
Birkhoff and Kingman’s Theorems

Abstract

Proofs of Birkhoff and Kingman ergodic theorems based on the article [1] by Y.
Katznelson and B. Weiss.

1 Notation

We will use the notation f+(x) := max{f(x), 0} and f−(x) := max{−f(x), 0}, so that
the following relations hold

f = f+ − f− and |f | = f+ + f−.

2 Birkhoffs Ergodic Theorem

Given f : X → R we write

Sn(f)(x) :=

n−1∑
j=0

f(T jx).

This sum is called Birkhoff’s time average of the observable f .

Theorem 1 (BET). Let (T,X;F, µ) be a MPDS. Given f ∈ L1(X,µ), the following limit
exists for µ-a.e. x ∈ X

f∗(x) = lim
n→+∞

1

n
Sn(f)(x).

Moreover the limit function f∗ : X → R satisfies:

(a) f∗ ∈ L1(X,µ),

(b) f∗ ◦ T = f∗ µ-a.e.,

(c)
∫
X
f∗ dµ =

∫
X
f dµ.

Exercise 1. Show that it is enough to prove the BET for f ≥ 0, f ∈ L1(X,µ).
Hint: Using the decomposition f = f+ − f−, see that f∗ = (f+)∗ − (f−)∗ and also
Sn(f) = Sn(f+)− Sn(f−).
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Given f : X → R we define f, f̄ : X → [−∞,+∞],

f(x) := lim inf
n→+∞

1

n
Sn(f)(x),

f̄(x) := lim sup
n→+∞

1

n
Sn(f)(x).

Exercise 2. Prove that for any measurable function f : X → R, the functions f and f̄
are measurable and T -invariant.

Remark 1. Under the assumptions of the BET if one can prove that∫
X

f̄ dµ ≤
∫
X

f dµ ≤
∫
X

f dµ (1)

then all conclusions of the BET follow.

Given M > 0 we define the M -truncation of f : X → R to be the function

fM : X → R, fM (x) := min{f(x),M}.

Exercise 3. Prove that the following monotonic convergences hold for every x ∈ X

1. fM (x)↗ f(x) as M → +∞,

2. fM (x)↗ f̄(x) as M → +∞,

3. fM (x)↗ f(x) as M → +∞.

Exercise 4. Show it is enough to prove (1) for f non-negative and bounded measurable
functions. Conclude it is enough to consider functions such that 0 ≤ f ≤ 1.
Hint: Use exercise 3 and the monotone convergence theorem.

Proof of the BET. Let f : X → R be a measurable function such that 0 ≤ f ≤ 1, and
take ε > 0.

By Remark 1 it is enough to see that

(a)
∫
f̄ dµ ≤

∫
f dµ+ 3ε, and

(b)
∫
f dµ ≤

∫
f dµ+ 3ε.

To prove (a) define n : X → N,

n(x) := min

{
n ≥ 1:

1

n
Sn(f)(x) ≥ f̄(x)− ε

}
.

Since 0 ≤ f ≤ f̄ ≤ 1, the function n(x) takes finite values everywhere. By definition

f̄(x) ≤ 1

n(x)
Sn(x)(f)(x) + ε. (2)
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By invariance of f̄ ,

f̄(T jx) ≤ 1

n(x)
Sn(x)(f)(x) + ε.

Adding up these inequalities in j = 0, 1, . . . , n(x)− 1 we get

Sn(x)(f̄)(x) ≤ Sn(x)(f)(x) + n(x)ε. (3)

Consider now the sets XN := {x ∈ X : n(x) ≤ n}. Because X = ∪N≥1XN (mod 0),
for N large enough µ(X \XN ) < ε. Next we define the functions ñ : X → N

ñ(x) :=

{
n(x) if x ∈ XN

1 if x /∈ XN

and f̃ : X → R

f̃(x) :=

{
f(x) if x ∈ XN

1 if x /∈ XN

With this notation, (3) implies that

Sñ(x)(f̄)(x) ≤ Sñ(x)(f̃)(x) + ñ(x)ε. (4)

Observe also that ∫
f̃ dµ ≤

∫
XM

f dµ+

∫
X\XM

1 dµ

≤
∫
f dµ+ µ(X \XM ) ≤

∫
f dµ+ ε. (5)

The random variable ñ(x) is referred as a stopping time in Probability Theory. Katznel-
son and Weiss idea is to split the orbit {Tnx}n≥0 along the sequence of stopping times
ñ(x), ñ(Tn(x)x), etc. By construction the distance between consecutive stopping times is
bounded by N , while we have good bounds for the time averages of f between any two
consecutive stopping times. More precisely, define recursively{

n0(x) := 0
nk(x) := nk−1(x) + ñ(Tnk−1(x)x)

.

Given L > N
ε , choose the largest k = k(x) ∈ N such that nk(x) ≤ L, so that in particular

L− nk(x) < N . From (4) we get

SL(f̄)(x) =

k−1∑
l=0

Sñ(Tnlx)(f̄)(Tnlx) + SL−nk
(f̄)(Tnkx)

≤
k−1∑
l=0

Sñ(Tnlx)(f̃)(Tnlx) + SL−nk
(f̄)(Tnkx) + Lε

≤ SL(f̃)(x) +N + Lε.
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Hence, dividing by L and integrating, from (5) we get∫
f̄ dµ =

∫
SL(f̄) dµ ≤

∫
SL(f̃) dµ+

N

L
+ ε.

≤
∫
f̃ dµ+

N

L
+ ε ≤

∫
f̃ dµ+ 2ε.

≤
∫
f dµ+ 3ε.

This proves (a).

Exercise 5. Prove claim (b) adapting the proof of (a).

Exercise 6. Prove the following extension of the BET: Given a measurable non-negative
function f : X → [0,+∞), the following limit exists for µ-a.e. x ∈ X

f∗(x) = lim
n→+∞

1

n
Sn(f)(x) ∈ [0,+∞].

Moreover the limit function f∗ : X → [0,+∞] satisfies:

(a) f∗ ◦ T = f∗ µ-a.e.,

(b)
∫
X
f∗ dµ =

∫
X
f dµ.

Hint: Use exercise 3.

Exercise 7. Prove the following extension of the BET: Given a measurable function
f : X → R such that f+ ∈ L1(X,µ), the following limit exists for µ-a.e. x ∈ X

f∗(x) = lim
n→+∞

1

n
Sn(f)(x) ∈ [−∞,+∞).

Moreover the limit function f∗ : X → [−∞,+∞) satisfies:

(a) f∗ ◦ T = f∗ µ-a.e.,

(b)
∫
X
f∗ dµ =

∫
X
f dµ.

Hint: Use exercise 6.

3 Kingman’s Ergodic Theorem

A sequence of numbers {an}n≥0 in [−∞,+∞) is called sub-additive if

an+m ≤ an + am for all n,m ≥ 0 .
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Lemma 1 (Fekete’s Subadditive Lemma). Given a sub-additive sequence {an}n≥0 the
following limit converges

lim
n→∞

an
n

= inf
n≥1

an
n
∈ [−∞,+∞) .

Proof. If ap = −∞ for some p ∈ N then, by sub-additivity, an = −∞ for all n ≥ p.
Assume now that an > −∞ for all n ≥ 1. Let L = infn≥1 an/n ∈ [−∞,∞) and choose
any number L′ > L. Take k ≥ 1 such that ak/k < L′.

n = q k + r with 0 ≤ r < k. Hence by sub-additivity

an
n
≤ q ak + ar

n
=
n− r
n

ak
k

+
ar
n
.

Since (n− r)/n converges to 1 and ar/n converges to 0, as n→ +∞, there exists n0 ∈ N
such that an/n < L′ for all n ≥ n0. This proves that

lim
n→+∞

an
n

= L .

A random process {fn}n≥1 over the MPDS (T,X,F, µ), i.e., a sequence of random
variables fn : X → R on (X,F, µ), is called sub-additive when for all n,m ≥ 1,

fn+m ≤ fn ◦ Tm + fm.

Theorem 2 (KET). Let (T,X,F, µ) be MPDS. Given a sub-additive random process
{fn}n≥1 such that f+1 ∈ L1(X,µ) then the following limit exists for µ-a.e. x ∈ X

φ(x) = lim
n→+∞

1

n
fn(x) ∈ [−∞,+∞).

Moreover the limit function φ : X → [−∞,+∞) satisfies:

(a) φ ◦ T = φ µ-a.e.,

(b)
∫
X
φdµ = limn→+∞

1
n

∫
X
fn dµ = infn≥1

1
n

∫
X
fn dµ ∈ [−∞,+∞).

Given the process {fn}n≥1 define f, f̄ : X → [−∞,+∞),

f(x) := lim inf
n→+∞

1

n
fn(x),

f̄(x) := lim sup
n→+∞

1

n
fn(x).

From sub-additivity of {fn}n≥1 we get for all j ≥ 0

fn+m(T jx) ≤ fn(Tm+jx) + fm(T jx).
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Hence, adding up we have for all L ∈ N and n,m ≥ 1

SL(fn+m)(x) ≤ SL(fn)(Tmx) + SL(fm)(x).

Dividing by L and taking the limit as L→ +∞, for all n,m ≥ 1

f∗n+m(x) ≤ f∗n(x) + f∗m(x).

By Fekete’s lemma (Lemma 1) the following limit exists for all x ∈ X,

φ(x) = lim
n→+∞

1

n
f∗n(x).

Exercise 8. Prove that φ is T -invariant.

Exercise 9. Given a sub-additive process {fn}n≥1 such that f+1 ∈ L1(X,µ), prove that
for all n ≥ 1, f+n ∈ L1(X,µ).

Exercise 10. Given f : X → R measurable, prove that:

(a) lim infn→+∞
1
n |f(Tnx)| = 0, for µ-a.e. x ∈ X.

(b) If f ◦ T − f ∈ L1(X,µ) then lim
n→+∞

1

n
f(Tnx) = 0, for µ-a.e. x ∈ X.

(c) If f ∈ L1(X,µ) then lim
n→+∞

1

n
f(Tnx) = 0, for µ-a.e. x ∈ X.

(d) If f+ ∈ L1(X,µ) then lim sup
n→+∞

1

n
f(Tnx) ≤ 0, for µ-a.e. x ∈ X.

The next step to KET is the following

Lemma 2. Under the assumptions of the KET, f̄(x) ≤ φ(x) for µ-a.e. x ∈ X.

Proof. Fix N ∈ N large and take n � N . For any i = 0, 1, . . . , N − 1, dividing n − i by
N there are integers m and 0 ≤ k < N such that n = i+mN + k. By sub-additivity,

fn(x) ≤ fi(x) + fmN (T ix) + fk(T i+mNx)

≤ fi(x) +

m−1∑
l=0

fN (T i+lNx) + fn−i−mN (T i+mNx) .

Adding up in i = 0, 1, . . . , N − 1 we get

N fn(x) ≤ fi(x) + fmN (T ix) + fk(T i+mNx)

≤
N−1∑
i=0

fi(x) +

N−1∑
i=0

m−1∑
l=0

fN (T i+lNx) +

N−1∑
i=0

fn−i−mN (T i+mNx)

≤
n−1∑
j=0

fN (T jx) +

N−1∑
i=0

(
fi(x) + fn−i−mN (T i+mNx)

)
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and dividing by nN

1

n
fn(x) ≤ 1

nN

n−1∑
j=0

fN (T jx) +
1

nN

N−1∑
i=0

(
fi(x) + fn−i−mN (T i+mNx)

)
.

By exercise 10, the two terms on the right either converge to 0 or else have a limsup which
is ≤ 0. Hence, using BET (exercise 7) and taking the limit as n→ +∞

f̄(x) ≤ 1

N
f∗N (x).

Finally, this implies

f̄(x) ≤ φ(x) = inf
N≥1

1

N
f∗N (x).

Remark 2. Under the assumptions of the KET if one can prove that

φ(x) = lim
n→+∞

1

n
fn(x) for µ-a.e.x ∈ X (6)

then all conclusions of the BET follow.

Exercise 11. Show it is enough to prove (6) when φ is bounded from below, i.e., φ ≥ −M .
Hint: For each M > 0, the set XM := {x ∈ X : φ(x) ≥ −M} is T -invariant.

Exercise 12. Prove that if {fn}n≥1 is a sub-additive process then so is {fn + nM}n≥1,
for any constant M .

Use this fact to show that it is enough to prove (6) when φ > 0 µ-a.e..
Hint: If φ ≥ −M consider the sub-additive process {fn + n (M + 1)}n≥1.

Proof of the KET. Let us assume that φ > 0 µ-a.e.. By exercise 9, f+n ∈ L1(X,µ) for all
n ∈ N.

Given ε > 0 define

n(x) := min

{
n ≥ 1:

1

n
fn(x) ≤ f+(x) + ε

}
.

By definition
1

n(x)
fn(x)(x) ≤ f+(x) + ε. (7)

By invariance of f+,
1

n(x)
fn(x)(x) ≤ f+(T jx) + ε.

Adding up these inequalities in j = 0, 1, . . . , n(x)− 1 we get

fn(x)(x) ≤ Sn(x)(f
+)(x) + n(x)ε. (8)
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Consider now the sets XN := {x ∈ X : n(x) ≤ n}. Because X = ∪N≥1XN (mod 0),
for N large enough

∫
X
f+1 dµ < ε. Next we define the functions ñ : X → N

ñ(x) :=

{
n(x) if x ∈ XN

1 if x /∈ XN

and f̃+ : X → R

f̃+(x) :=

{
f+(x) if x ∈ XN

f1(x) if x /∈ XN

With this notation, (8) implies that

fñ(x)(x) ≤ Sñ(x)(f̃
+)(x) + ñ(x)ε. (9)

Observe also that ∫
f̃+ dµ ≤

∫
XM

f+ dµ+

∫
X\XM

f1 dµ

≤
∫
f+ dµ+

∫
f+1 dµ ≤

∫
f+dµ+ ε. (10)

Next we define recursively the sequence of stopping times{
n0(x) := 0
nk(x) := nk−1(x) + ñ(Tnk−1(x)x)

.

Given L > N
ε

∫
f+1 dµ, choose the largest k = k(x) ∈ N such that nk(x) ≤ L, so that in

particular L− nk(x) < N . From (9) we get

fL(x) ≤
k−1∑
l=0

fñ(Tnlx)(T
nlx) + fL−nk

(Tnkx)

≤
k−1∑
l=0

Sñ(Tnlx)(f̃
+)(Tnlx) + fL−nk

(Tnkx) + Lε

≤ Snk
(f̃+)(x) +

L∑
j=nk

f+1 (T jx) + Lε.

Hence, dividing by L and integrating, from (10) we get∫
φdµ ≤

∫
1

L
f∗L dµ =

∫
1

L
fL dµ

≤
∫
SL(f̃+) dµ+

N

L

∫
f+1 dµ+ ε

≤
∫
f̃+dµ+ 2ε ≤

∫
f+ dµ+ 3ε.
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By definition f ≤ f+. On the other hand, by Lemma 2, f ≤ f̄ ≤ φ. Hence, since

φ ≥ 0 we get f+ ≤ φ. Thus, because∫
(f+ − φ︸ ︷︷ ︸
≤0

)dµ ≥ 0

we have φ = f+ µ-a.e.. Finally, if f+(x) 6= f(x) then f+(x) = 0, and because φ > 0
µ-a.e., this can only happen on a set with zero measure. Therefore f = φ µ-a.e..
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