Note on Haar's Theorem

Abstract

The purpose of this note is to provide a proof for the uniqueness statement on Haar's Theorem for compact groups. We also prove in this compact setting that left invariant measures are right invariant.

A topological group is a group (G, \cdot) with a Hausdorff topology which makes continuous the group operations $m: G \times G \to G$, m(x, y) = xy, and $i: G \to G$, $i(x) = x^{-1}$.

By compact group we mean a topological group which is a compact topological space. Likewise, a locally compact group is a topological group which is a locally compact topological space.

Every element $g \in G$ determines a left and a right translation $L_g, R_g : G \to G$ defined respectively by $L_g(x) := g x$ and $R_g(x) := x g$. Both these translations are homeomorphisms with obvious inverses, $(L_g)^{-1} = L_{g^{-1}}$ and $(R_g)^{-1} = R_{g^{-1}}$.

Let \mathcal{F} be the Borel σ -algebra of a topological group G, and consider a positive measure $\mu : \mathcal{F} \to [0, +\infty[$. Denote by $L^{\infty}(G)$ the space of all bounded \mathcal{F} -measurable functions $\varphi : G \to \mathbb{R}$.

The measure μ is said to be **left-invariant** if it is defined on the Borel σ -algebra \mathcal{F} , and for all $g \in G$ any of the following equivalent statements holds:

1.
$$(L_a)_*\mu = \mu$$
,

- 2. $\mu((L_q)^{-1}A) = \mu(A)$, for all $A \in \mathcal{F}$,
- 3. $\int_{G} \varphi(gx) d\mu(x) = \int_{G} \varphi(x) d\mu(x), \text{ for every } \varphi \in L^{\infty}(G).$

Similarly, the measure μ on \mathcal{F} is said to be **right-invariant** if for all $g \in G$ any of the following equivalent statements holds:

- 1. $(R_g)_*\mu = \mu$,
- 2. $\mu((R_q)^{-1}A) = \mu(A)$, for all $A \in \mathcal{F}$,
- 3. $\int_{G} \varphi(x g) d\mu(x) = \int_{G} \varphi(x) d\mu(x), \text{ for every } \varphi \in L^{\infty}(G).$

The following theorem is usually known as Haar's Theorem. Different versions were proven by A. Haar, J. von Neumann and A. Weyl.

Theorem 1 (Haar). Let G be a locally compact Hausdorff group. Then G admits left and right invariant measures on its Borel σ -algebra. Moreover, any two such left, resp. right, invariant measures are equal up to a positive scalar factor.

When G is compact more can be said.

Theorem 2. If G is compact then it admits a unique left invariant probability measure on its Borel σ -algebra. Moreover, this probability measure is also right invariant.

Let G be a compact group with Borel σ -algebra \mathcal{F} . The unique probability measure on the Borel σ -algebra of G is called the **Haar measure** of G. The proofs below make a judicious use of the previous characterization of left invariant measures.

Proposition 1. If μ is a left invariant probability measure on \mathcal{F} then it is also a right invariant measure.

Proof. Bounded \mathcal{F} -measurable functions are integrable functions w.r.t. any finite measure on \mathcal{F} . Given $\varphi \in L^{\infty}(G)$, since φ is bounded, all functions considered below are integrable in $(x, g) \in G \times G$. Applying Fubini's theorem,

$$\begin{split} \int_{G} \varphi(x) \, d\mu(x) &= \int_{G} \int_{G} \varphi(g^{-1}x) \, d\mu(x) \, d\mu(g) \\ &= \int_{G} \int_{G} \varphi(g^{-1}x) \, d\mu(g) \, d\mu(x) \\ &= \int_{G} \int_{G} \varphi((x \, g)^{-1}x) \, d\mu(g) \, d\mu(x) \\ &= \int_{G} \int_{G} \varphi(g^{-1}) \, d\mu(g) \, d\mu(x) = \int_{G} \varphi(g^{-1}) \, d\mu(g). \end{split}$$

This proves that $i_*\mu = \mu$.

On the other hand, for all $g, x \in G$,

$$(R_g \circ i)(x) = x^{-1}g = (g^{-1}x)^{-1} = (i \circ L_{g^{-1}})(x).$$

Therefore,

$$(R_g)_*\mu = (R_g)_*i_*\mu = (R_g \circ i)_*\mu$$

= $(i \circ L_{g^{-1}})_*\mu = i_*(L_{g^{-1}})_*\mu = i_*\mu = \mu,$

which shows that μ is right invariant.

Proposition 2. If μ and ν are left invariant probability measures on \mathcal{F} then $\mu = \nu$. Proof. Given $\varphi, \psi \in L^{\infty}(G)$, because $G \times G$ is compact and these functions are bounded,

by Fubini's theorem we have

$$\begin{split} \int \varphi(x) \, d\mu(x) \, \int \psi(y) \, d\nu(y) &= \int \int \varphi(x) \, \psi(y) \, d\mu(x) \, d\nu(y) \\ &= \int \int \varphi(y \, x) \, \psi(y) \, d\mu(x) \, d\nu(y) \\ &= \int \int \varphi(y \, x) \, \psi(y) \, d\nu(y) \, d\mu(x) \\ &= \int \int \varphi(y) \, \psi(yx^{-1}) \, d\nu(y) \, d\mu(x) \\ &= \int \int \varphi(y) \, \psi(yx^{-1}) \, d\mu(x) \, d\nu(y) \\ &= \int \int \varphi(y) \, \psi(x^{-1}) \, d\mu(x) \, d\nu(y) \\ &= \int \varphi(y) \, d\nu(y) \, \int \psi(x^{-1}) \, d\mu(x) \\ &= \int \varphi(y) \, d\nu(y) \, \int \psi(x^{-1}) \, d\mu(x). \end{split}$$

Thus

Taking
$$\varphi = \mathbf{1}_B$$
 with $B \in \mathcal{F}$, and $\psi = 1$, we have $\mu(B) = \nu(B)$. Hence $\mu = \nu$.