Birkhoft and Kingman’s Theorems

Abstract

Proofs of Birkhoff and Kingman ergodic theorems based on the article [1] by Y.
Katznelson and B. Weiss.

1 Notation

We will use the notation f*(z) := max{f(z),0} and f~(z) := max{—f(z),0}, so that
the following relations hold

f=f"=f" and |fl=f"+/f".

2 Birkhoffs Ergodic Theorem
Given f: X — R we write

Sn(f)(z) := z_:f(T]z)
j=0

This sum is called Birkhoff’s time average of the observable f.

Theorem 1 (BET). Let (T, X;F, u) be a MPDS. Given f € LY(X, u), the following limit
exists for p-a.e. x € X

f@) = lim 25,()@).

n—+oo n

Moreover the limit function f*: X — R satisfies:
(a) f* €LY (X, p),
(b) f*oT = f* p-a.e.,

(C) fo*d,u:f)(fd,u“

Exercise 1. Show that it is enough to prove the BET for f >0, f € LY(X, ).
Hint: Using the decomposition f = fT — f~, see that f* = (fT)* — (f7)* and also
Su(f) = Sn(f+) = Sa(f7).



Given f: X — R we define i,f: X — [—o00,+00],

f(z) ;= liminf l,S’n(f)(sc),

- n—+oo N

f(z) := limsup l,S’n(f)(:n)

n—+oco M

Exercise 2. Prove that for any measurable function f: X — R, the functions f and f
are measurable and T-invariant.

Remark 1. Under the assumptions of the BET if one can prove that

| raus [ sans [ gan &)

then all conclusions of the BET follow.
Given M > 0 we define the M -truncation of f : X — R to be the function
fu X =R, fu(x) = min{f(z), M}.
Exercise 3. Prove that the following monotonic convergences hold for every r € X
1. fu(x) 2 f(z) as M — +oo,
2. fu(z) 7 f(x) as M — +o0,
8. fu(x) 7 f(x) as M — +o0.

Exercise 4. Show it is enough to prove (1) for f non-negative and bounded measurable
functions. Conclude it is enough to consider functions such that 0 < f < 1.
Hint: Use exercise 3 and the monotone convergence theorem.

Proof of the BET. Let f : X — R be a measurable function such that 0 < f < 1, and
take € > 0.
By Remark 1 it is enough to see that

(a) [fdu< [ fdu+ 3e, and
() [fdu< [ fdp+ 3e.

To prove (a) define n: X — N,

)= min {n > 12 16,(7)(0) 2 (o) — <.

n
Since 0 < f < f <1, the function n(z) takes finite values everywhere. By definition

F(@) € — Sy (@) + <. (2)



By invariance of f,

f(172) < %Sn(z)(f)(x) +e.

Adding up these inequalities in j = 0,1,...,n(z) — 1 we get

Consider now the sets Xy := {z € X: n(z) < n}. Because X = Uny>1 Xy (mod 0),
for N large enough u(X \ Xy) < e. Next we define the functions 7 : X — N

_fn(x) i zeX
(z) { 1 if ngXx

and f: X - R

oy fle) if zeX
f(x)‘_{ 1 it xgéXz

With this notation, (3) implies that
Si(a) (F)(@) < Sy (F)(@) + (e, (4)

Observe also that

[Fan< [ gaus [ rau
Xm X\ XM
S/fdu+u(X\XM)§/fdu+a (5)

The random variable 7i(x) is referred as a stopping time in Probability Theory. Katznel-
son and Weiss idea is to split the orbit {T™z},>¢ along the sequence of stopping times
A(z), A(T™®) ), etc. By construction the distance between consecutive stopping times is
bounded by N, while we have good bounds for the time averages of f between any two
consecutive stopping times. More precisely, define recursively

{ no(z) :=0
ng(x) = ngp_1 () + AT @) g)

Given L > &, choose the largest k = k(z) € N such that ny(z) < L, so that in particular
L —ni(z) < N. From (4) we get

k—1
St(f)(@) =Y Sawma (F)(T™@) + Spn, (/) (T"2)
=0

k—1
<" Sy (P (T™2) + St (H(T2) + Le
=0

< SL(f)(x) + N + Le.



Hence, dividing by L and integrating, from (5) we get
_ _ ~ N
[Fan=[sufdus [suPran+ ] +e
_ N _
S/fdu+f+€§/fdu+2€.
< /f dp + 3e.

This proves (a).
Exercise 5. Prove claim (b) adapting the proof of (a).
O

Exercise 6. Prove the following extension of the BET: Given a measurable non-negative
function f: X — [0,+00), the following limit exists for p-a.e. x € X

ff(x) = lim lS’n(f)(gc) € [0, +o0].

n—+oo n
Moreover the limit function f*: X — [0,400] satisfies:
(a) f*oT = f* p-a.e.,
() [x frdp= [x fdp.
Hint: Use exercise 3.

Exercise 7. Prove the following extension of the BET: Given a measurable function
f: X — R such that f+ € LY(X, p), the following limit exists for p-a.e. * € X

()= lim lSn(f)(a:) € [—o0, +00).

n—+oo m
Moreover the limit function f*: X — [—o0,400) satisfies:
(a) f*oT = f* p-a.e.,
() [x frdp= [x fdp.

Hint: Use exercise 6.

3 Kingman’s Ergodic Theorem
A sequence of numbers {ay, },>0 In [—00, +00) is called sub-additive if

ptm < @p + @y forall nym>0.



Lemma 1 (Fekete’s Subadditive Lemma). Given a sub-additive sequence {an}n>0 the
following limit converges

lim &% = inf % ¢ [—00, +00) .

n—oo m n>l M
Proof. If a, = —oo for some p € N then, by sub-additivity, a, = —oo for all n > p.
Assume now that a,, > —oo for all n > 1. Let L = inf,,>1 a,/n € [—00,00) and choose
any number L' > L. Take k > 1 such that ax/k < L.

n=gqk+r with 0 <r < k. Hence by sub-additivity
[o2% qag + a, n—rag  ar

=< = —_
n n n k+n

Since (n — r)/n converges to 1 and a,/n converges to 0, as n — +o0, there exists ng € N
such that a,/n < L’ for all n > ng. This proves that

. Q.
lim 2=1.
n—4+oco N

O O

A random process {f,}n>1 over the MPDS (T, X, ¥, u), i.e., a sequence of random
variables f,: X — R on (X, T, n), is called sub-additive when for all n,m > 1,

fn+m S fn o Tm + fm
Theorem 2 (KET). Let (T, X,F,u) be MPDS. Given a sub-additive random process
{fn}n>1 such that f7 € LY(X, u) then the following limit exists for y-a.e. © € X

o(x) = lim L fu(e) € [—o0, +00).

n—+oo n
Moreover the limit function ¢ : X — [—00,+00) satisfies:
(a) poT = ¢ p-a.e.,

(b) [y ddp=1lim, 4o %fx fndp = inf,>4 % Jx fndp € [—00,+00).
Given the process {fn}n>1 define f, f: X — [—00, +00),

f(z) := lim inf lfn(x)a

- n—+oo N

f(z) := limsup lfn(as)

n—+oo N

From sub-additivity of {f,}n>1 we get for all j >0

fner(zj) S fn(Terjx) + fm(zj)'



Hence, adding up we have for all L € N and n,m > 1

Sp(fatm)(@) < SLfa)(T™2) + SL(fm)(@).

Dividing by L and taking the limit as L — +oo, for all n,m > 1

faem (@) < fo(@) + [ ().

By Fekete’s lemma (Lemma 1) the following limit exists for all z € X,

b(z) = lim ().

n—-+oo N
Exercise 8. Prove that ¢ is T-invariant.

Exercise 9. Given a sub-additive process {fn}n>1 such that f;7 € L'(X,p), prove that
foralln>1, ff € LY(X, ).

Exercise 10. Given f: X — R measurable, prove that:

(a) liminf, o0 L |f(T"2)| =0, for p-a.e. z € X.

(b) If foT — f € L'(X,p) then lim lf(T"x) =0, for p-a.e. v € X.

n—+oo n

(c) If f € L*(X, ) then lim lf(T”x) =0, for p-a.e. x € X.

n—+oo n

(d) If f+ € LY(X,p) then limsuplf(T”x) <0, for p-a.e. z € X.

n—+4oo T
The next step to KET is the following
Lemma 2. Under the assumptions of the KET, f(z) < ¢(x) for p-a.e. z € X.

Proof. Fix N € N large and take n > N. For any ¢« = 0,1,..., N — 1, dividing n — i by
N there are integers m and 0 < k < N such that n = ¢+ mN + k. By sub-additivity,

(@) < filw) + frun (T'2) + fr(TH"V2)
m—1

< fi(z) + Z (TN N (TN )
1=0

Addingupinz’:O,l,...,N—l we get
N fu(@) < fi(2) + fourn (T'2) + fr(TT™N2)

N—-1m-1 N-1

N-1
Z filx) + Z fN(TiHNx) + Z fnfime(TierNm)

=0 =0 [=0 =0
—1

IN
3 o

IA

In(Tz) + 4 (fi(@) + fomicmn (TN 1))

<
I
<}
o
Il
<



and dividing by nN

|
=

n —1
1

< —
niN 4
J

1

In(T7z) + N

%f"(x) (fi(@) + facicmn (TN a))

I
=
Il
<

By exercise 10, the two terms on the right either converge to 0 or else have a limsup which
is < 0. Hence, using BET (exercise 7) and taking the limit as n — 400

Finally, this implies
PR SR
f(x) <o(x) = inf —=fr(z).

N>1 N
O
Remark 2. Under the assumptions of the KET if one can prove that
1
d(x) = lim —fo(x) for p-a.e.x e X (6)

n—+oo n
then all conclusions of the BET follow.

Exercise 11. Show it is enough to prove (6) when ¢ is bounded from below, i.e., ¢ > —M.
Hint: For each M > 0, the set X)r = {x € X: ¢(x) > —M} is T-invariant.

Exercise 12. Prove that if {fn}n>1 is a sub-additive process then so is {fn +nM},>1,
for any constant M.

Use this fact to show that it is enough to prove (6) when ¢ >0 p-a.e..
Hint: If ¢ > —M consider the sub-additive process {fn +n (M + 1)},>1.

Proof of the KET. Let us assume that ¢ > 0 p-a.e.. By exercise 9, f;7 € L1(X, u) for all
n € N.
Given € > 0 define

By definition

By invariance of f”,
1

Adding up these inequalities in j =0,1,...,n(z) — 1 we get

fn(ac)(x) < Sn(:c)(i-‘r)(x) + n(x)s (8)



Consider now the sets Xy := {z € X: n(z) < n}. Because X = Uy>1 Xy (mod 0),
for N large enough [, fiTdu < . Next we define the functions 72 : X — N

n

_Jn(xr) if zeXn
() { 1 if 2¢ Xy
and fT: X >R

5 _f M=) if zeXy
fw")'_{ fi(z) i z¢ Xy

With this notation, (8) implies that
fita) (#) < Siiay (F1)(@) + Alw)e. (9)

Observe also that

/f*duﬁ f+du+/ frdu
Xnv o X\ X m
< /f du+/f1+du§ /fdwe. (10)
Next we define recursively the sequence of stopping times

{ no(z) :=0
ng(x) == ngp_1 () + AT g)

Given L > g [ fiFdu, choose the largest k = k(z) € N such that ny(z) < L, so that in
particular L — ng(z) < N. From (9) we get

k—1

Ju(@) <D Fagrma) (T"2) + fron, (T"2)
1=0
k-1

<7 Sy (FHT™2) + frn, (T ) + Le
=0
L

< S (F)@)+ Y f () + Le.

J=nk

Hence, dividing by L and integrating, from (10) we get
/¢d</lf*d*/lfd
B> /L H= R K
it N +
< [ Su(fM)dut+ - | fidute

g/f*dunt%g/frdu—k?)a



By definition f < iJr. On the other hand, by Lemma 2, f < f < ¢. Hence, since
¢ > 0 we get i"’ < ¢. Thus, because

/ (Ft — d)dp >0
—_——
<0

we have ¢ = f* p-ace.. Finally, if f7(z) # f(z) then f*(z) = 0, and because ¢ > 0
p-a.e., this can only happen on a set with zero measure. Therefore f = ¢ p-a.e.. O
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