accessible
from each other. The set of all these classes is then partially ordered by the dynamics
of ϕ . At the bottom of this hierarchy are two special limit sets: the final recurrent
and the final chain-recurrent sets, denoted respectively by Ωfinal(ϕ) and Rfinal(ϕ),
of all states x ∈ Ω(ϕ) (x ∈ R(ϕ)) such that every iterate (pseudo-iterate) of x still
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has some iterate (pseudo-iterate) which comes back to x. These limit sets contain all
the asymptotic dynamical behaviour of ϕ . They both decompose into a finite num-
ber of equivalence classes, called respectively Ω−final and R−final classes. We
denote by Λ Ω

final (ϕ) respectively Λ R
final (ϕ) the set of all equivalence classes of the

limit sets Ωfinal(ϕ) and Rfinal(ϕ). Each Ω−final and R−final class decomposes into
a finite number of connected pieces, called respectively Ω−final and R−final com-
ponents, which are permuted by ϕ . See Theorems 5.1 and 5.2 of [3]. The restriction
of ϕ to each of these pieces is in some sense irreducible. We call period of a final
class to the number of its connected components. The period of a connected compo-
nent is the period of its class. We denote by Σ Ω

final (ϕ) respectively Σ R
final (ϕ) the set

of connected pieces of the limit sets Ωfinal(ϕ) and Rfinal(ϕ). Thus, each open map
ϕ ∈ O(X) induces a permutation πϕ on the set Σ Ω

final (ϕ) of Ω−final components.

Definition 2. Let ϕ , ψ ∈ O(X). We say that ϕ is combinatorially equivalent to ψ ,
and write ϕ ./ ψ , if and only if the permutations πϕ and πψ are conjugated, that
is, there is a bijective map h : Σ Ω

final (ϕ)→ Σ Ω
final (ψ) such that the following diagram

comutes:

Σ Ω
final (ϕ)

h−→ Σ Ω
final (ψ)

πϕ

y yπψ

Σ Ω
final (ϕ)

h−→ Σ Ω
final (ψ)

.

Definition 3. Given a topological subsemigroup O1 ⊆O(X), we say that ϕ ∈O(X)
is combinatorially stable in O1 if and only if there is a neighbourhood U of ϕ in
O1 such that all ψ ∈U are combinatorially equivalent to ϕ .

Theorem 1 (Combinatorial stability characterization). For any ϕ ∈ O(X), ϕ is
combinatorially stable in (O(X),ρ) if and only if ϕ satisfies the following com-
binatorial stability condition: ϕ induces the same permutation on Σ Ω

final (ϕ) and
Σ R

final (ϕ), or, equivalently,
∣∣Λ Ω

final (ϕ)
∣∣= ∣∣Λ R

final (ϕ)
∣∣ and

∣∣Σ Ω
final (ϕ)

∣∣= ∣∣Σ R
final (ϕ)

∣∣.
Proof. In [3, Theorem 5.3.]) we have proved that given any topological semigroup
of open maps O1, ϕ is combinatorially stable in O1 if and only if ϕ satisfies the
combinatorial stability condition. Thus the proof follows immediately in view of
Proposition 5. ut

Theorem 2 (Genericity of combinatorial stability). The set of combinatorially
stable systems is open and dense in (O(X),ρ).

Proof. In [3, Theorem 5.4.]) we have proved that for any topological semigroup of
open maps O1, the set of O1-combinatorially stable maps is open and dense in the
semigroup O1. Thus the proof follows immediately in view of Proposition 5. ut
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4 Topological semigroups of Markov systems

A semigroup H (X) of Markov systems is defined. The key concept of topological semigroup of
Markov systems is introduced. For each f ∈H (X), the Perron-Frobenius operator L f is recalled.
Invariant measures are defined.

We denote by Mprob(X) the space of all Borel probability measures on the com-
pact manifold X . This is a subset of the Banach space M (X) of all finite Borel real
measures on X , with the usual total variation norm ‖µ‖. M (X) is the dual of the
Banach space of continuous real-valued functions on X , denoted here by C0(X),
endowed with the uniform proximity norm ‖ · ‖∞. The space Mprob(X) is a com-
pact and convex subset of M (X) with respect to the weak-∗ topology, which is the
weak topology of M (X) as dual of C0(X). We will call here Markov system to any
weak-∗ continuous mapping p : X→Mprob(X). The probability measure p(x) = px
is referred as the transition probability at state x ∈ X . We denote by MS (X) the set
of all Markov systems. A Markov system p : X →Mprob(X) will also be referred as
a stochastic dynamical system. A Markov system is called deterministic if for some
continuous mapping f : X → X , we have p(x) = δ f (x) for every x ∈ X , where δ f (x)
denotes the Dirac measure sitting at the point f (x). The Perron-Frobenius operator
of a Markov system p : X →Mprob(X) is the linear operator Lp : M (X)→M (X),
defined by

Lp(µ) =
∫

X
p(x) d µ(x) , for every µ ∈M (X) .

The integral of the measure-valued function p is well defined, in a sense that can be
found, for instance, in [7]. The adjoint operator L ∗

p : C0(X)→C0(X), is given by

L ∗
p (ψ)(x) =

∫
X

ψ(y) d px(y) , for every ψ ∈C0(X) .

Both Lp and L ∗
p are bounded linear operators with norms less or equal than 1.

The convolution of two Markov systems p, q ∈MS (X) is p∗q : X →Mprob(X),
where

(p∗q)(x) = Lp(qx) = Lp(Lq(δx)) for every x ∈ X .

The space (MS (X),∗) is a semigroup with identity, where the identity is the deter-
ministic Markov system x 7→ δx. The map p 7→Lp is a semigroup homomorphism
taking MS (X) into the algebra of bounded linear operators on the Banach space
M (X). We will say that a measure µ ∈M (X) is p−invariant when Lpµ = µ , and
that a measurable set A⊆ X is p−invariant when L ∗

p χA = χA, where χA denotes the

characteristic function χA(x) =
{

1 if x ∈ A
0 if x ∈ X−A .

We denote by L1(X ,m) the Banach space of m-integrable functions on X with
the usual L1−norm, ‖h‖1 =

∫
X |h(x)|d m(x). This space is isometrically embedded

in M (X) through the inclusion map L1(X ,m) ↪→M (X), h 7→ hm. We say that a
Markov system p : X →M (X) is absolutely continuous with respect to m if px =



10 Pedro Duarte and Maria Joana Torres

fx m, with fx ∈ L1(X ,m), for every x ∈ X . Absolutely continuous Markov systems
are defined by stochastic transition functions f : X×X → R such that:

(a) f (x,y) is measurable on X×X ,
(b) f (x,y)≥ 0, for every (x,y) ∈ X×X ,
(c)

∫
X f (x,y)dm(y) = 1, for every x ∈ X ,

(d) the real valued function X→R, x 7→
∫

f (x,y)ψ(y)dm(y), is continuous for every
test function ψ ∈C0(X).

A function f : X×X → R satisfying (a), (b), (d) and

(c’)
∫

X f (x,y)dm(y)≤ 1, for every x ∈ X ,

is called a sub-stochastic transition function.

The subset of all absolutely continuous Markov systems forms a sub-semigroup,
without identity, of MS (X). Given two transition functions f ,g : X×X → R, the
convoluted Markov system is defined by the usual function convolution

( f ∗g)(x,z) =
∫

X
f (x,y)g(y,z)dm(y) .

From now on we shall identify each absolutely continuous Markov system with its
probability transition function f : X×X→R. Given any such absolutely continuous
Markov system f , the operator L f takes M (X) into L1(X ,m) and its restriction to
L1(X ,m) is given by

L f (q)(y) =
∫

X
q(x) f (x,y)dm(x) q ∈ Ł1(X ,m) .

The adjoint action on L∞(X ,m) is given by

L ∗
f (g)(x) =

∫
X

f (x,y)g(y)dm(y) g ∈ Ł∞(X ,m) .

Given a Markov system p : X →Mprob(X), σ(Lp) will denote the spectrum of
the Perron-Frobenius operator Lp. The spectral radius of Lp, i.e. the lowest up-
per bound for absolute values of elements in σ(L f ), will be denoted by r(Lp). Of
course r(Lp) = 1. The discrete spectrum of Lp, i.e. the set of all eigenvalues in
σ(Lp) that are isolated and have finite multiplicity, will be denoted by σdisc (Lp).
The complement of σdisc (Lp) in σ(Lp) is called the essential spectrum of Lp,
and denoted by σess (Lp). The essential spectral radius of Lp, i.e. the lowest upper
bound for absolute values of elements in σess

(
L f
)
, is denoted by ress(Lp). It is

well known, see for instance [8], that the Perron operator L f of any absolutely con-
tinuous Markov system f is a weakly compact operator. In particular, ress

(
L f
)
= 0

and, therefore, the spectrum σ(L f ) is at most countable. All spectrum points in
σ(L f )−{0} are isolated eigenvalues with finite multiplicity. Given an absolutely
continuous Markov system f , we can decompose the spectrum of L f as:
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σ(L f ) = σ0(L f )∪σ1(L f ),

where σ0(L f ) =
{

λ ∈ σ(L f ) : |λ |< 1
}
, and σ1(L f ) = σ(L f )− σ0(L f ). Of

course σ1(L f ) is finite while σ0(L f ) is at most countable but closed for the
complex plane topology. Consequently, σ0(L f ) and σ1(L f ) are disjoint compact
sets and, therefore, there is an associated decomposition of L1(X ,m) into two L f -
invariant subspaces:

L1(X ,m) = E0( f )⊕E1( f ) ,

where E1( f ) has finite dimension. We shall denote by rint
(
L f
)

the interior spec-
tral radius of L f , i.e. the lowest upper bound of all absolute values of elements in
σ0(L f ).

Given any absolutely continuous Markov system f a sequence x0, x1, · · · ,xn such
that f (xi−1,xi) > 0 for all i = 1, · · · ,n is called an f−orbit, and we say that xn is
an f−iterate of x0. An absolutely continuous Markov system is called irreducible if
for almost all points x,y ∈ X there is some n ∈N such that the probability transition
density from x to y in n iterates is positive, i.e. f n(x,y)> 0. A recurrence time is any
integer n ∈ N such that the set En = {x ∈ X : f n(x,x) > 0} has positive measure.
Given an absolutely continuous irreducible Markov system f the greatest common
divisor d of all recurrence times n ∈ N is called the period of f . An irreducible
Markov system f is called acyclic if it has period one. The state space X of an
irreducible Markov system f of period d can be decomposed into a finite union of
f d-invariant subsets X = X0∪·· ·∪Xd−1 such that each restriction ( f d)Xi : Xi×Xi→
R, is an irreducible acyclic Markov system on Xi.

We shall denote by fR the restriction to R×R of a given function f : X×X → R,
for any subset R⊆ X . If f is stochastic transition function then:

1. fR is a sub-stochastic transition function.
2. fR is a stochastic transition function⇔ R is f -invariant.

Let H (X) be the set of all absolutely continuous Markov systems (i.e. probabil-
ity transition functions) f : X×X → R satisfying the following extra conditions:

(1) f is bounded on X×X ;
(2) f is lower semi-continuous on X×X ;
(3) for each x ∈ X , the open set ϕ f (x) = {y ∈ X : f (x,y)> 0} is connected.

The space H (X) is a convolution sub-semigroup of MS (X). Item (2) in the
definition of H (X) ensures that ϕ f ∈ O(X). Thus, this semigroup carries a natural
homomorphism ϕ : H (X)→ O(X).

Given f ∈H (X) and an open ϕ f−invariant set R⊆ X , let
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τ f (R) =
1
2

sup
x,z∈R

∫
R
| f (x,y)− f (z,y)| dm(y) (1)

= 1− min
x,z∈R

∫
R

f (x,y)∧ f (z,y)dm(y) .

and
τ
∗
f (R) = inf

n≥1

[
τ f n(R)

]1/n
.

The quantity −ln
(

τ∗f (R)
)

is a kind of mixing rate for the action of L f on
Mprob(R), which measures how fast the L f -iterates of any probability distribution
on R will converge to the unique L f -invariant measure supported in R. Next, we
make some trivial remarks on this concept:

1. τ f n(R) = 0⇔ the transition probabilities f n
x (·) = f n(x, ·) do not depend on x, for

x over R.
2. If for some pair of points x,y ∈ R, the transition probabilities f n

x and f n
y have

disjoint supports, then τ f n(R) = 1.
3. If τ∗f (R)< 1 then the restriction Markov system fR on R is irreducible and acyclic.

Under the same invariance assumption on R⊆ X , ϕ f (R)⊆ R, we define

β f (R) = 1−min
x∈X

∫
R

f (x,y)dm(y) (2)

= sup
x∈X

∫
Rc

f (x,y)dm(y)

and
β
∗
f (R) = inf

n≥1

[
β f n(R)

]1/n
.

The quantity −ln(β ∗f (R)) is a kind of escape rate, which measures how fast the
restriction to Rc of the L f -iterates of any probability distribution on X will tend to
zero. We also make some obvious remarks on this concept:

1. β f n(R) = 0⇔ ϕ f n(X) = (ϕ f )
n(X)⊆ R.

2. If for some point x ∈ X , the transition probability f n
x has support disjoint from R,

then β f n(R) = 1.

3. If β ∗f (R) < 1 then for every x ∈ X the probability density ( f n
x )Rc converges to

zero in L1
Rc , as n→+∞.

We shall say that an open ϕ f−invariant set R⊆ X is an acyclic spectral attractor
for f ∈H (X) if and only if R is connected and τ∗f (R)< 1. When the set R splits
as a disjoint union of d connected sets,
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R = R0 ∪ ϕ f (R0) ∪ ·· · ∪ ϕ
d
f (R0),

such that R0 is an acyclic spectral attractor for f d we say that R is a periodic
spectral attractor of period d. We shall say that an open ϕ f−invariant set R⊆ X is
spectrally attractive for f ∈H (X) if and only if β ∗f (R)< 1.

We can extract some spectral information on L f from the combinatorics of ϕ f .

Proposition 7. ([4, Proposition 5.9.]) Given f ∈H (X), each Ω−final class of pe-
riod d is a periodic spectral attractor of period d for f .

Proposition 8. ([4, Proposition 5.10.]) Given f ∈H (X), Ωfinal(ϕ f ) is spectrally
attractive for f .

Corollary 1. ([4, Corollary 5.11.]) Given f ∈H (X), let Σ Ω
final
(
ϕ f
)
= {R1,R2, · · · ,Rs}.

Let κ f be the maximum between β ∗f (R) and τ∗f (Ri), for i = 1, · · · ,s. Then

rint
(
L f
)
≤ κ f .

Corollary 2. ([4, Corollary 5.12.]) Given f ∈H (X), let Σ Ω
final
(
ϕ f
)
= {R1,R2, · · · ,Rs},

where each component Ri is ϕ
di
f −invariant for some power di ≥ 1. Then there is

a f di -invariant measure supported on Ri, µi = L f di µi, for each i = 1, · · · ,s, such
that:

1. The sum E1( f ) of all generalized eigenspaces associated with eigenvalues in the
unit circle is the s−dimensional space spanned by the measures µ1, · · · ,µs.

2. The action of L f on the invariant subspace E1( f ) w.r.t. the basis {µ1, · · · ,µs} is
represented by the permutation matrix associated with the permutation πϕ f .

3. The eigenvalues of L f in the unit circle are, with multiplicity, the d−unity roots
Ud = {λ ∈C : λ d = 1}, counted for every cycle of length d in permutation πϕ f .

4. The operator induced by L f on the quotient Mprob(X)/E1( f ) is contractive, i.e.,
it has norm less than one.

Consider now any sub-semigroup of Markov systems H1 ⊆H (X), endowed
with some topology.

Definition 4. We say that H1 is a topological semigroup of Markov systems over a
topological semigroup of open maps O1 if and only if for any f ∈H1:

(1) ϕ f ∈ O1;
(2) The map f 7→ ϕ f is continuous for the topology of O1;
(3) H1 admits outer approximations in the sense that given f ∈H1, for every neigh-

borhood N of f in H1 there is g ∈N such that ϕ f ≺ ϕg;

(4) limg→ f

∥∥∥L ∗
f ϕ−L ∗

g ϕ

∥∥∥
∞

= 0 for all ϕ ∈C0(X);

(5) The quantities τ f (R) and β f (R) , defined in (1) and (2), vary upper semicontinu-
ously with f , for any set R⊆ X .
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We now topologize the semigroup H (X) turning it into a topological semigroup
of Markov systems. Consider

d∞( f ,g) = max
(x,y)∈X×X

| f (x,y)−g(x,y)|

and
d1( f ,g) = max

x∈X

∫
X
| f (x,y)−g(x,y)|dm(y).

Define
ρ∞( f ,g) = max{d∞( f ,g),ρ(ϕ f ,ϕg)}

and
ρ1( f ,g) = max{d1( f ,g),ρ(ϕ f ,ϕg)}.

Proposition 9. With the topology associated to any of the metrics ρ∞ and ρ1, H (X)
is a topological semigroup of Markov systems.

Proof. In [4, Proposition 6.2.], we have proved the following result. Consider any
sub-semigroup O1 ⊆O(X) with a topology defined by some metric ρ which makes
it a topological semigroup of open maps. Consider the metrics ρ∞ and ρ1 as defined
above. Then H1 = { f ∈H (X) : ϕ f ∈ O1 } with the topology associated with any
of the metrics ρ∞ and ρ1 is a topological semigroup of Markov systems over O1.
Thus the proof follows immediately in view of Proposition 5. ut

5 Spectral stability of Markov systems

Spectral stability of Markov systems is defined and characterized. Its genericity is proved. Conti-
nuity of the invariant measures.

The main goal of this section is to relate, for generic systems f ∈H (X), the
combinatorial stability of ϕ f with the spectral stability of f , defined below. The
novelty here with respect to finite state Markov system theory is that in this context,
because we are dealing with continuous systems, it makes sense to define stability.
Assume H1 ⊆H (X) is a sub-semigroup endowed with some topology.

Definition 5. We say that f ∈H (X) is spectrally stable in H1 if and only if there
is a neighborhood U of f in H1 and there is 0 < k < 1 such that for all g ∈U :

(1) there is a linear map hg : E1( f )→ E1(g) that conjugates L f |E1( f ) to Lg |E1(g);
(2) the map hg depends continuously on f w.r.t. the topology in H1, in the sense

that for any ϕ ∈C0(X), λϕ ◦hg converges to λϕ as g tends to f in H1, where
λϕ : L1(X ,m)→ R is defined by λϕ(µ) =

∫
ϕ d µ;

(3) σ0(Lg)∩{λ ∈ C : k < |λ |< 1}= /0.
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We note that item (2) above is equivalent to say that the invariant measures of
L f vary continuously with f w.r.t. the weak-∗ topology. The fixed points of this
linear operator are precisely the system invariant measures. The spectral stability of
f relates with the fact that no eigenvalues can enter, or leave, the unit circle.

Theorem 3 (Spectral stability characterization). For any f ∈H (X), f is spec-
trally stable in any of the spaces (H (X),ρ∞) and (H (X),ρ1) if and only if ϕ f
satisfies the combinatorial stability condition.

Proof. In [4, Theorem A]) we have proved that given any topological semigroup
of Markov systems H1, f is spectrally stable in H1 if and only if ϕ f satisfies the
combinatorial stability condition. Thus the proof follows immediately in view of
Proposition 9. ut

Theorem 4 (Genericity of spectral stability). The set of spectrally stable systems
is open and dense in any of the spaces (H (X),ρ∞) and (H (X),ρ1).

Proof. In [4, Theorem B]) we have proved that for any topological semigroup of
Markov systems H1, the set of H1-spectrally stable Markov systems is open and
dense in the semigroup H1. Thus the proof follows immediately in view of Propo-
sition 9. ut
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