Birkhoff and Kingman's Theorems

Abstract

Proofs of Birkhoff and Kingman ergodic theorems based on the article [1] by Y. Katznelson and B. Weiss.

1 Notation

We will use the notation $f^{+}(x):=\max \{f(x), 0\}$ and $f^{-}(x):=\max \{-f(x), 0\}$, so that the following relations hold

$$
f=f^{+}-f^{-} \quad \text { and } \quad|f|=f^{+}+f^{-}
$$

2 Birkhoffs Ergodic Theorem

Given $f: X \rightarrow \mathbb{R}$ we write

$$
S_{n}(f)(x):=\sum_{j=0}^{n-1} f\left(T^{j} x\right)
$$

This sum is called Birkhoff's time average of the observable f.
Theorem 1 (BET). Let $(T, X ; \mathcal{F}, \mu)$ be a MPDS. Given $f \in L^{1}(X, \mu)$, the following limit exists for μ-a.e. $x \in X$

$$
f^{*}(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} S_{n}(f)(x)
$$

Moreover the limit function $f^{*}: X \rightarrow \mathbb{R}$ satisfies:
(a) $f^{*} \in L^{1}(X, \mu)$,
(b) $f^{*} \circ T=f^{*} \mu$-a.e.,
(c) $\int_{X} f^{*} d \mu=\int_{X} f d \mu$.

Exercise 1. Show that it is enough to prove the BET for $f \geq 0, f \in L^{1}(X, \mu)$.
Hint: Using the decomposition $f=f^{+}-f^{-}$, see that $f^{*}=\left(f^{+}\right)^{*}-\left(f^{-}\right)^{*}$ and also $S_{n}(f)=S_{n}\left(f^{+}\right)-S_{n}\left(f^{-}\right)$.

Given $f: X \rightarrow \mathbb{R}$ we define $\underline{f}, \bar{f}: X \rightarrow[-\infty,+\infty]$,

$$
\begin{aligned}
\underline{f}(x) & :=\liminf _{n \rightarrow+\infty} \frac{1}{n} S_{n}(f)(x) \\
\bar{f}(x) & :=\limsup _{n \rightarrow+\infty} \frac{1}{n} S_{n}(f)(x)
\end{aligned}
$$

Exercise 2. Prove that for any measurable function $f: X \rightarrow \mathbb{R}$, the functions \underline{f} and \bar{f} are measurable and T-invariant.

Remark 1. Under the assumptions of the BET if one can prove that

$$
\begin{equation*}
\int_{X} \bar{f} d \mu \leq \int_{X} f d \mu \leq \int_{X} \underline{f} d \mu \tag{1}
\end{equation*}
$$

then all conclusions of the BET follow.
Given $M>0$ we define the M-truncation of $f: X \rightarrow \mathbb{R}$ to be the function

$$
f_{M}: X \rightarrow \mathbb{R}, \quad f_{M}(x):=\min \{f(x), M\}
$$

Exercise 3. Prove that the following monotonic convergences hold for every $x \in X$

1. $f_{M}(x) \nearrow f(x)$ as $M \rightarrow+\infty$,
2. $\overline{f_{M}}(x) \nearrow \bar{f}(x)$ as $M \rightarrow+\infty$,
3. $\underline{f_{M}}(x) \nearrow \underline{f}(x)$ as $M \rightarrow+\infty$.

Exercise 4. Show it is enough to prove (1) for f non-negative and bounded measurable functions. Conclude it is enough to consider functions such that $0 \leq f \leq 1$.
Hint: Use exercise 3 and the monotone convergence theorem.
Proof of the BET. Let $f: X \rightarrow \mathbb{R}$ be a measurable function such that $0 \leq f \leq 1$, and take $\varepsilon>0$.

By Remark 1 it is enough to see that
(a) $\int \bar{f} d \mu \leq \int f d \mu+3 \varepsilon$, and
(b) $\int f d \mu \leq \int \underline{f} d \mu+3 \varepsilon$.

To prove (a) define $n: X \rightarrow \mathbb{N}$,

$$
n(x):=\min \left\{n \geq 1: \frac{1}{n} S_{n}(f)(x) \geq \bar{f}(x)-\varepsilon\right\}
$$

Since $0 \leq \underline{f} \leq \bar{f} \leq 1$, the function $n(x)$ takes finite values everywhere. By definition

$$
\begin{equation*}
\bar{f}(x) \leq \frac{1}{n(x)} S_{n(x)}(f)(x)+\varepsilon \tag{2}
\end{equation*}
$$

By invariance of \bar{f},

$$
\bar{f}\left(T^{j} x\right) \leq \frac{1}{n(x)} S_{n(x)}(f)(x)+\varepsilon
$$

Adding up these inequalities in $j=0,1, \ldots, n(x)-1$ we get

$$
\begin{equation*}
S_{n(x)}(\bar{f})(x) \leq S_{n(x)}(f)(x)+n(x) \varepsilon \tag{3}
\end{equation*}
$$

Consider now the sets $X_{N}:=\{x \in X: n(x) \leq n\}$. Because $X=\cup_{N \geq 1} X_{N}(\bmod 0)$, for N large enough $\mu\left(X \backslash X_{N}\right)<\varepsilon$. Next we define the functions $\tilde{n}: X \rightarrow \mathbb{N}$

$$
\tilde{n}(x):=\left\{\begin{array}{cll}
n(x) & \text { if } & x \in X_{N} \\
1 & \text { if } & x \notin X_{N}
\end{array}\right.
$$

and $\tilde{f}: X \rightarrow \mathbb{R}$

$$
\tilde{f}(x):=\left\{\begin{array}{cll}
f(x) & \text { if } & x \in X_{N} \\
1 & \text { if } & x \notin X_{N}
\end{array}\right.
$$

With this notation, (3) implies that

$$
\begin{equation*}
S_{\tilde{n}(x)}(\bar{f})(x) \leq S_{\tilde{n}(x)}(\tilde{f})(x)+\tilde{n}(x) \varepsilon \tag{4}
\end{equation*}
$$

Observe also that

$$
\begin{align*}
\int \tilde{f} d \mu & \leq \int_{X_{M}} f d \mu+\int_{X \backslash X_{M}} 1 d \mu \\
& \leq \int f d \mu+\mu\left(X \backslash X_{M}\right) \leq \int f d \mu+\varepsilon \tag{5}
\end{align*}
$$

The random variable $\tilde{n}(x)$ is referred as a stopping time in Probability Theory. Katznelson and Weiss idea is to split the orbit $\left\{T^{n} x\right\}_{n \geq 0}$ along the sequence of stopping times $\tilde{n}(x), \tilde{n}\left(T^{n(x)} x\right)$, etc. By construction the distance between consecutive stopping times is bounded by N, while we have good bounds for the time averages of f between any two consecutive stopping times. More precisely, define recursively

$$
\left\{\begin{array}{l}
n_{0}(x):=0 \\
n_{k}(x):=n_{k-1}(x)+\tilde{n}\left(T^{n_{k-1}(x)} x\right)
\end{array}\right.
$$

Given $L>\frac{N}{\varepsilon}$, choose the largest $k=k(x) \in \mathbb{N}$ such that $n_{k}(x) \leq L$, so that in particular $L-n_{k}(x)<N$. From (4) we get

$$
\begin{aligned}
S_{L}(\bar{f})(x) & =\sum_{l=0}^{k-1} S_{\tilde{n}\left(T^{n_{l}} x\right)}(\bar{f})\left(T^{n_{l}} x\right)+S_{L-n_{k}}(\bar{f})\left(T^{n_{k}} x\right) \\
& \leq \sum_{l=0}^{k-1} S_{\tilde{n}\left(T^{n_{l}} x\right)}(\tilde{f})\left(T^{n_{l}} x\right)+S_{L-n_{k}}(\bar{f})\left(T^{n_{k}} x\right)+L \varepsilon \\
& \leq S_{L}(\tilde{f})(x)+N+L \varepsilon
\end{aligned}
$$

Hence, dividing by L and integrating, from (5) we get

$$
\begin{aligned}
\int \bar{f} d \mu & =\int S_{L}(\bar{f}) d \mu \leq \int S_{L}(\tilde{f}) d \mu+\frac{N}{L}+\varepsilon \\
& \leq \int \tilde{f} d \mu+\frac{N}{L}+\varepsilon \leq \int \tilde{f} d \mu+2 \varepsilon \\
& \leq \int f d \mu+3 \varepsilon
\end{aligned}
$$

This proves (a).
Exercise 5. Prove claim (b) adapting the proof of (a).

Exercise 6. Prove the following extension of the BET: Given a measurable non-negative function $f: X \rightarrow[0,+\infty)$, the following limit exists for μ-a.e. $x \in X$

$$
f^{*}(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} S_{n}(f)(x) \in[0,+\infty]
$$

Moreover the limit function $f^{*}: X \rightarrow[0,+\infty]$ satisfies:
(a) $f^{*} \circ T=f^{*} \mu$-a.e.,
(b) $\int_{X} f^{*} d \mu=\int_{X} f d \mu$.

Hint: Use exercise 3.
Exercise 7. Prove the following extension of the BET: Given a measurable function $f: X \rightarrow \mathbb{R}$ such that $f^{+} \in L^{1}(X, \mu)$, the following limit exists for μ-a.e. $x \in X$

$$
f^{*}(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} S_{n}(f)(x) \in[-\infty,+\infty)
$$

Moreover the limit function $f^{*}: X \rightarrow[-\infty,+\infty)$ satisfies:
(a) $f^{*} \circ T=f^{*} \mu$-a.e.,
(b) $\int_{X} f^{*} d \mu=\int_{X} f d \mu$.

Hint: Use exercise 6.

3 Kingman's Ergodic Theorem

A sequence of numbers $\left\{a_{n}\right\}_{n \geq 0}$ in $[-\infty,+\infty)$ is called sub-additive if

$$
a_{n+m} \leq a_{n}+a_{m} \quad \text { for all } n, m \geq 0
$$

Lemma 1 (Fekete's Subadditive Lemma). Given a sub-additive sequence $\left\{a_{n}\right\}_{n \geq 0}$ the following limit converges

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=\inf _{n \geq 1} \frac{a_{n}}{n} \in[-\infty,+\infty) .
$$

Proof. If $a_{p}=-\infty$ for some $p \in \mathbb{N}$ then, by sub-additivity, $a_{n}=-\infty$ for all $n \geq p$. Assume now that $a_{n}>-\infty$ for all $n \geq 1$. Let $L=\inf _{n \geq 1} a_{n} / n \in[-\infty, \infty)$ and choose any number $L^{\prime}>L$. Take $k \geq 1$ such that $a_{k} / k<L^{\prime}$.
$n=q k+r$ with $0 \leq r<k$. Hence by sub-additivity

$$
\frac{a_{n}}{n} \leq \frac{q a_{k}+a_{r}}{n}=\frac{n-r}{n} \frac{a_{k}}{k}+\frac{a_{r}}{n} .
$$

Since $(n-r) / n$ converges to 1 and a_{r} / n converges to 0 , as $n \rightarrow+\infty$, there exists $n_{0} \in \mathbb{N}$ such that $a_{n} / n<L^{\prime}$ for all $n \geq n_{0}$. This proves that

$$
\lim _{n \rightarrow+\infty} \frac{a_{n}}{n}=L .
$$

A random process $\left\{f_{n}\right\}_{n \geq 1}$ over the $\operatorname{MPDS}(T, X, \mathcal{F}, \mu)$, i.e., a sequence of random variables $f_{n}: X \rightarrow \mathbb{R}$ on (X, \mathcal{F}, μ), is called sub-additive when for all $n, m \geq 1$,

$$
f_{n+m} \leq f_{n} \circ T^{m}+f_{m} .
$$

Theorem 2 (KET). Let (T, X, \mathcal{F}, μ) be MPDS. Given a sub-additive random process $\left\{f_{n}\right\}_{n \geq 1}$ such that $f_{1}^{+} \in L^{1}(X, \mu)$ then the following limit exists for μ-a.e. $x \in X$

$$
\phi(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} f_{n}(x) \in[-\infty,+\infty) .
$$

Moreover the limit function $\phi: X \rightarrow[-\infty,+\infty)$ satisfies:
(a) $\phi \circ T=\phi \mu$-a.e.,
(b) $\int_{X} \phi d \mu=\lim _{n \rightarrow+\infty} \frac{1}{n} \int_{X} f_{n} d \mu=\inf _{n \geq 1} \frac{1}{n} \int_{X} f_{n} d \mu \in[-\infty,+\infty)$.

Given the process $\left\{f_{n}\right\}_{n \geq 1}$ define $\underline{f}, \bar{f}: X \rightarrow[-\infty,+\infty)$,

$$
\begin{aligned}
\underline{f}(x) & :=\liminf _{n \rightarrow+\infty} \frac{1}{n} f_{n}(x), \\
\bar{f}(x) & :=\limsup _{n \rightarrow+\infty} \frac{1}{n} f_{n}(x) .
\end{aligned}
$$

From sub-additivity of $\left\{f_{n}\right\}_{n \geq 1}$ we get for all $j \geq 0$

$$
f_{n+m}\left(T^{j} x\right) \leq f_{n}\left(T^{m+j} x\right)+f_{m}\left(T^{j} x\right) .
$$

Hence, adding up we have for all $L \in \mathbb{N}$ and $n, m \geq 1$

$$
S_{L}\left(f_{n+m}\right)(x) \leq S_{L}\left(f_{n}\right)\left(T^{m} x\right)+S_{L}\left(f_{m}\right)(x)
$$

Dividing by L and taking the limit as $L \rightarrow+\infty$, for all $n, m \geq 1$

$$
f_{n+m}^{*}(x) \leq f_{n}^{*}(x)+f_{m}^{*}(x)
$$

By Fekete's lemma (Lemma 1) the following limit exists for all $x \in X$,

$$
\phi(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} f_{n}^{*}(x)
$$

Exercise 8. Prove that ϕ is T-invariant.
Exercise 9. Given a sub-additive process $\left\{f_{n}\right\}_{n \geq 1}$ such that $f_{1}^{+} \in L^{1}(X, \mu)$, prove that for all $n \geq 1, f_{n}^{+} \in L^{1}(X, \mu)$.
Exercise 10. Given $f: X \rightarrow \mathbb{R}$ measurable, prove that:
(a) $\lim \inf _{n \rightarrow+\infty} \frac{1}{n}\left|f\left(T^{n} x\right)\right|=0$, for μ-a.e. $x \in X$.
(b) If $f \circ T-f \in L^{1}(X, \mu)$ then $\lim _{n \rightarrow+\infty} \frac{1}{n} f\left(T^{n} x\right)=0$, for μ-a.e. $x \in X$.
(c) If $f \in L^{1}(X, \mu)$ then $\lim _{n \rightarrow+\infty} \frac{1}{n} f\left(T^{n} x\right)=0$, for μ-a.e. $x \in X$.
(d) If $f^{+} \in L^{1}(X, \mu)$ then $\limsup _{n \rightarrow+\infty} \frac{1}{n} f\left(T^{n} x\right) \leq 0$, for μ-a.e. $x \in X$.

The next step to KET is the following
Lemma 2. Under the assumptions of the KET, $\bar{f}(x) \leq \phi(x)$ for μ-a.e. $x \in X$.
Proof. Fix $N \in \mathbb{N}$ large and take $n \gg N$. For any $i=0,1, \ldots, N-1$, dividing $n-i$ by N there are integers m and $0 \leq k<N$ such that $n=i+m N+k$. By sub-additivity,

$$
\begin{aligned}
f_{n}(x) & \leq f_{i}(x)+f_{m N}\left(T^{i} x\right)+f_{k}\left(T^{i+m N} x\right) \\
& \leq f_{i}(x)+\sum_{l=0}^{m-1} f_{N}\left(T^{i+l N} x\right)+f_{n-i-m N}\left(T^{i+m N} x\right)
\end{aligned}
$$

Adding up in $i=0,1, \ldots, N-1$ we get

$$
\begin{aligned}
N f_{n}(x) & \leq f_{i}(x)+f_{m N}\left(T^{i} x\right)+f_{k}\left(T^{i+m N} x\right) \\
& \leq \sum_{i=0}^{N-1} f_{i}(x)+\sum_{i=0}^{N-1} \sum_{l=0}^{m-1} f_{N}\left(T^{i+l N} x\right)+\sum_{i=0}^{N-1} f_{n-i-m N}\left(T^{i+m N} x\right) \\
& \leq \sum_{j=0}^{n-1} f_{N}\left(T^{j} x\right)+\sum_{i=0}^{N-1}\left(f_{i}(x)+f_{n-i-m N}\left(T^{i+m N} x\right)\right)
\end{aligned}
$$

and dividing by $n N$

$$
\frac{1}{n} f_{n}(x) \leq \frac{1}{n N} \sum_{j=0}^{n-1} f_{N}\left(T^{j} x\right)+\frac{1}{n N} \sum_{i=0}^{N-1}\left(f_{i}(x)+f_{n-i-m N}\left(T^{i+m N} x\right)\right)
$$

By exercise 10, the two terms on the right either converge to 0 or else have a limsup which is ≤ 0. Hence, using BET (exercise 7) and taking the limit as $n \rightarrow+\infty$

$$
\bar{f}(x) \leq \frac{1}{N} f_{N}^{*}(x)
$$

Finally, this implies

$$
\bar{f}(x) \leq \phi(x)=\inf _{N \geq 1} \frac{1}{N} f_{N}^{*}(x)
$$

Remark 2. Under the assumptions of the KET if one can prove that

$$
\begin{equation*}
\phi(x)=\lim _{n \rightarrow+\infty} \frac{1}{n} f_{n}(x) \quad \text { for } \quad \mu \text {-a.e. } x \in X \tag{6}
\end{equation*}
$$

then all conclusions of the BET follow.
Exercise 11. Show it is enough to prove (6) when ϕ is bounded from below, i.e., $\phi \geq-M$. Hint: For each $M>0$, the set $X_{M}:=\{x \in X: \phi(x) \geq-M\}$ is T-invariant.

Exercise 12. Prove that if $\left\{f_{n}\right\}_{n \geq 1}$ is a sub-additive process then so is $\left\{f_{n}+n M\right\}_{n \geq 1}$, for any constant M.

Use this fact to show that it is enough to prove (6) when $\phi>0 \mu$-a.e..
Hint: If $\phi \geq-M$ consider the sub-additive process $\left\{f_{n}+n(M+1)\right\}_{n \geq 1}$.
Proof of the KET. Let us assume that $\phi>0 \mu$-a.e.. By exercise $9, f_{n}^{+} \in L^{1}(X, \mu)$ for all $n \in \mathbb{N}$.

Given $\varepsilon>0$ define

$$
n(x):=\min \left\{n \geq 1: \frac{1}{n} f_{n}(x) \leq \underline{f}^{+}(x)+\varepsilon\right\}
$$

By definition

$$
\begin{equation*}
\frac{1}{n(x)} f_{n(x)}(x) \leq \underline{f}^{+}(x)+\varepsilon \tag{7}
\end{equation*}
$$

By invariance of \underline{f}^{+},

$$
\frac{1}{n(x)} f_{n(x)}(x) \leq \underline{f}^{+}\left(T^{j} x\right)+\varepsilon
$$

Adding up these inequalities in $j=0,1, \ldots, n(x)-1$ we get

$$
\begin{equation*}
f_{n(x)}(x) \leq S_{n(x)}\left(\underline{f}^{+}\right)(x)+n(x) \varepsilon . \tag{8}
\end{equation*}
$$

Consider now the sets $X_{N}:=\{x \in X: n(x) \leq n\}$. Because $X=\cup_{N \geq 1} X_{N}(\bmod 0)$, for N large enough $\int_{X} f_{1}^{+} d \mu<\varepsilon$. Next we define the functions $\tilde{n}: X \rightarrow \overline{\mathbb{N}}$

$$
\tilde{n}(x):=\left\{\begin{array}{ccc}
n(x) & \text { if } & x \in X_{N} \\
1 & \text { if } & x \notin X_{N}
\end{array}\right.
$$

and $\tilde{f}^{+}: X \rightarrow \mathbb{R}$

$$
\tilde{f}^{+}(x):=\left\{\begin{array}{ccc}
f^{+}(x) & \text { if } & x \in X_{N} \\
f_{1}(x) & \text { if } & x \notin X_{N}
\end{array}\right.
$$

With this notation, (8) implies that

$$
\begin{equation*}
f_{\tilde{n}(x)}(x) \leq S_{\tilde{n}(x)}\left(\tilde{f}^{+}\right)(x)+\tilde{n}(x) \varepsilon \tag{9}
\end{equation*}
$$

Observe also that

$$
\begin{align*}
\int \tilde{f}^{+} d \mu & \leq \int_{X_{M}} \underline{f}^{+} d \mu+\int_{X \backslash X_{M}} f_{1} d \mu \\
& \leq \int \underline{f}^{+} d \mu+\int f_{1}^{+} d \mu \leq \int \underline{f}^{+} d \mu+\varepsilon \tag{10}
\end{align*}
$$

Next we define recursively the sequence of stopping times

$$
\left\{\begin{array}{l}
n_{0}(x):=0 \\
n_{k}(x):=n_{k-1}(x)+\tilde{n}\left(T^{n_{k-1}(x)} x\right)
\end{array} .\right.
$$

Given $L>\frac{N}{\varepsilon} \int f_{1}^{+} d \mu$, choose the largest $k=k(x) \in \mathbb{N}$ such that $n_{k}(x) \leq L$, so that in particular $L-n_{k}(x)<N$. From (9) we get

$$
\begin{aligned}
f_{L}(x) & \leq \sum_{l=0}^{k-1} f_{\tilde{n}\left(T^{n_{l}} x\right)}\left(T^{n_{l}} x\right)+f_{L-n_{k}}\left(T^{n_{k}} x\right) \\
& \leq \sum_{l=0}^{k-1} S_{\tilde{n}\left(T^{n_{l}} x\right)}\left(\tilde{f}^{+}\right)\left(T^{n_{l}} x\right)+f_{L-n_{k}}\left(T^{n_{k}} x\right)+L \varepsilon \\
& \leq S_{n_{k}}\left(\tilde{f}^{+}\right)(x)+\sum_{j=n_{k}}^{L} f_{1}^{+}\left(T^{j} x\right)+L \varepsilon .
\end{aligned}
$$

Hence, dividing by L and integrating, from (10) we get

$$
\begin{aligned}
\int \phi d \mu & \leq \int \frac{1}{L} f_{L}^{*} d \mu=\int \frac{1}{L} f_{L} d \mu \\
& \leq \int S_{L}\left(\tilde{f}^{+}\right) d \mu+\frac{N}{L} \int f_{1}^{+} d \mu+\varepsilon \\
& \leq \int \tilde{f}^{+} d \mu+2 \varepsilon \leq \int \underline{f}^{+} d \mu+3 \varepsilon
\end{aligned}
$$

By definition $\underline{f} \leq \underline{f}^{+}$. On the other hand, by Lemma $2, \underline{f} \leq \bar{f} \leq \phi$. Hence, since $\phi \geq 0$ we get $\underline{f}^{+} \leq \phi$. Thus, because

$$
\int(\underbrace{f^{+}-\phi}_{\leq 0}) d \mu \geq 0
$$

we have $\phi=\underline{f}^{+} \mu$-a.e.. Finally, if $\underline{f}^{+}(x) \neq \underline{f}(x)$ then $\underline{f}^{+}(x)=0$, and because $\phi>0$ μ-a.e., this can only happen on a set with zero measure. Therefore $\underline{f}=\phi \mu$-a.e..

References

[1] Y. Katznelson, B. Weiss, Simple proofs of some ergodic theorems, Israel Journal of Mathematics,Vol. 42, No. 4, 1982

