Birkhoff and Kingman's Theorems

Abstract

Proofs of Birkhoff and Kingman ergodic theorems based on the article [1] by Y. Katznelson and B. Weiss.

1 Notation

We will use the notation $f^+(x) := \max\{f(x), 0\}$ and $f^-(x) := \max\{-f(x), 0\}$, so that the following relations hold

$$f = f^+ - f^-$$
 and $|f| = f^+ + f^-$.

2 Birkhoffs Ergodic Theorem

Given $f: X \to \mathbb{R}$ we write

$$S_n(f)(x) := \sum_{j=0}^{n-1} f(T^j x).$$

This sum is called *Birkhoff's time average* of the observable f.

Theorem 1 (BET). Let $(T, X; \mathcal{F}, \mu)$ be a MPDS. Given $f \in L^1(X, \mu)$, the following limit exists for μ -a.e. $x \in X$

$$f^*(x) = \lim_{n \to +\infty} \frac{1}{n} S_n(f)(x).$$

Moreover the limit function $f^* : X \to \mathbb{R}$ satisfies:

- (a) $f^* \in L^1(X, \mu)$,
- (b) $f^* \circ T = f^* \mu$ -a.e.,
- (c) $\int_X f^* d\mu = \int_X f d\mu$.

Exercise 1. Show that it is enough to prove the BET for $f \ge 0$, $f \in L^1(X, \mu)$. **Hint:** Using the decomposition $f = f^+ - f^-$, see that $f^* = (f^+)^* - (f^-)^*$ and also $S_n(f) = S_n(f^+) - S_n(f^-)$. Given $f: X \to \mathbb{R}$ we define $f, \overline{f}: X \to [-\infty, +\infty]$,

$$\underline{f}(x) := \liminf_{n \to +\infty} \frac{1}{n} S_n(f)(x),$$
$$\overline{f}(x) := \limsup_{n \to +\infty} \frac{1}{n} S_n(f)(x).$$

Exercise 2. Prove that for any measurable function $f : X \to \mathbb{R}$, the functions \underline{f} and \overline{f} are measurable and T-invariant.

Remark 1. Under the assumptions of the BET if one can prove that

$$\int_{X} \bar{f} \, d\mu \le \int_{X} f \, d\mu \le \int_{X} \underline{f} \, d\mu \tag{1}$$

then all conclusions of the BET follow.

Given M > 0 we define the *M*-truncation of $f: X \to \mathbb{R}$ to be the function

 $f_M: X \to \mathbb{R}, \quad f_M(x) := \min\{f(x), M\}.$

Exercise 3. Prove that the following monotonic convergences hold for every $x \in X$

- 1. $f_M(x) \nearrow f(x)$ as $M \to +\infty$, 2. $\overline{f_M}(x) \nearrow \overline{f}(x)$ as $M \to +\infty$,
- 3. $f_M(x) \nearrow f(x)$ as $M \to +\infty$.

Exercise 4. Show it is enough to prove (1) for f non-negative and bounded measurable functions. Conclude it is enough to consider functions such that $0 \le f \le 1$. **Hint:** Use exercise 3 and the monotone convergence theorem.

Proof of the BET. Let $f: X \to \mathbb{R}$ be a measurable function such that $0 \leq f \leq 1$, and take $\varepsilon > 0$.

By Remark 1 it is enough to see that

- (a) $\int \bar{f} d\mu \leq \int f d\mu + 3\varepsilon$, and
- (b) $\int f d\mu \leq \int f d\mu + 3\varepsilon$.

To prove (a) define $n: X \to \mathbb{N}$,

$$n(x) := \min\left\{n \ge 1 \colon \frac{1}{n}S_n(f)(x) \ge \bar{f}(x) - \varepsilon\right\}$$

Since $0 \le f \le \overline{f} \le 1$, the function n(x) takes finite values everywhere. By definition

$$\bar{f}(x) \le \frac{1}{n(x)} S_{n(x)}(f)(x) + \varepsilon.$$
(2)

By invariance of \bar{f} ,

$$\bar{f}(T^j x) \le \frac{1}{n(x)} S_{n(x)}(f)(x) + \varepsilon.$$

Adding up these inequalities in j = 0, 1, ..., n(x) - 1 we get

$$S_{n(x)}(\bar{f})(x) \le S_{n(x)}(f)(x) + n(x)\varepsilon.$$
(3)

Consider now the sets $X_N := \{x \in X : n(x) \leq n\}$. Because $X = \bigcup_{N \geq 1} X_N \pmod{0}$, for N large enough $\mu(X \setminus X_N) < \varepsilon$. Next we define the functions $\tilde{n} : X \to \mathbb{N}$

$$\tilde{n}(x) := \begin{cases} n(x) & \text{if } x \in X_N \\ 1 & \text{if } x \notin X_N \end{cases}$$

and $\tilde{f}: X \to \mathbb{R}$

$$\tilde{f}(x) := \begin{cases} f(x) & \text{if } x \in X_N \\ 1 & \text{if } x \notin X_N \end{cases}$$

With this notation, (3) implies that

$$S_{\tilde{n}(x)}(\bar{f})(x) \le S_{\tilde{n}(x)}(\bar{f})(x) + \tilde{n}(x)\varepsilon.$$
(4)

Observe also that

$$\int \tilde{f} d\mu \leq \int_{X_M} f d\mu + \int_{X \setminus X_M} 1 d\mu$$
$$\leq \int f d\mu + \mu(X \setminus X_M) \leq \int f d\mu + \varepsilon.$$
(5)

The random variable $\tilde{n}(x)$ is referred as a *stopping time* in Probability Theory. Katznelson and Weiss idea is to split the orbit $\{T^n x\}_{n\geq 0}$ along the sequence of stopping times $\tilde{n}(x)$, $\tilde{n}(T^{n(x)}x)$, etc. By construction the distance between consecutive stopping times is bounded by N, while we have good bounds for the time averages of f between any two consecutive stopping times. More precisely, define recursively

$$\begin{cases} n_0(x) := 0\\ n_k(x) := n_{k-1}(x) + \tilde{n}(T^{n_{k-1}(x)}x) \end{cases}$$

Given $L > \frac{N}{\varepsilon}$, choose the largest $k = k(x) \in \mathbb{N}$ such that $n_k(x) \leq L$, so that in particular $L - n_k(x) < N$. From (4) we get

$$S_{L}(\bar{f})(x) = \sum_{l=0}^{k-1} S_{\bar{n}(T^{n_{l}}x)}(\bar{f})(T^{n_{l}}x) + S_{L-n_{k}}(\bar{f})(T^{n_{k}}x)$$

$$\leq \sum_{l=0}^{k-1} S_{\bar{n}(T^{n_{l}}x)}(\tilde{f})(T^{n_{l}}x) + S_{L-n_{k}}(\bar{f})(T^{n_{k}}x) + L\varepsilon$$

$$\leq S_{L}(\tilde{f})(x) + N + L\varepsilon.$$

Hence, dividing by L and integrating, from (5) we get

$$\int \bar{f} d\mu = \int S_L(\bar{f}) d\mu \leq \int S_L(\tilde{f}) d\mu + \frac{N}{L} + \varepsilon.$$
$$\leq \int \tilde{f} d\mu + \frac{N}{L} + \varepsilon \leq \int \tilde{f} d\mu + 2\varepsilon.$$
$$\leq \int f d\mu + 3\varepsilon.$$

This proves (a).

Exercise 5. Prove claim (b) adapting the proof of (a).

Exercise 6. Prove the following extension of the BET: Given a measurable non-negative function $f: X \to [0, +\infty)$, the following limit exists for μ -a.e. $x \in X$

$$f^*(x) = \lim_{n \to +\infty} \frac{1}{n} S_n(f)(x) \in [0, +\infty].$$

Moreover the limit function $f^* : X \to [0, +\infty]$ satisfies:

- (a) $f^* \circ T = f^* \mu$ -a.e.,
- (b) $\int_X f^* d\mu = \int_X f d\mu$.

Hint: Use exercise 3.

Exercise 7. Prove the following extension of the BET: Given a measurable function $f: X \to \mathbb{R}$ such that $f^+ \in L^1(X, \mu)$, the following limit exists for μ -a.e. $x \in X$

$$f^*(x) = \lim_{n \to +\infty} \frac{1}{n} S_n(f)(x) \in [-\infty, +\infty).$$

Moreover the limit function $f^*: X \to [-\infty, +\infty)$ satisfies:

- (a) $f^* \circ T = f^* \mu$ -a.e.,
- (b) $\int_X f^* d\mu = \int_X f d\mu.$

Hint: Use exercise 6.

3 Kingman's Ergodic Theorem

A sequence of numbers $\{a_n\}_{n\geq 0}$ in $[-\infty, +\infty)$ is called *sub-additive* if

$$a_{n+m} \le a_n + a_m$$
 for all $n, m \ge 0$

Lemma 1 (Fekete's Subadditive Lemma). Given a sub-additive sequence $\{a_n\}_{n\geq 0}$ the following limit converges

$$\lim_{n \to \infty} \frac{a_n}{n} = \inf_{n \ge 1} \frac{a_n}{n} \in [-\infty, +\infty) .$$

Proof. If $a_p = -\infty$ for some $p \in \mathbb{N}$ then, by sub-additivity, $a_n = -\infty$ for all $n \ge p$. Assume now that $a_n > -\infty$ for all $n \ge 1$. Let $L = \inf_{n \ge 1} a_n/n \in [-\infty, \infty)$ and choose any number L' > L. Take $k \ge 1$ such that $a_k/k < L'$.

n = q k + r with $0 \le r < k$. Hence by sub-additivity

$$\frac{a_n}{n} \le \frac{q a_k + a_r}{n} = \frac{n-r}{n} \frac{a_k}{k} + \frac{a_r}{n} \ .$$

Since (n-r)/n converges to 1 and a_r/n converges to 0, as $n \to +\infty$, there exists $n_0 \in \mathbb{N}$ such that $a_n/n < L'$ for all $n \ge n_0$. This proves that

$$\lim_{n \to +\infty} \frac{a_n}{n} = L \; .$$

A random process $\{f_n\}_{n\geq 1}$ over the MPDS (T, X, \mathcal{F}, μ) , i.e., a sequence of random variables $f_n: X \to \mathbb{R}$ on (X, \mathcal{F}, μ) , is called *sub-additive* when for all $n, m \geq 1$,

$$f_{n+m} \le f_n \circ T^m + f_m.$$

Theorem 2 (KET). Let (T, X, \mathcal{F}, μ) be MPDS. Given a sub-additive random process $\{f_n\}_{n\geq 1}$ such that $f_1^+ \in L^1(X, \mu)$ then the following limit exists for μ -a.e. $x \in X$

$$\phi(x) = \lim_{n \to +\infty} \frac{1}{n} f_n(x) \in [-\infty, +\infty).$$

Moreover the limit function $\phi: X \to [-\infty, +\infty)$ satisfies:

- (a) $\phi \circ T = \phi \ \mu$ -a.e.,
- (b) $\int_X \phi \, d\mu = \lim_{n \to +\infty} \frac{1}{n} \int_X f_n \, d\mu = \inf_{n \ge 1} \frac{1}{n} \int_X f_n \, d\mu \in [-\infty, +\infty).$

Given the process $\{f_n\}_{n\geq 1}$ define $\underline{f}, \overline{f}: X \to [-\infty, +\infty),$

$$\underline{f}(x) := \liminf_{n \to +\infty} \frac{1}{n} f_n(x),$$
$$\overline{f}(x) := \limsup_{n \to +\infty} \frac{1}{n} f_n(x).$$

From sub-additivity of $\{f_n\}_{n\geq 1}$ we get for all $j\geq 0$

$$f_{n+m}(T^j x) \le f_n(T^{m+j} x) + f_m(T^j x).$$

Hence, adding up we have for all $L \in \mathbb{N}$ and $n,m \geq 1$

$$S_L(f_{n+m})(x) \le S_L(f_n)(T^m x) + S_L(f_m)(x).$$

Dividing by L and taking the limit as $L \to +\infty$, for all $n, m \ge 1$

$$f_{n+m}^*(x) \le f_n^*(x) + f_m^*(x).$$

By Fekete's lemma (Lemma 1) the following limit exists for all $x \in X$,

$$\phi(x) = \lim_{n \to +\infty} \frac{1}{n} f_n^*(x).$$

Exercise 8. Prove that ϕ is *T*-invariant.

Exercise 9. Given a sub-additive process $\{f_n\}_{n\geq 1}$ such that $f_1^+ \in L^1(X,\mu)$, prove that for all $n \geq 1$, $f_n^+ \in L^1(X,\mu)$.

Exercise 10. Given $f: X \to \mathbb{R}$ measurable, prove that:

- (a) $\liminf_{n \to +\infty} \frac{1}{n} |f(T^n x)| = 0$, for μ -a.e. $x \in X$.
- (b) If $f \circ T f \in L^1(X, \mu)$ then $\lim_{n \to +\infty} \frac{1}{n} f(T^n x) = 0$, for μ -a.e. $x \in X$.

(c) If
$$f \in L^1(X,\mu)$$
 then $\lim_{n \to +\infty} \frac{1}{n} f(T^n x) = 0$, for μ -a.e. $x \in X$.

(d) If
$$f^+ \in L^1(X,\mu)$$
 then $\limsup_{n \to +\infty} \frac{1}{n} f(T^n x) \le 0$, for μ -a.e. $x \in X$.

The next step to KET is the following

Lemma 2. Under the assumptions of the KET, $\bar{f}(x) \leq \phi(x)$ for μ -a.e. $x \in X$.

Proof. Fix $N \in \mathbb{N}$ large and take $n \gg N$. For any $i = 0, 1, \ldots, N - 1$, dividing n - i by N there are integers m and $0 \le k < N$ such that n = i + mN + k. By sub-additivity,

$$f_n(x) \le f_i(x) + f_{mN}(T^i x) + f_k(T^{i+mN} x)$$

$$\le f_i(x) + \sum_{l=0}^{m-1} f_N(T^{i+lN} x) + f_{n-i-mN}(T^{i+mN} x)$$

Adding up in $i = 0, 1, \ldots, N - 1$ we get

$$N f_n(x) \le f_i(x) + f_{mN}(T^i x) + f_k(T^{i+mN} x)$$

$$\le \sum_{i=0}^{N-1} f_i(x) + \sum_{i=0}^{N-1} \sum_{l=0}^{m-1} f_N(T^{i+lN} x) + \sum_{i=0}^{N-1} f_{n-i-mN}(T^{i+mN} x)$$

$$\le \sum_{j=0}^{n-1} f_N(T^j x) + \sum_{i=0}^{N-1} \left(f_i(x) + f_{n-i-mN}(T^{i+mN} x) \right)$$

and dividing by nN

$$\frac{1}{n}f_n(x) \le \frac{1}{nN} \sum_{j=0}^{n-1} f_N(T^j x) + \frac{1}{nN} \sum_{i=0}^{N-1} \left(f_i(x) + f_{n-i-mN}(T^{i+mN} x) \right).$$

By exercise 10, the two terms on the right either converge to 0 or else have a limsup which is ≤ 0 . Hence, using BET (exercise 7) and taking the limit as $n \to +\infty$

$$\bar{f}(x) \le \frac{1}{N} f_N^*(x).$$

Finally, this implies

$$\bar{f}(x) \le \phi(x) = \inf_{N \ge 1} \frac{1}{N} f_N^*(x).$$

Remark 2. Under the assumptions of the KET if one can prove that

$$\phi(x) = \lim_{n \to +\infty} \frac{1}{n} f_n(x) \quad \text{for } \mu\text{-a.e.} x \in X$$
(6)

then all conclusions of the BET follow.

Exercise 11. Show it is enough to prove (6) when ϕ is bounded from below, i.e., $\phi \ge -M$. **Hint:** For each M > 0, the set $X_M := \{x \in X : \phi(x) \ge -M\}$ is *T*-invariant.

Exercise 12. Prove that if $\{f_n\}_{n\geq 1}$ is a sub-additive process then so is $\{f_n + n M\}_{n\geq 1}$, for any constant M.

Use this fact to show that it is enough to prove (6) when $\phi > 0 \mu$ -a.e.. **Hint:** If $\phi \ge -M$ consider the sub-additive process $\{f_n + n (M+1)\}_{n\ge 1}$.

Proof of the KET. Let us assume that $\phi > 0$ μ -a.e.. By exercise 9, $f_n^+ \in L^1(X, \mu)$ for all $n \in \mathbb{N}$.

Given $\varepsilon > 0$ define

$$n(x) := \min\left\{n \ge 1 : \frac{1}{n}f_n(x) \le \underline{f}^+(x) + \varepsilon\right\}.$$

By definition

$$\frac{1}{n(x)}f_{n(x)}(x) \le \underline{f}^+(x) + \varepsilon.$$
(7)

By invariance of \underline{f}^+ ,

$$\frac{1}{n(x)}f_{n(x)}(x) \le \underline{f}^+(T^jx) + \varepsilon.$$

Adding up these inequalities in j = 0, 1, ..., n(x) - 1 we get

$$f_{n(x)}(x) \le S_{n(x)}(\underline{f}^+)(x) + n(x)\varepsilon.$$
(8)

Consider now the sets $X_N := \{x \in X : n(x) \leq n\}$. Because $X = \bigcup_{N \geq 1} X_N \pmod{0}$, for N large enough $\int_X f_1^+ d\mu < \varepsilon$. Next we define the functions $\tilde{n} : X \to \mathbb{N}$

$$\tilde{n}(x) := \begin{cases} n(x) & \text{if } x \in X_N \\ 1 & \text{if } x \notin X_N \end{cases}$$

and $\tilde{f}^+: X \to \mathbb{R}$

$$\tilde{f}^+(x) := \begin{cases} \underline{f}^+(x) & \text{if } x \in X_N \\ \overline{f}_1(x) & \text{if } x \notin X_N \end{cases}$$

With this notation, (8) implies that

$$f_{\tilde{n}(x)}(x) \le S_{\tilde{n}(x)}(\tilde{f}^+)(x) + \tilde{n}(x)\varepsilon.$$
(9)

Observe also that

$$\int \tilde{f}^+ d\mu \leq \int_{X_M} \underline{f}^+ d\mu + \int_{X \setminus X_M} f_1 d\mu$$
$$\leq \int \underline{f}^+ d\mu + \int f_1^+ d\mu \leq \int \underline{f}^+ d\mu + \varepsilon.$$
(10)

Next we define recursively the sequence of stopping times

$$\begin{cases} n_0(x) := 0 \\ n_k(x) := n_{k-1}(x) + \tilde{n}(T^{n_{k-1}(x)}x) \end{cases}$$

Given $L > \frac{N}{\varepsilon} \int f_1^+ d\mu$, choose the largest $k = k(x) \in \mathbb{N}$ such that $n_k(x) \leq L$, so that in particular $L - n_k(x) < N$. From (9) we get

$$f_L(x) \le \sum_{l=0}^{k-1} f_{\tilde{n}(T^{n_l}x)}(T^{n_l}x) + f_{L-n_k}(T^{n_k}x)$$

$$\le \sum_{l=0}^{k-1} S_{\tilde{n}(T^{n_l}x)}(\tilde{f}^+)(T^{n_l}x) + f_{L-n_k}(T^{n_k}x) + L\varepsilon$$

$$\le S_{n_k}(\tilde{f}^+)(x) + \sum_{j=n_k}^L f_1^+(T^jx) + L\varepsilon.$$

Hence, dividing by L and integrating, from (10) we get

$$\int \phi d\mu \leq \int \frac{1}{L} f_L^* d\mu = \int \frac{1}{L} f_L d\mu$$
$$\leq \int S_L(\tilde{f}^+) d\mu + \frac{N}{L} \int f_1^+ d\mu + \varepsilon$$
$$\leq \int \tilde{f}^+ d\mu + 2\varepsilon \leq \int \underline{f}^+ d\mu + 3\varepsilon.$$

By definition $\underline{f} \leq \underline{f}^+$. On the other hand, by Lemma 2, $\underline{f} \leq \overline{f} \leq \phi$. Hence, since $\phi \geq 0$ we get $\underline{f}^+ \leq \phi$. Thus, because

$$\int (\underbrace{\underline{f}^+ - \phi}_{\leq 0}) d\mu \ge 0$$

we have $\phi = \underline{f}^+ \mu$ -a.e.. Finally, if $\underline{f}^+(x) \neq \underline{f}(x)$ then $\underline{f}^+(x) = 0$, and because $\phi > 0 \mu$ -a.e., this can only happen on a set with zero measure. Therefore $\underline{f} = \phi \mu$ -a.e..

References

 Y. Katznelson, B. Weiss, Simple proofs of some ergodic theorems, Israel Journal of Mathematics, Vol. 42, No. 4, 1982