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Abstract

We derive some formulas that rule the behaviour of finite differences under
composition of functions with vector values and arguments.
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1. Introduction

The Faà di Bruno formula [2] gives an expression for the n-th derivative
(n ≥ 1) of the composition f ◦ g of two functions f and g in terms of
derivatives of f and g. Functions of class C∞ will be called smooth. To
simplify assumptions we shall always assume that f and g are both smooth
functions. This formula has many versions, depending on the type of deriva-
tives considered. Assume first that f and g are real valued functions of one
real argument. Then the formula takes the following form

(f ◦ g)(n)(x) =
∑ n!

b1! · · · bn!
f (b1+···+bn)(g(x))

(
g′(x)

1!

)b1

· · ·
(

g(n)(x)

n!

)bn

(1)
where the sum is taken over all solutions (b1, . . . , bn) ∈ Nn of the equation

b1 + 2 b2 + . . . + n bn = n .
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We note that N = {0, 1, . . .} starts with zero, so that bi ≥ 0 for every
i = 1, . . . , n.

Assume next that f and g are functions between euclidean spaces of
possibly different dimensions, the domain of f containing the range of g. Let
e1, . . . , ek be vectors in the euclidean domain of g. The list e = (e1, . . . , ek)
will be referred as a k-multi-vector. Given α = (α1, . . . , αk) ∈ Nk and a point
x in the domain of g, we denote by Dαgx(e) the derivative Dα1

e1
◦· · ·◦Dαk

ek
g(x)

of order |α| = α1 + . . . + αk. Given α ∈ Nk, let

[α] = { β ∈ Nk : β ≤ α } = {0, β1, β2, . . . , βm} .

Then, Faà di Bruno’s formula takes the form

Dα(f ◦ g)x(e) =
∑ α!

b1! · · · bm!
D(b1,...,bm)fg(x)

(
Dβ1

gx(e)

(β1)!
, . . . ,

Dβm
gx(e)

(βm)!

)
(2)

where the sum is taken over all solutions (b1, . . . , bm) ∈ Nm of the equation

b1β
1 + b2β

2 + . . . + bmβm = α ,

and α! = α1! α2! · · · αk! when α = (α1, . . . , αk). Assume now the multi-index
α belongs to the discrete cube Ik = {0, 1}k. In this case we have α! = 1,
βi! = 1, and bi ∈ {0, 1}, which implies bi! = 1, for all i = 1, . . . ,m. Then
formula (2) reduces to

Dα(f ◦ g)x(e) =
∑

D(b1,...,bm)fg(x)

(
Dβ1

gx(e), . . . , Dβm

gx(e)
)

where the sum is taken over all solutions (b1, . . . , bm) ∈ Nm of the equation

b1β
1 + b2β

2 + . . . + bmβm = α .

We can simplify this formula a little more.

Definition 1. Given a multi-index α ∈ Ik, we call partition of α with size r
to any subset with r elements {α1 . . . , αr} ⊆ Ik−{0} such that α1+· · ·+αr =
α.
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Of course the size r must range between 1 and |α|, since the smallest
partition {α} has size 1, and |αi| ≥ 1 for each αi in some partition. Then

Dα(f ◦ g)x(e) =
∑

α1+···+αr=α

Dmfg(x)

(
Dα1

gx(e), . . . , Dαr

gx(e)
)

(3)

where the sum is taken over all partitions of α with size ranging from 1 to
|α|. Formula (3) is at the same time a special case and an extension of (2).
Given α ∈ Nk, take ẽ to be the r-multi-vector with αi components equal to
ei, for each i = 1, . . . , k, where r = |α|. Set α̃ ∈ Ir = {0, 1}r to be the multi-
index with all components equal to 1. Then Dα(f ◦ g)x(e) = Dα̃(f ◦ g)x(ẽ).
Grouping and counting equal terms we can derive (2) from (3).

After having written this article we found the reference [3] where a discrete
version of this formula is derived in terms of divided differences. Here we
deal with finite differences instead of divided differences, which means our
formula holds for general functions of several variables. The history of Finite
Difference Calculus goes back a long way, parallel to that of Infinitesimal
Calculus. We refer to [4] for a modern treatment of this calculus. We briefely
recall some basic definitions in order to state our discrete version of Faà di
Bruno’s formula. Given a vector u ∈ X, in some euclidean space X, let τu be
the translation operator defined by (τuf)(x) = f(x + u). This operator acts
on every space of functions f ∈ Y X . The difference operator along vector
u, ∆u : Y X → Y X , is defined by ∆u = id − τu, which corresponds to set
(∆uf)(x) = f(x + u) − f(x). Notice these operators always commute, i.e.,
∆u ◦∆v = ∆v ◦∆u for all vectors u, v ∈ X, since τv ◦ τu = τu+v = τu ◦ τv.

Definition 2. We call finite difference operator of order k to any composition
of k difference operators along possibly repeated vectors. Given a multi-vector
u = (u1, · · · , uk) ∈ Xk, we denote by ∆k

u : Y X → Y X the composite operator
∆k

u = ∆u1 ◦∆u2 ◦ · · · ◦∆uk
. More generally, given α ∈ Nk, ∆α

u = (∆u1)
α1 ◦

. . . ◦ (∆uk
)αk denotes a difference operator of order |α|.

Next we introduce an algebra of symbolic finite difference expressions. Let
x, y, . . . be symbols representing points, u1, u2, . . . be symbols representing
vectors, and f, g, . . . be symbols representing functions. We denote by D

the set of all symbolic finite difference expressions, which we define as the
smallest set of expressions such that:
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1. if x is a symbol representing a point then x ∈ D;

2. if u is a symbol representing a vector then u ∈ D;

3. if t ∈ D and f is a symbol representing a function then f(t) ∈ D;

4. if t, s ∈ D then t + s ∈ D;

5. if α ∈ Nk, s, t1, . . . , tk ∈ D and f is a symbol representing a function
then ∆α

(t1,...,tk)f(s) ∈ D.

We consider as equal all terms which formally can be proved to be equal using
property transformation rules of finite differences. Of course, depending on
the interpretation given to the point, vector and function symbols, many
terms in D will be formal but meaningless expressions. We define recursively
the order of a term ord : D → N:

1. if x is a symbol representing a point then ord(x) = 0;

2. if u is a symbol representing a vector then ord(u) = 1;

3. if t ∈ D and f is a symbol representing a function then ord(f(t)) = 0;

4. if t, s ∈ D then ord(t + s) = min{ord(t), ord(s)};
5. if α ∈ Nk, s, t1, . . . , tk ∈ D and f is a symbol representing a function

then ord
(
∆α

(t1,...,tk)f(s)
)

= α1 ord(t1) + . . . + αk ord(tk).

Given a term t = ∆α
(t1,...,tk)f(s) ∈ D which is meaningful for some interpre-

tation of its symbols (all functions being smooth), if all vectors ui in t are

small of order ε then t is small of order εord(t). The following theorem is
our main result. Let X, Y and Z stand for linear spaces.

Theorem A Given maps f ∈ Y X and g ∈ XZ, and a multi-vector u ∈ Zk,

∆α
u(f ◦ g)(x) =

∑
α1+···+αn=α

∆n
∆α1

u g(x),...,∆αn
u g(x)

f ( g(x) ) + · · · , (4)

where the ellipsis stand for higher order terms.

Next theorem gives an explicit formula for (4).

Theorem B Given α ∈ Ik, there are recursively defined sets, A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr

associated with each partition ξ = {α1, . . . , αr} ⊆ Ik of α, such that

1. the sets A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr are pairwise disjoint;

2. β ∈ A
ξ
β ⊂ [α], for β = 0, α1, . . . , αr;
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3. |γ| > |β|, for every γ ∈ A
ξ
β − {β}; and

for any given maps f ∈ Y X and g ∈ XZ, and any multi-vector u ∈ Zk,

∆α
u(f ◦ g)(x) =

∑
ξ={α1,...,αr}∈Pα

∆ r

uξ

α1 , ..., uξ
αr

f(uξ
0) , (5)

where uξ
β =

∑
γ∈Aξ

β
∆γ

ug(x), for each β = 0, α1, . . . , αr.

See theorem 1. Note that uξ
0 = g(x)+· · · , with remainder

∑
γ∈Aξ

0−{0}
∆γ

ug(x),

and for each i, uξ
αi = ∆αi

u g(x) + · · · , with remainder
∑

γ∈Aξ

αi−{αi} ∆γ
ug(x).

By 3. both these remainders are terms of higher order.

2. The Infinitesimal Formula

Let D ⊆ X be an open domain. The tangent space T (D), and the tangent
map Tf : T (D) → T (Y ), are defined to be T (D) = D×X, respectively
Tf(x, u) = (f(x), Duf(x)). The chain rule shows that construct T is a
functor, which essentially means that T (f ◦g) = Tf ◦Tg. Inductively, we can
define higher order tangent spaces and tangent maps, by setting T k(D) =
T (T k−1(D)) and T k(f) = T (T k−1(f)). Then the iterated correspondence
T k becomes also a functor. The tangent map of order k, T k(f) can be
explicitly expressed in terms of higher order directional derivatives of f . As
we shall see the pattern of these expressions rules the behaviour of higher
order derivatives under composition. To get an explicit expression for T k(f)
we need some special notation to denote elements in T k(D). We shall call
k-cuboid of X to any family u = (uα)α∈Ik of vectors in X indexed over the
discrete cube Ik = {0, 1}k. Notice that any k-cuboid u can be thought of
as a pair of (k − 1)-cuboids, corresponding to restrict its indices to the two
opposite faces {αk = 0} and {αk = 1} of the discrete cube Ik. Therefore, we
can and shall identify the tangent space T k(X) with the set of all k-cuboids
of X:

T k(X) = {u = (uα)α∈Ik : uα ∈ X for all α ∈ Ik } .

The k-tangent space T k(D), to an open domain D, is the set of all k-cuboids
u ∈ T k(X) whose base point u0 belongs to D. The k-tangent space over a
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point x ∈ D is the set T k
x (D) of all u ∈ T k(D) such that u0 = x. We shall

use the multi-index derivative notation

Dα
uf(x) = (Du1)

α1 ◦ . . . ◦ (Duk
)αk f(x) .

Because multi-indices are cumbersome to write, we shall adopt the fol-
lowing writing convention. Given a cuboid u ∈ T k(X), ui1,...,in stands for the
component uα, where α is the multi-index (α1, . . . , αk) defined by αj = 1, if
j ∈ {i1, . . . , in}, αj = 0 otherwise. Given a multi-index u = (u1, . . . , uk) ∈ Xk

we shall denote by 〈〈x; u〉〉 the k-cuboid w such that w0 = x, w1 = u1, . . .,
wk = uk, and wi1,...,in = 0 for all n ≥ 2. With this notation is very easy to
check that

Proposition 1. If f ∈ Y X is a class Ck map, then for all x ∈ X, u ∈ Xk,

T k(f) (〈〈x; u〉〉) = (Dα
uf(x))α∈Ik .

The following kind of notation∑
α1+···+αn=α

Aα1,...,αn

will always denote a sum taken over all partitions of α (see definition 1) with
size ranging from 1 to |α|.

Proposition 2. Given a class Ck map f ∈ Y X and a k-cuboid u ∈ T k
x (X),

writing T kf u = (Tαf u)α∈Ik , we have for each α ∈ Ik

Tαf u =
∑

α1+···+αn=α

D n
uα1 ,...,uαnf(x) . (6)

Proof. This proposition is proved by induction. tu

Let us call order of a term D n
uα1 ,...,uαnf(x) to the sum |α1| + . . . + |αn|.

Then, it is clear that expression (6) is homogeneous: all summands have
order |α|.

A couple of examples

T (1,1)(f)(u) = Du1,2f(x) + D2
u1, u2

f(x)
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T (1,1,1)(f)(u) = Du1,2,3f(x) +

D2
u1, u2,3

f(x) + D2
u2, u1,3

f(x) + D2
u3, u1,2

f(x) +

D3
u1, u2, u3

f(x).

From proposition 1, we see that the tangent map pattern (6) rules the
behaviour of higher order derivatives under composition.

Proposition 3. Given class Ck maps f ∈ Y X and g ∈ XZ, and a multi-
vector u ∈ Zk,

Dα
u(f ◦ g)(x) =

∑
α1+···+αn=α

D n
Dα1

u g(x),...,Dαn
u g(x)

f (g(x)) .

Proof.

Dα
u(f ◦ g)(x) = Tα(f ◦ g)〈〈x; u〉〉

= Tα(f) T k(g)〈〈x; u〉〉
= Tα(f)

(
Dβ

ug(x)
)

β∈Ik

=
∑

α1+···+αn=α

D n
Dα1

u g(x),...,Dαn
u g(x)

f(x)

tu

3. The Discrete Formula

In order to characterize finite difference operators consider as before the
discrete cube Ik = {0, 1}k as a set of multi-indices. Given α ∈ Ik we write
α = (α1, · · · , αk), where each αi represents a binary digit, αi = 0 or αi = 1.
The set Ik is partially ordered by the relation

α ≤ β ⇔ αi ≤ βi, for all i = 1, . . . , k .

We also write |α| = α1 + . . . + αk and α · u = α1 u1 + . . . + αk uk. A simple
computation shows that

Proposition 4. Given f ∈ Y X , for all x ∈ X, and u ∈ Xk,

∆α
uf(x) =

∑
β≤α

(−1)|α|−|β|f (x + β · u)
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A key property of the difference operator ∆ is the following kind of ad-
ditivity.

Proposition 5. Given f ∈ Y X , for all x ∈ X, and u, v ∈ X,

∆u+vf(x) = ∆uf(x) + ∆vf(x + u) . (7)

We define now a discrete equivalent of the k-tangent map to f : X → Y .
This will be a mapping Tk(f) : T k(X) → T k(Y ). The construct Tk will
again be a functor. For that purpose we introduce the difference operator
∆ : T k(X) → T k(X)

∆u = (∆αu)α∈Ik , where ∆αu =
∑
β≤α

(−1)|α|−|β|uβ .

Notice that ∆0u = u0. The operator ∆ is invertible. Its inverse is the sum
operator ∆−1 : T k(X) → T k(X)

∆−1u =

(∑
β≤α

uβ

)
α∈Ik

.

The correspondence f ∈ Y X  f∗ : T k(X) → T k(Y ),

f∗(xα)α∈Ik = (f(xα))α∈Ik ,

is obviously a functor. Thus, defining Tk(f) = ∆ ◦ f∗ ◦∆−1, the correspon-
dence f  Tk(f) is conjugated to f  f∗. Therefore, Tk behaves functorially
too.

Proposition 6. Given f ∈ Y X , for all x ∈ X, and u ∈ Xk,

Tk(f) (〈〈x; u〉〉) = (∆α
uf(x))α∈Ik .

Proof. It is enough to notice that ∆−1〈〈x; u〉〉 = (x + α · u)α∈Ik . tu

We shall say that any component uα, of a k-cuboid u, has order |α|. Then,
we define recursively the order of a finite difference term ∆n

u1,...,un
f(x) to be

the sum of the orders of terms u1, . . ., un. Each term ui can either be some
cuboid component, as in proposition below, or else another finite difference
term, as in theorem A. In both cases the formulas for Tαfu and ∆α

u(f ◦g)(x),
respectively, have a main part which is a sum of order |α| terms, plus a
remainder consisting of terms with order > |α|.
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Proposition 7. Given f ∈ Y X and u ∈ T k
x (X), writing Tkf u = (Tαf u)α∈Ik ,

we have for each α ∈ Ik

Tαf u =
∑

α1+···+αn=α

∆n
uα1 ,...,uαnf( x ) + · · · (8)

where the dots stand for a sum of higher order terms.

Proof. This proposition follows from theorem 1, using the property (7) to
expand differences. tu

Given α ∈ Ik, we shall denote by Pα the set of all partitions ξ =
{α1, . . . , αn} of α. The multi-index obtained from α adding digit 1 at the
end will be denoted by α♦1. Therefore α♦1 belongs to Ik+1 and has order
|α♦1| = |α|+ 1. Next lemma relates Pα with Pα♦1.

Lema 1. Given ξ = {α1, . . . , αn} ∈ Pα, consider the partitions of α♦1

ξ̃0 = {0♦1, α1♦0, . . . , αn♦0} with size n + 1,

ξ̃i = {α1♦0, . . . , αi♦1, . . . , αn♦0} with size n, for 1 ≤ i ≤ n.

These partitions exhaust Pα♦1 without repetitions,

Pα♦1 = {ξ̃i : 0 ≤ i ≤ n, and ξ ∈ Pα } .

Given two k-cuboids u, v ∈ T k(X), we shall denote by w = [[u, v]] the
unique (k + 1)-cuboid such that wα♦0 = uα and wα♦1 = vα.

Lema 2. For all u, v ∈ T k(X),

1. ∆−1[[u, v]] = [[∆−1u, ∆−1(u + v)]].

2. ∆[[u, v]] = [[∆u, ∆v −∆u]].

3. Tk+1(f)[[u, v]] = [[Tk(f)u, Tk(f)(u + v)− Tk(f)u]].

Lema 3.

∆n
(u1+v1), ..., (un+vn)f(x + w)−∆n

u1, ..., un
f(x) =

∆n+1
w,u1, ..., un

f(x) +
n∑

i=1

∆n
u1, ..., ui−1, vi, (ui+1+vi+1), ..., (un+vn)f(x + w + ui)
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Proof. Follows by an iterated application of (7). tu

We call maximum order of a partition ξ = {α1, . . . , αn} ∈ Pα to the
number maxord(ξ) = max{|α1| , . . . , |αn|}.

Theorem 1. Given α ∈ Ik, there are recursively defined sets, A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr

associated with each partition ξ = {α1, . . . , αr} ⊆ Ik of α, such that

1. the sets A
ξ
0, A

ξ
α1 , . . . , A

ξ
αr are pairwise disjoint;

2. β ∈ A
ξ
β ⊂ [α], for β = 0, α1, . . . , αr;

3. 0 < γ < α and |γ| < maxord(ξ), for every γ ∈ A
ξ
0 − {0};

4. αi < γ < α and |γ| ≤ maxord(ξ), for every γ ∈ A
ξ
αi − {αi}; and

for any given maps f ∈ Y X and g ∈ XZ, and any multi-vector u ∈ Zk,

Tαf u =
∑

ξ={α1,...,αr}∈Pα

∆ r

uξ

α1 , ..., uξ
αr

f(uξ
0) , (9)

where uξ
β =

∑
γ∈Aξ

β
uγ, for each β = 0, α1, . . . , αr.

Proof. This proposition is proved by induction in k. It is obvious when
α ∈ Ik with k ≤ 2. Assume it holds when k ≤ n. Any given multi-
index α ∈ Ik+1 is of the form α♦0, or α♦1. Since the first case follows
by induction hypothesis, we now restrict our attention to the second case.
Given w ∈ T k+1(X), write it as a pair w = [[u, v]], of k-cuboids u, v ∈ T k(X).
Using lemma 3 we deduce

Tα♦1(f)(w) = Tα♦1(f)[[u, v]] = Tα(f)(u + v)− Tα(f)u

=
∑

ξ={α1,...,αn}∈Pα

∆n

uξ

α1+vξ

α1 , ..., uξ
αn+vξ

αn
f(uξ

0 + vξ
0) − ∆n

uξ

α1 , ..., uξ
αn

f(uξ
0)

=
∑

ξ={α1,...,αn}∈Pα

∆n+1

vξ
0 ,uξ

α1 , ..., uξ
αn

f(uξ
0) +

+
n∑

i=1

∆n

uξ

α1 , ..., uξ

αi−1 , vξ

αi , (u
ξ

αi+1+vξ

αi+1 ), ..., (uξ
αn+vξ

αn )
f(uξ

0 + vξ
0 + uξ

αi)

To finish the proof we just need to establish a one-to-one correspondence
between summands above and partitions in Pα♦1. Using the notation intro-
duced in lemma 1, the partition ξ̃0 is associated with the first summand,
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while the partitions ξ̃i (1 ≤ i ≤ n) are associated each with one of the sub-
sequent n summands. Making these identifications we arrive at the equation
between the previous sum and the following one:

∑
ξ={α1,...,αn}∈Pα

(
∆n+1

w
ξ̃0
0♦1,w

ξ̃0
α1♦0

, ..., w
ξ̃0
αn♦0

f(wξ̃0
0♦0) +

n∑
i=1

∆n

w
ξ̃
αi

α1♦0
, ..., w

ξ̃
αi

αi−1♦0
, w

ξ̃
αi

αi♦1
..., w

ξ̃
αi

αn♦1

f(w
ξ̃αi

0♦0)

)

which, by lemma 1, is equal to∑
ξ̃={β1,...,βr}∈Pα♦1

∆ r

wξ̃

β1 , ..., wξ̃
βr

f(wξ̃
0) .

We assume that uξ
β =

∑
γ∈Aξ

β
uγ, and similar relations hold for vξ

β, wξ̃
β�0, etc.

Then, matching terms, we arrive at the following recursive equations on the

sets A
ξ̃i

β : 
A

ξ̃0
0♦0 = A

ξ
0 � 0

A
ξ̃0
0♦1 = A

ξ
0 � 1

A
ξ̃0
αi♦0

= A
ξ
αi � 0

and 
A

ξ̃i

αi♦1
= A

ξ
αi♦1 if j = i

A
ξ̃i

αj♦0
= A

ξ
αj♦0 if j < i

A
ξ̃i

αj♦0
= A

ξ
αj♦0 ∪ A

ξ
αj♦1 if j > i

A
ξ̃i

0♦0 = A
ξ
0♦0 ∪ A

ξ
0♦1 ∪ A

ξ
αi♦0

where A � i = { β � i : β ∈ A } for i = 0, 1. These recursive relations ensure
that Tα♦1(f)(w) has the correct development (9). It is now easy to check
inductively that these sets satisfy the conditions 1., 2., 3. and 4. tu

Theorem A in the introduction is a corollary of theorem 1. Its proof is
completly analogous to that of proposition 3 and, therefore, will be omitted.

An algorithm that produces explicit expressions for Tαfu has been de-
vised, which was also used to confirm the correction of the above recursive def-
initions. Its source code can be retrieved from http://ptmat.ptmat.fc.ul.pt/
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∼pduarte/Research/FiniteDifferences/index.html. The following formulas
were computer generated by this package.

T(1,1)f(u) = ∆u1,2f (u0 + u2 + u1) +

∆2
u1,u2

f (u0)

T(1,1,1)f(u) = ∆u1,2,3f (u0 + u3 + u2 + u2,3 + u1 + u1,3 + u1,2) +

∆2
u1,u2,3

f (u0 + u3 + u2) +

∆2
u1,3,u2+u2,3

f (u0 + u3 + u1) +

∆2
u1,2,u3+u2,3+u1,3

f (u0 + u2 + u1) +

∆3
u1,u2,u3

f (u0)

∆2
v(f ◦ g)(x) = ∆∆2

v1,v2
g(x)f (g(x) + ∆v1g (x) + ∆v2g (x)) +

∆2
∆v1g(x),∆v2g(x)f (g(x))

∆3
v(f ◦ g)(x) = ∆∆3

v1,v2,v3
g(x)f (g(x) + ∆v1g (x) + ∆v2g (x) + ∆v3g (x) +

∆2
v1,v2

g (x) + ∆2
v1,v3

g (x) + ∆2
v2,v3

g (x)
)

+

∆2
∆v1g(x),∆2

v2,v3
g(x)f (g(x) + ∆v2g (x) + ∆v3g (x)) +

∆2
∆2

v1,v3
g(x),∆v2g(x)+∆2

v2,v3
g(x)f (g(x) + ∆v1g (x) + ∆v3g (x)) +

∆2
∆2

v1,v2
g(x),∆v3g(x)+∆2

v1,v3
g(x)+∆2

v2,v3
g(x)f (g(x) + ∆v1g (x) + ∆v2g (x)) +

∆3
∆v1g(x),∆v2g(x),∆v3g(x)f (g(x))
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